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V. S. Varma
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Abstract

In this paper, we design control strategies that minimize the time required by a mobile
robot to accomplish a certain task (reach a target) while transmitting/receiving a message. To
better illustrate the solution we consider a simple model for the robot dynamics. The message
delivery is done over a wireless network, and we account for path-loss, i.e., the transmission
rate depends on the distance to the wireless antenna. In this work, we consider only one
wireless antenna and disregard any shadowing phenomena. To render the problem interesting
from a practical point of view we assume that the robot cannot move with in�nite velocity.
The general problem involves a switching control signal due to the complementarity of the
objectives (message transmission can require to approach the antenna situated in the opposite
direction of the �nal target to reach). Our minimal-time control design is based on the use of
Pontryagin maximum principle. A numerical example illustrates the theoretical results.

Key-words: Time optimal control, Pontryagin maximum principle, wireless communication.

1 Introduction

More and more frequently in practical nowadays problems a mobile robot must transmit/receive a
certain amount of data over a wireless network while moving to a certain destination as quickly as
possible. This situation requiring a kind of multi-objective optimization (maximize transmission
rate and minimize the time to complete the task) often appears in the wide area of networked
robotics see [10]. For example, when an unmanned aerial vehicle or a ground robot has to collect
data from a �eld of wireless sensors, it typically has to optimize its trajectory to minimize the task
time while collecting correctly the data (see e.g., [19] and [15]). The emergence of this new type
of optimal control problem with communication-based constraints has led the authors to state the
problem described and analyzed throughout this paper.

The problem under consideration is as follows. A robot has to move from a starting point
to a target point within the shortest possible time. However, it must also ensure that it has
transmitted a certain amount of data, while on its trajectory, to a wireless access point. The
access point receives the signal with a signal-to-noise ratio (SNR) which primarily depends on
the distance between the mobile and the base. Therefore, the mobile has to choose a trajectory
which allows the data to be uploaded successfully (which is made possible by having a su�ciently
large SNR) and to minimize the time taken for reaching its target point. Another relevant paper
is given by [6], in which a similar problem is solved numerically, but with some analytic insights
which provides some conditions for the optimal solution. In contrast with these works, the main
contribution of this paper is to analytically provide the optimal solution to our problem of time
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minimization. This is done through the use of the Pontryagin maximum principle, see for instance
[12, 5].
Similar results dealing with minimal energy consumption can be found in [16, 13, 2, 4, 3]. Note
that in most of these results, only a heuristic solution is provided. This is due to the fact that the
SNR is taken as a random variable.

This paper is organized as follows. In Section 2 we state the constrained minimization problem
considered along this work. Based on some geometrical facts, in Section 3, we reduce the above
minimization problem to a simpler one. Precisely, we show that it is su�cient to consider that
the robot evolves in the two-dimensional plane. Moreover, if the size of the message to transmit
is small or large enough the solution can be easily found. In Section 4, we apply the Pontryagin
maximum principle and compute the optimal control and the corresponding minimal time. Finally,
in Section 5, we give a complete numerical example. The paper ends with some concluding remarks.

2 Problem statement

Let us consider a robot with a simpli�ed single integrator dynamics,

ẋ = u, (2.1)

where x ∈ Rd is the robot's position and u ∈ Rd the control input representing its velocity.
The choice of this dynamics is largely motivated in the literature (see for instance [7]). Besides the
relevance of this choice for practical applications, we will also see that mathematical analysis of this
simple dynamics is not trivial. Therefore, keeping the dynamics simple facilitates the mathematical
presentation of the results. Throughout the paper, we assume that the control input/velocity is
bounded and without loss of generality we consider that |u(t)| 6 1, where | · | is the Euclidean norm
of Rd. One task of the robot is to deliver a message over a wireless network. This is represented
in the following as the problem of emptying a bu�er whose size at time t is denoted by b(t).

