408 research outputs found

    A PERISHABLE INVENTORY MODEL WITH UNKNOWN TIME HORIZON

    Get PDF
    Traditionally, the time (planning) horizon over which the inventory for a particular item will be controlled is often assumed to be known (finite or infinite) and the total inventory cost is usually obtained by summing up the cost over the entire time horizon. However, in some inventory situations the period over which the inventory will be controlled are difficult to predict with certainty, as the inventory problems may not live up to or live beyond the assumed planning horizon, thereby affecting the optimality of the model. This paper presents a deterministic perishable inventory model for items with linear trend in demand and constant deterioration when time horizon is unknown, unspecified or unbounded. The heuristic model obtains replenishment policy by determining the ordering schedule to minimize the total cost per unit time over the duration of each schedule. A numerical example and sensitivity analysis are given to illustrate the model

    A study of inflation effects on an EOQ model for Weibull deteriorating/ameliorating items with ramp type of demand and shortages

    Get PDF
    This paper deals with the effects of inflation and time discounting on an inventory model with general ramp type demand rate, time dependent (Weibull) deterioration rate and partial backlogging of unsatisfied demand. The model is studied under the replenishment policy, starting with shortages under two different types of backlogging rates, and their comparative study is also provided. We then use the computer software, MATLto find the optimal replenishment policies. Duration of positive inventory level is taken as the decision variable to minimize the total cost of the proposed system. Numerical examples are then taken to illustrate the solution procedure. Finally, sensitivity of the optimal solution to changes of the values of different system parameters is also studied

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    An Inventory Model for Deteriorating Commodity under Stock Dependent Selling Rate

    Get PDF
    Economic order quantity (EOQ) is one of the most important inventory policy that have to be decided in managing an inventory system. The problem addressed in this paper concerns with the decision of the optimal replenishment time for ordering an EOQ to a supplier. This Model is captured the affect of stock dependent selling rate and varying price. We developed an inventory model under varying of demand-deterioration-price of commodity when the relationship of supplier-grocery-consumer at stochastic environment. The replenishment assumed instantaneous with zero lead time. The commodity will decay of quality according to the original condition with randomize characteristics. First, the model is addressed to solve a problem phenomenon how long is the optimum length of cycle time. Then, an EOQ of commodity to be ordered by will be determined by model. To solve this problem, the first step is developed a mathematical model based on reference’s model, and then solve the model analytically. Finally, an inventory model for deteriorating commodity under stock dependent selling rate and considering selling price was derived by this research. Keywords: deterioration commodity, expected profit, optimal replenishment time stock dependent selling rate

    A Two Warehouse Inventory Model with Stock-Dependent Demand and variable deterioration rate

    Get PDF
    In this paper we discuss a two warehouses inventory model for non-instantaneous deteriorating items. Throughout last so many years, mostly researchers have consideration to the situation where the demand rate is dependent on the level of the on-hand inventory. For inventory systems, such as fashionable commodities, the length of the waiting time for the next replenishment would determine whether the backlogging will be accepted or not. In real life situation, enterprises usually buy more goods than can be stored in their own warehouses (OW) for future production or sales. The surplus quantities are frequently stored in an extra storage space, represented by rented warehouses (RW).The rented warehouse is considered to charge high unit holding cost than the own warehouse. The necessary and sufficient conditions of the existence and uniqueness of the optimal solution are shown. We determine the optimal replenishment policy for non-instantaneous deteriorating items with partial backlogging and stock-dependent demand

    Retailer’s optimal pricing and ordering policies for non-instantaneous deteriorating items with price-dependent demand and partial backlogging

    Get PDF
    [[abstract]]An inventory system for non-instantaneous deteriorating items with price-dependent demand is formulated and solved. A model is developed in which shortages are allowed and partially backlogged, where the backlogging rate is variable and dependent on the waiting time for the next replenishment. The major objective is to determine the optimal selling price, the length of time in which there is no inventory shortage, and the replenishment cycle time simultaneously such that the total profit per unit time has a maximum value. An algorithm is developed to find the optimal solution, and numerical examples are provided to illustrate the theoretical results. A sensitivity analysis of the optimal solution with respect to major parameters is also carried out.[[incitationindex]]SCI[[booktype]]ç´™

    Pricing and inventory control policy for non-instantaneous deteriorating items with time- and price-dependent demand and partial backlogging

    Get PDF
    Determining the optimal inventory control and selling price for deteriorating items is of great significance. In this paper, a joint pricing and inventory control model for deteriorating items with price- and time-dependent demand rate and time-dependent deteriorating rate with partial backlogging is considered. The objective is to determine the optimal price, the replenishment time, and economic order quantity such that the total profit per unit time is maximized. After modeling the problem, an algorithm is proposed to solve the resulted problem. We also prove that the problem statement is concave function and the optimal solution is indeed global

    Replenishment Policy for Pareto Type Deteriorating Items With Quadratic Demand under Partial Backlogging And Delay in Payments

    Get PDF
    The present model develops a replenishment policy in which the demand rate is quadratic polynomial-time function. Deterioration rate is a Pareto type function. Shortages are partial backlogging and delay in payments are allowed. Holding cost is a linear function of time. The backlogging rate varies with the waiting duration for the next replenishment. The present paper determines the optimal policy for the individual by minimizing the total cost. The optimization procedure has been explained by a numerical example and a detailed sensitivity analysis of the optimal solution has been carried out to display the effect of various parameters

    An optimization of an inventory model of decaying-lot depleted by declining market demand and extended with discretely variable holding costs

    Get PDF
    Inventory management is considered as major concerns of every organization. In inventory holding, many steps are taken by managers that result a cost involved in this row. This cost may not be constant in nature during time horizon in which perishable stock is held. To investigate on such a case, this study proposes an optimization of inventory model where items deteriorate in stock conditions. To generalize the decaying conditions based on location of warehouse and conditions of storing, the rate of deterioration follows the Weibull distribution function. The demand of fresh item is declining with time exponentially (because no item can always sustain top place in the list of consumers’ choice practically e.g. FMCG). Shortages are allowed and backlogged, partially. Conditions for global optimality and uniqueness of the solutions are derived, separately. The results of some numerical instances are analyzed under various conditions
    • …
    corecore