112 research outputs found

    An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain

    Get PDF
    In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.publishedVersio

    Novel Charging and Discharging Schemes for Electric Vehicles in Smart Grids

    Get PDF
    PhD ThesisThis thesis presents smart Charging and Discharging (C&D) schemes in the smart grid that enable a decentralised scheduling with large volumes of Electric Vehicles (EV) participation. The proposed C&D schemes use di erent strategies to atten the power consumption pro le by manipulating the charging or discharging electricity quantity. The novelty of this thesis lies in: 1. A user-behaviour based smart EV charging scheme that lowers the overall peak demand with an optimised EV charging schedule. It achieves the minimal impacts on users' daily routine while satisfying EV charging demands. 2. A decentralised EV electricity exchange process matches the power demand with an adaptive blockchain-enabled C&D scheme and iceberg order execution algorithm. It demonstrates improved performance in terms of charging costs and power consumption pro le. 3. The Peer-to-Peer (P2P) electricity C&D scheme that stimulates the trading depth and energy market pro le with the best price guide. It also increases the EV users' autonomy and achieved maximal bene ts for the network peers while protecting against potential attacks. 4. A novel consensus-mechanism driven EV C&D scheme for the blockchain-based system that accommodates high volume EV scenarios and substantially reduces the power uctuation level. The theoretical and comprehensive simulations prove that the penetration of EV with the proposed schemes minimises the power uctuation level in an urban area, and also increases the resilience of the smart grid system

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    A Double Auction for Charging Scheduling among Vehicles Using DAG-Blockchains

    Full text link
    Electric vehicle (EV) is becoming more and more popular in our daily life, which replaces the traditional fuel vehicles to reduce carbon emissions and protect the environment. The EVs need to be charged, but the number of charging piles in a charging station (CS) is limited and charging is usually more time-consuming than fueling. According to this scenario, we propose a secure and efficient charging scheduling system based on DAG-blockchain and double auction mechanism. In a smart area, it attempts to assign EVs to the available CSs in the light of their submitted charging requests and status information. First, we design a lightweight charging scheduling framework that integrates DAG-blockchain and modern cryptography technology to ensure security and scalability during performing scheduling and completing tradings. In this process, a constrained double auction problem is formulated because of the limited charging resources in a CS, which motivates the EVs and CSs in this area to participate in the market based on their preferences and statuses. Due to this constraint, our problem is more complicated and harder to achieve the truthfulness as well as system efficiency compared to the existing double auction model. To adapt to it, we propose two algorithms, namely the truthful mechanism for charging (TMC) and efficient mechanism for charging (EMC), to determine the assignments between EVs and CSs and pricing strategies. Then, both theoretical analysis and numerical simulations show the correctness and effectiveness of our proposed algorithms
    • …
    corecore