Communication model Typically in wireless communication, the communication rate is mod-
eled as a stochastic function which depends on the distance between the transmitting node and the
receiving node. We use R(|x(t)|) to denote the communication rate at time t. In practice, com-
munication is performed over certain intervals over which communication packets are transmitted
and received with some probability depending on the channel quality, see [18]. The duration of
a frame is typically of the order of 10ms (see [17]) in the LTE communication framework. This
implies that if a robot moves su�ciently slowly (speeds of 2 or 3 m/s), the rate function can be
well approximated by its expectation over channel fast fading as shown in [11]. Therefore, for the
rest of this paper, we assume that R satis�es the following assumption:

Assumption 1.

(a) R : R+ → R+ is an absolutely continuous, non-increasing function;

(b) R(0) > 0;

(c) R is decreasing on the set {ρ ∈ R+ | R(ρ) > 0}.

In our numerical examples, we will consider a speci�c rate function similar to the one provided
by [11]. With this assumption, it turns out that we end up with a hybrid control problem in which
the robot has �rst to apply a control action to approach the antenna (increase the transmission
rate) and second, switch the control to a point stabilization one (reach the destination). Formally,
the state of the system will be (x, b) where dynamics of x is given in (2.1) and b is solution of

ḃ = −R(|x|). (2.2)
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Remark 2.0.1. The Assumption 1-(b) is used to prove the existence of a time optimal solu-
tion. The absolute continuity of R is required to apply the Pontryagin maximum principle. The
decreasing properties of R are motivated by the physical nature of the problem.

Objective We are now ready to formalize the time optimal control problem which is studied in
this paper. Given any initial position x0 and any target position x1 in Rd, the goal is to move
the robot from x0 to x1 in minimal time following a trajectory allowing at emptying the bu�er b,
i.e., b(T ) 6 0 (in practice, the data is transmitted as soon as b(t) > 0 and the transmission is
stopped after time the time instant t0 where b(t0) = 0). In other words, we aim to solve the
following constrained time optimal control problem:

min T =
∫ T

0
dt,

T > 0,
u ∈ L∞(0, T )d, ‖u‖L∞(0,T )d 6 1,
x(0) = x0, x(T ) = x1,
b(0) = b0 > 0, b(T ) 6 0
with (x, b) solution of (2.1)-(2.2).

(2.3)

Results Before entering the core of this article, let us give a brief summary of the obtained
results. See also Figure 6, at the end of this paper, or an example of time optimal controlled path.

• When b0 is small, the optimal time is given by Proposition 3.0.5.

• When b0 is large, the optimal time is given by Proposition 3.0.6.

• When b0 takes intermediate values and x0, x1 and 0 are aligned, the optimal time is given
by Proposition 3.0.7.

• When b0 takes intermediate values and x0, x1 and 0 are not aligned, the optimal time is
given by Theorem 4.0.9.

3 Preliminary observations

In this section, we will �rst use the classical Filippov Theorem to ensure the existence of a minimizer
(T, u) for the minimization problem (2.3). Then, using some simple geometric facts to reduce the
general d-dimensional problem (2.3) to the same problem but with d = 2. Furthermore, we will
show that there exist an optimal path x such that x(t) belongs to the convex hull of {x0, 0, x1} for
every time t ∈ [0, T ]. Finally, we will give the closed form of the control signal and of the minimal
time in some particular situations. Precisely, the analytic solution is provided when b0 is small or
large enough, as well as when the initial position (x0), the position of the antenna (0) and the �nal
position (x1) are aligned.

Existence of a minimizer It is easy to see, under the Assumption 1, in particular R(0) > 0,
that there exist T > 0 and u ∈ L∞(0, T )d, with ‖u‖L∞(0,T )d 6 1, such that the solution of (2.1)-

(2.2), with initial condition x0 ∈ Rd and b0 ∈ R satis�es x(T ) = x1 and b(T ) 6 0. In fact, it is
enough to consider piece-wise constant controls as in Proposition 3.0.6 below. In addition to this
reachability property, by application of Filippov Theorem (see for instance [8, Chapter 9]), it is
easy to see that this problem admits a minimum.
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Reduction to a planar motion Let us �rst emphasize an invariance property with respect to
the change of the basis used to express the vectors x ∈ Rd.

