13,803 research outputs found

    Live Prefetching for Mobile Computation Offloading

    Get PDF
    The conventional designs of mobile computation offloading fetch user-specific data to the cloud prior to computing, called offline prefetching. However, this approach can potentially result in excessive fetching of large volumes of data and cause heavy loads on radio-access networks. To solve this problem, the novel technique of live prefetching is proposed in this paper that seamlessly integrates the task-level computation prediction and prefetching within the cloud-computing process of a large program with numerous tasks. The technique avoids excessive fetching but retains the feature of leveraging prediction to reduce the program runtime and mobile transmission energy. By modeling the tasks in an offloaded program as a stochastic sequence, stochastic optimization is applied to design fetching policies to minimize mobile energy consumption under a deadline constraint. The policies enable real-time control of the prefetched-data sizes of candidates for future tasks. For slow fading, the optimal policy is derived and shown to have a threshold-based structure, selecting candidate tasks for prefetching and controlling their prefetched data based on their likelihoods. The result is extended to design close-to-optimal prefetching policies to fast fading channels. Compared with fetching without prediction, live prefetching is shown theoretically to always achieve reduction on mobile energy consumption.Comment: To appear in IEEE Trans. on Wireless Communicatio

    Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing

    Full text link
    Mobile edge computing (a.k.a. fog computing) has recently emerged to enable in-situ processing of delay-sensitive applications at the edge of mobile networks. Providing grid power supply in support of mobile edge computing, however, is costly and even infeasible (in certain rugged or under-developed areas), thus mandating on-site renewable energy as a major or even sole power supply in increasingly many scenarios. Nonetheless, the high intermittency and unpredictability of renewable energy make it very challenging to deliver a high quality of service to users in energy harvesting mobile edge computing systems. In this paper, we address the challenge of incorporating renewables into mobile edge computing and propose an efficient reinforcement learning-based resource management algorithm, which learns on-the-fly the optimal policy of dynamic workload offloading (to the centralized cloud) and edge server provisioning to minimize the long-term system cost (including both service delay and operational cost). Our online learning algorithm uses a decomposition of the (offline) value iteration and (online) reinforcement learning, thus achieving a significant improvement of learning rate and run-time performance when compared to standard reinforcement learning algorithms such as Q-learning. We prove the convergence of the proposed algorithm and analytically show that the learned policy has a simple monotone structure amenable to practical implementation. Our simulation results validate the efficacy of our algorithm, which significantly improves the edge computing performance compared to fixed or myopic optimization schemes and conventional reinforcement learning algorithms.Comment: arXiv admin note: text overlap with arXiv:1701.01090 by other author

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing

    Full text link
    Scavenging the idling computation resources at the enormous number of mobile devices can provide a powerful platform for local mobile cloud computing. The vision can be realized by peer-to-peer cooperative computing between edge devices, referred to as co-computing. This paper considers a co-computing system where a user offloads computation of input-data to a helper. The helper controls the offloading process for the objective of minimizing the user's energy consumption based on a predicted helper's CPU-idling profile that specifies the amount of available computation resource for co-computing. Consider the scenario that the user has one-shot input-data arrival and the helper buffers offloaded bits. The problem for energy-efficient co-computing is formulated as two sub-problems: the slave problem corresponding to adaptive offloading and the master one to data partitioning. Given a fixed offloaded data size, the adaptive offloading aims at minimizing the energy consumption for offloading by controlling the offloading rate under the deadline and buffer constraints. By deriving the necessary and sufficient conditions for the optimal solution, we characterize the structure of the optimal policies and propose algorithms for computing the policies. Furthermore, we show that the problem of optimal data partitioning for offloading and local computing at the user is convex, admitting a simple solution using the sub-gradient method. Last, the developed design approach for co-computing is extended to the scenario of bursty data arrivals at the user accounting for data causality constraints. Simulation results verify the effectiveness of the proposed algorithms.Comment: Submitted to possible journa
    • …
    corecore