3 research outputs found

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    AN ARCHITECTURAL APPROACH FOR REDUCINGPOWER AND INCREASING SECURITY OF RFID TAGS

    Get PDF
    Radio Frequency Identification (RFID) technology is currently employed for a variety of applications such as RFID-based wireless payment, healthcare, homeland security, asset management,etc. Due to newer privacy requirements and increasingly secure applications, typical RFID tags are required to expand security features such as data encryption and safe transactions. However, RFID tags have extremely strict low-power consumption requirements. Thus, reduced power consumption and secure data transactions are two main problems for the next generation RFID tags.This dissertation presents an architectural approach to address these two main problems.This dissertation provides a multi-domain solution to improve the power consumption andsecurity, while also reducing design time and verification time of the system. In particular, Idescribe (1)a smart buffering technique to allow a tag to remain in a standby mode until addressed,(2)a multi-layer, low-power technique that transcends the passive-transaction, physical, and data layers to provide secure transactions, (3) an FPGA-based traffic profiler system to generate traces of RFID communications for both tag verification and power analysis without the need of actual hardware, and (4) a design automation technique to create physical layer encoding and decoding blocks in hardware suitable for RFID tags.This dissertation presents four contributions: (1) As a result, based on a Markov Process energymodel, the smart buffering technique is shown to reduce power consumption by 85% over a traditionalactive tag; (2) The multi-layer, low-power security technique provides protection againstmalicious reader attacks to disable the tag, to steal the information stored in or communicatedto the device. The power consumption overhead for implementing these layers of security is increased approximately 13% over the basic tag controller; (3) In addition, the FPGA-based traffic profiler system has been able to generate traces for ISO 18000 part 6C (EPC Gen2) protocol; and (4) The designs of endocing/decoding blocks are generated automatically by the Physical LayerSynthesis tool for five protocols used in or related to RFID. Consequently, any power consumption of five designs is less than 5 £gW. Furthermore, compared with five designs implemented by hand, the difference of the power consumption between two of them is less than 7% at most
    corecore