Remark 3.0.1. It is straightforward to show that for every orthogonal matrix Q ∈ Rd×d, if
(T, u) is an optimal solution of the constrained minimization problem (2.3), then (T,Qu) is also
an optimal solution of (2.3) with x0 replaced by Qx0 and x1 replaced by Qx1.

Secondly, we can show that there exist a time-optimal solution for which the motion of the
robot is performed in a 2D space, namely Span{x0, x1}.

Lemma 3.0.2. Given x0, x1 ∈ Rd and b0 ∈ R+, then there exists a solution (T, u) of (2.3) such
that the trajectory x of (2.1) associated with u, satis�es x(t) ∈ Span

{
x0, x1

}
for every t ∈ [0, T ].

Proof. Let us de�ne P ∈ Md(R) the orthonormal projector from Rd to Span
{
x0, x1

}
⊂ Rd. Let

(T, u) be an optimal solution, and set (x, b) the corresponding time-optimal trajectory. We set
ũ = Pu and x̃ = Px, and we obtain ˙̃x = ũ, x̃(0) = x0, x̃(T ) = x1 and |ũ(t)| 6 |u(t)| 6 1. Let us

also de�ne b̃(t) = b0 −
∫ t

0
R(|x̃(τ)|) dτ . Since |x̃(t)| 6 |x(t)| and since R is a decreasing function,

we have b̃(t) 6 b(t) for every t ∈ [0, T ] and in particular, b̃(T ) 6 0.
In conclusion we have found a control in time T which is admissible (i.e., is of L∞-norm lower
than 1 for which we have x(T ) = x1 and b(T ) 6 0) such that the trajectory of the robot belongs
to Span

{
x0, x1

}
.

From Remark 3.0.1 and Lemma 3.0.2, we can assume without loss of generality that d = 2.
The next result shows that, there always exists a time-optimal solution such that the trajectory

x belongs to the following convex and bounded set co
{

0, x0, x1
}
, where co A denotes the convex

hull of the set A.

Lemma 3.0.3. Given x0, x1 ∈ Rd and b0 ∈ R+, there exist a solution (T, u) of (2.3) such that
the trajectory x of (2.1) associated with u satis�es,

x(t) ∈ co {0, x(t0), x(t1)} (t ∈ (t0, t1)), (3.1)

for every t0, t1 such that 0 6 t0 6 t1 6 T .

Proof. Assume that (T, u) is optimal and let x be the corresponding path. Since x is continuous,
if this property is not satis�ed, there exist two time t0 and t1 such that 0 6 t0 6 t1 6 T and
x(t) /∈ co {0, x(t0), x(t1)} for every t ∈ (t0, t1).
Then, for every t ∈ (t0, t1), we de�ne x̃(t) ∈ co {0, x(t0), x(t1)} such that x̃(t) minimizes y 7→
|x(t) − y| under the constraint y ∈ co {0, x(t0), x(t1)}, and for t ∈ [0, T ] \ (t0, t1), we simply set
x̃(t) = x(t). It is easy to see that x̃ is almost everywhere di�erentiable on (t0, t1) and | ˙̃x| 6 1. We
thus have build an admissible path x̃ satisfying |x(t)| > |x̃(t)| for every t ∈ [0, T ], and since R is

non-increasing, we have
∫ t1
t0
R(|x(t)|) dt 6

∫ t1
t0
R(|x̃(t)|) dt.

Remark 3.0.4. The result of Lemma 3.0.3 ensures that there always exists a time optimal control
u such that the solution x of (2.1) satis�es (3.1). However, it can be possible that some other time
optimal trajectories do not satisfy the property (3.1). This is, in particular, the case when R is
constant on a ball centered on 0. However, when b0 is large enough and when the Assumption 1-
(c) is used, we will see in Lemma 3.0.10 that the time optimal trajectory of the robot necessarily
satis�es (3.1).
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Minimal time for small or large enough initial bu�er For every x0, x1 ∈ Rd, let us de�ne

B(x0, x1) = |x1 − x0|
∫ 1

0

R(|x0 + s(x1 − x0)|) ds, (3.2)

representing the quantity of bu�er transmitted when going on a straight line from x0 to x1 with
velocity one.

