4 research outputs found

    Optimal control for a mobile robot with a communication objective

    Get PDF
    In this paper, we design control strategies that minimize the time required by a mobile robot to accomplish a certain task (reach a target) while transmitting/receiving a message. To better illustrate the solution we consider a simple model for the robot dynamics. The message delivery is done over a wireless network, and we account for path-loss, i.e., the transmission rate depends on the distance to the wireless antenna. In this work, we consider only one wireless antenna and disregard any shadowing phenomena. To render the problem interesting from a practical point of view we assume that the robot cannot move with innite velocity. The general problem involves a switching control signal due to the complementarity of the objectives (message transmission can require to approach the antenna situated in the opposite direction of the nal target to reach). Our minimal-time control design is based on the use of Pontryagin maximum principle. A numerical example illustrates the theoretical results

    Co-Optimization of Communication, Motion and Sensing in Mobile Robotic Operations

    Get PDF
    In recent years, there has been considerable interest in wireless sensor networks and networked robotic systems. In order to achieve the full potential of such systems, integrative approaches that design the communication, navigation and sensing aspects of the systems simultaneously are needed. However, most of the existing work in the control and robotic communities uses over-simplified disk models or path-loss-only models to characterize the communication in the network, while most of the work in networkingand communication communities does not fully explore the benefits of motion.This dissertation thus focuses on co-optimizing these three aspects simultaneously in realistic communication environments that experience path loss, shadowing and multi-path fading. We show how to integrate the probabilistic channel prediction framework, which allows the robots to predict the channel quality at unvisited locations, into the co-optimization design. In particular, we consider four different scenarios: 1) robotic routerformation, 2) communication and motion energy co-optimization along a pre-defined trajectory, 3) communication and motion energy co-optimization with trajectory planning, and 4) clustering and path planning strategies for robotic data collection. Our theoretical, simulation and experimental results show that the proposed framework considerably outperforms the cases where the communication, motion and sensing aspects of the system are optimized separately, indicating the necessity of co-optimization. They furthershow the significant benefits of using realistic channel models, as compared to the case of using over-simplified disk models
    corecore