128,256 research outputs found

    Cycles, Disjoint Spanning Trees and Orientations of Graphs

    Get PDF
    A graph G is hamiltonian-connected if any two of its vertices are connected by a Hamilton path (a path including every vertex of G); and G is s-hamiltonian-connected if the deletion of any vertex subset with at most s vertices results in a hamiltonian-connected graph. We prove that the line graph of a (t + 4)-edge-connected graph is (t + 2)-hamiltonian-connected if and only if it is (t + 5)-connected, and for s ≥ 2 every (s + 5)-connected line graph is s-hamiltonian-connected.;For integers l and k with l \u3e 0, and k ≥ 0, Ch( l, k) denotes the collection of h-edge-connected simple graphs G on n vertices such that for every edge-cut X with 2 ≤ |X| ≤ 3, each component of G -- X has at least (n -- k)/l vertices. We prove that for any integer k \u3e 0, there exists an integer N = N( k) such that for any n ≥ N, any graph G ∈ C2(6, k) on n vertices is supereulerian if and only if G cannot be contracted to a member in a well characterized family of graphs.;An orientation of an undirected graph G is a mod (2 p + 1)-orientation if under this orientation, the net out-degree at every vertex is congruence to zero mod 2p + 1. A graph H is mod (2p + 1)-contractible if for any graph G that contains H as a subgraph, the contraction G/H has a mod (2p + 1)-orientation if and only if G has a mod (2p + 1)-orientation (thus every mod (2p + 1)-contractible graph has a mod (2p + 1)-orientation). Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod (2p + 1)-orientation. It has also been conjectured that every (4p + 1)-edge-connected graph is mod (2 p + 1)-contractible. We investigate graphs that are mod (2 p + 1)-contractible, and as applications, we prove that a complete graph Km is (2p + 1)-contractible if and only if m ≥ 4p + 1; that every (4p -- 1)-edge-connected K4-minor free graph is mod (2p + 1)-contractible, which is best possible in the sense that there are infinitely many (4p -- 2)-edge-connected K4-minor free graphs that are not mod (2p + 1)-contractible; and that every (4p)-connected chordal graph is mod (2p + 1)-contractible. We also prove that the above conjectures on line graphs would imply the truth of the conjectures in general, and that if G has a mod (2p + 1)-orientation and delta(G) ≥ 4p, then L(G) also has a mod (2p + 1)-orientation.;The design of an n processor network with given number of connections from each processor and with a desirable strength of the network can be modelled as a degree sequence realization problem with certain desirable graphical properties. A nonincreasing sequence d = ( d1, d2, ···, dn) is graphic if there is a simple graph G with degree sequence d. It is proved that for a positive integer k, a graphic nonincreasing sequence d has a simple realization G which has k-edge-disjoint spanning trees if and only if either both n = 1 and d1 = 0, or n ≥ 2 and both dn ≥ k and i=1n di ≥ 2k(n -- 1).;We investigate the emergence of specialized groups in a swarm of robots, using a simplified version of the stick-pulling problem [56], where the basic task requires the collaboration of two robots in asymmetric roles. We expand our analytical model [57] and identify conditions for optimal performance for a swarm with any number of species. We then implement a distributed adaptation algorithm based on autonomous performance evaluation and parameter adjustment of individual agents. While this algorithm reliably reaches optimal performance, it leads to unbounded parameter distributions. Results are improved by the introduction of a direct parameter exchange mechanism between selected high- and low-performing agents. The emerging parameter distributions are bounded and fluctuate between tight unimodal and bimodal profiles. Both the unbounded optimal and the bounded bimodal distributions represent partitions of the swarm into two specialized groups

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Fast Computation of Small Cuts via Cycle Space Sampling

    Full text link
    We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form a cut) of a graph. In the model of distributed computing in a graph G=(V, E) with O(log V)-bit messages, our approach yields faster algorithms for several problems. The diameter of G is denoted by Diam, and the maximum degree by Delta. We obtain simple O(Diam)-time distributed algorithms to find all cut edges, 2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under natural conditions these new algorithms are universally optimal --- i.e. a Omega(Diam)-time lower bound holds on every graph. We obtain a O(Diam+Delta/log V)-time distributed algorithm for finding cut vertices; this is faster than the best previous algorithm when Delta, Diam = O(sqrt(V)). A simple extension of our work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the asymptotic complexity. In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.Comment: Previous version appeared in Proc. 35th ICALP, pages 145--160, 200

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation
    corecore