In the next proposition, we give the optimal time and the optimal control when b0 is small.

Proposition 3.0.5. Given x0, x1 ∈ Rd and b0 ∈ R+. If B(x0, x1) > b0, then the minimal time is
|x1 − x0| and the optimal control is u(t) = (x1 − x0)/|x1 − x0|.

In other words, the optimal path of the robot is to go straight to the target.

Proof. The proof is straightforward. Indeed, when the bu�er to transmit is smaller than the
quantity of information that can be transmitted while going from x0 to x1 with the maximum
speed, it is optimal to apply a control that achieves this straight line motion. It is clear that, with
this control, we get b(T ) 6 0.

The next result considers the other extreme case (b0 large) in which going straight to antenna
(where the transmission rate is maximal) and then going to the target provides a time which is
not su�cient to empty the bu�er. Therefore, we basically show that the optimal strategy is to go
to the antenna, stay there for a certain period, and then go straight to the target.

Proposition 3.0.6. Given x0, x1 ∈ Rd and b0 ∈ R+. If B(x0, 0) +B(0, x1) 6 b0, then the optimal
time is

T = |x0|+ |x1|+
(
b0 −B(x0, 0)−B(0, x1)

)
/R(0) (3.3a)

and an optimal control is

u(t) =


−x0/|x0| if t < |x0|,
0 if |x0| < t < T − |x1|,
x1/|x1| if T − |x1| < t.

(3.3b)

Proof. It is easy to see that the maximal amount of bu�er that can be transmitted during the
time interval [0, |x0|] is B(x0, 0), and the maximal amount of bu�er that can be transmitted during
the time interval [T − |x1|, T ] is B(0, |x1|), and �nally, the maximal amount of bu�er that can be
transmitted during the time interval [|x0|, T − |x1|] is R(0)

(
T − |x1| − |x0|

)
. Consequently, the

minimal time cannot be lower than T given by (3.3a). We conclude the proof by noticing that the
control u given by (3.3b) allows to reach the target in this time T , hence is optimal.

Minimal time when x0, x1 and 0 are aligned From the convexity result Lemma 3.0.3, we
know that an optimal trajectory belongs to the triangle formed by x0, x1 and 0. Furthermore, if
b0 6 B(x0, x1) or b0 > B(x0, 0) + B(0, x1), an optimal trajectory has been obtained in Proposi-
tions 3.0.5 and 3.0.6 respectively. Note that these cases include the case where 0 is included in the
segment [x0, x1]. Let us state the result for the other cases.

Proposition 3.0.7. Let x0, x1 ∈ Rd and b0 ∈ R+ and assume that x0, x1 and 0 are aligned and
that B(x0, x1) < b0 < B(x0, 0) +B(0, x1), then there exist λ ∈ (0, 1) such that

λ|x0| < |x1| and b0 = B(x0, λx0) +B(λx0, x1).
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Furthermore, the minimal time is given by

T = |x0|+ |x1| − 2λ|x0|

and an optimal control is

u(t) =

{
−x0/|x0| if t < (1− λ)|x0|,
x0/|x0| if (1− λ)|x0| < t.

The proof of this result is a direct application of Lemma 3.0.3 and is not detailed here.

A priori conditions when b0 takes intermediate values To conclude this paper, we consider
the last case, i.e., the case where x0, x1 and b0 satisfy the following assumptions:

Assumption 2.

(a) dim Span{x0, x1} = 2 (i.e., x0, x1 and 0 are not aligned);

(b) B(x0, x1) < b0 < B(x0, 0) +B(0, x1).

In the following lemma, we give some preliminary observations on the optimal solution when
Assumption 2 is satis�ed.

Lemma 3.0.8. Let x0, x1 ∈ Rd and b0 ∈ R+ satisfying the Assumption 2, let (T, u) be a minimizer
of (2.3) and let (x, b) be the corresponding optimal state trajectory. Then we have:

(i) |x1 − x0| < T < |x0|+ |x1|;

(ii) mint∈[0,T ] |x(t)| > 0;

(iii) b(T ) = 0.

Proof. The �rst item is trivial. In fact, the �rst inequality says that the optimal time T is larger
than the time required to go from x0 to x1 on a straight line, and the second inequality says that
the optimal time T is smaller than the time required to go from x0 to 0 and then to x1 following
two straight lines.

The second item can be proven by contradiction. If there exist a time t such that x(t) = 0, we
necessarily have T > |x0|+ |x1|, which contradicts the �rst item.

For the last item, assume by contradiction that b(T ) < 0. For every τ ∈ [0, T ], let us de�ne the
path xτ by

xτ (t) =

x(t) if 0 6 t 6 τ,

x(τ) +
t− τ
Tτ − τ

(x1 − x(τ)) if τ < t 6 Tτ ,

with Tτ = τ + |x1 − x(τ)|. Note that we have by construction xτ (0) = x0, xτ (Tτ ) = x1 and
|ẋτ (t)| 6 1 for almost every t ∈ [0, Tτ ]. Note also that Tτ 6 T for every τ ∈ [0, T ]. Let us also
de�ne bτ the bu�er size associated with the path xτ . We then have bτ (Tτ ) = b(τ) − B(x(τ), x1).
Note that τ 7→ bτ (Tτ ) is continuous, b0(T0) = b0 − B(x0, x1) > 0 and bT (TT ) = b(T ) < 0.
Consequently, there exist τ∗ ∈ (0, T ) such that bτ∗(Tτ∗) = 0. Note now that we have Tτ∗ < T . In
fact if Tτ∗ = T then we have x = xτ∗ on [0, T ], and hence bτ∗ = b, which is impossible (because
b(T ) < 0). This leads to a contradiction with the optimality of T .

Remark 3.0.9. Note that the item (iii) is valid with the only assumption being b0 > B(x0, x1).
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This last result, together with a more careful use of Assumption 1, leads to a re�ned version of
Lemma 3.0.3.

Lemma 3.0.10. Let x0, x1 ∈ Rd and b0 ∈ R+ satisfying the Assumption 2, let (T, u) be a minimizer
of (2.3) and let (x, b) be the corresponding optimal state trajectory. Then for every t0, t1 ∈ [0, T ],
with t0 6 t1, the convex property (3.1) is ful�lled.

Proof. We reproduce here the proof of Lemma 3.0.3. If this property is not satis�ed, there exist
two time t0 and t1 such that 0 6 t0 6 t1 6 T and x(t) /∈ co {0, x(t0), x(t1)} for every t ∈ (t0, t1).
For every t ∈ [t0, t1], we then de�ne x̃(t) ∈ co {0, x(t0), x(t1)} such that x̃(t) minimizes y 7→
|x(t) − y| under the constraint y ∈ co {0, x(t0), x(t1)}. Thus, we have built an admissible path
x̃ on [t0, t1] satisfying |x(t)| > |x̃(t)| for every t ∈ [t0, t1], and since R is non-increasing, we have∫ t1
t0
R(|x(t)|) dt 6

∫ t1
t0
R(|x̃(t)|) dt. Two situations can happen: either we have R(|x̃(t)|) = 0 for

every t ∈ [t0, t1], or there exist a time t ∈ [t0, t1] such that R(|x̃(t)|) > 0.

1. In the �rst case (R(|x̃|) = 0 on [t0, t1]) no bu�er is transmitted and obviously the optimal
path to steer x(t0) to x(t1) is a straight line. This contradicts the fact that x was optimal
and x(t) /∈ co{0, x(t0), x(t1)} for every t ∈ (t0, t1).

2. In the second case (∃ t ∈ [t0, t1] | R(|x̃(t)|) > 0), the continuity of R and x, ensure the
existence of a time t ∈ (t0, t1) such that R(|x̃(t)|) > 0. Since, by assumption, we have
x(t) /∈ co{0, x0, x1}, we can conclude that |x̃(t)| < |x(t)|. This means (using the strict
monotonicity of R, see Assumption 1), that R(|x(t)|) < R(|x̃(t)|), and hence, from the

continuity of x and R, we conclude that
∫ t1
t0
R(|x(t)|) dt <

∫ t1
t0
R(|x̃(t)|) dt. In conclusion,

we have built an admissible path, for which the corresponding bu�er size satis�es b̃(T ) < 0.
This leads to a contradiction with the item (iii) of Lemma 3.0.8.

In the next section, we give some more precise results when the Assumption 2 is satis�ed. These
result will be derived from the Pontryagin maximum principle.

4 Pontryagin maximum principle

In this section, we are going to apply the well-known Pontryagin maximum principle to solve the
problem (2.3). We �rst write the Pontryagin maximum principle in the general case d ∈ N∗. Next,
based on the results in Section 3, we reduce the analysis without loss of generality to the particular
case d = 2. Finally, the results obtained are summarized in Theorem 4.0.9. In addition, since the
optimal controls and times have already been obtained for b0 small or large (see Propositions 3.0.5
and 3.0.6), and for x0, x1 and 0 aligned (see Proposition 3.0.7), we will assume in this section that
x0, x1 and b0 satisfy the Assumption 2.

General case d ∈ N∗ Let us recall that we assume that R is an absolutely continuous function.
The Hamiltonian associated to the optimal control problem (2.3) is de�ned by

H(x, b, u, ξ, β, s0) = −s0 + 〈ξ, u〉 − βR(|x|),

for (x, b, u, ξ, β, s0) ∈ Rd × R × Rd × Rd × R × R+. The Pontryagin maximum principle (see for
instance [1, Chapter 12] or [14, Chapter 11]) ensures that if (T, x, b, u) is an optimal solution, then,
for almost every t ∈ [0, T ], we have,

0 = max
v∈D

H(x(t), b(t), v, ξ(t), β(t), s0) = H(x(t), b(t), u(t), ξ(t), β(t), s0), (4.1)

7



where D is the closed unit ball of Rd.
We note that in (4.1), ξ and β (the adjoint states) are solutions of

ξ̇ = −∂H(x, b, u, ξ, β, s0)

∂x
= βR′(|x|) x

|x|
, (4.2a)

β̇ = −∂H(x, b, u, ξ, β, s0)

∂z
= 0, (4.2b)

with R′ ∈ L∞loc(R+) is the derivative of R. Recall that if x0, x1 and b0 satisfy the Assumption 2
then the optimal path of the robot do not pass through 0 (see item (i) of Lemma 3.0.8). This
ensures the validity of the relation (4.2a). The relation (4.2b) trivially ensures that β is constant.

Note also that the relation (4.1), ensures that

u(t) =
ξ(t)

|ξ(t)|
, (4.3)

for every t ∈ [0, T ] such that ξ(t) 6= 0. Using (4.1) together with the expression of u, we deduce
that

s0 + βR(|x|) = |ξ| (t ∈ [0, T ]). (4.4)

The next proposition summarize the above discussion.

Proposition 4.0.1. Let x0, x1 ∈ Rd and b0 ∈ R+ satisfying the Assumption 2, let (T, u) be a
minimizer of (2.3) and let (x, b) be the corresponding optimal state trajectory. Then there exist
s0 > 0, β ∈ R and an absolutely continuous function ξ : [0, T ] → Rd, such that (s0, β, ξ) is not
trivial and satis�es (4.2a) together with (4.4).
Furthermore, u is given by (4.3) for every t ∈ [0, T ] such that ξ(t) 6= 0.

In addition to this initial result, we can give some more properties on s0 and β.

Lemma 4.0.2. With the notations and assumptions introduced in Proposition 4.0.1, we have in
addition β < 0 and s0 > 0.

Proof. The fact that β 6 0 follows from transversality conditions (see e.g. [5]). Consequently, we
only have to prove that β 6= 0 and s0 6= 0.

Let us assume by contradiction that β = 0, which yields, from (4.2a), ξ is constant. Since
(s0, β, ξ) shall not be trivial, we necessarily have (using (4.4)) ξ 6= 0. Consequently, using (4.3),
u is a constant vector of the unit sphere of Rd. In order to reach the target x1, we necessarily
have u = (x1 − x0)/|x1 − x0| and T = |x1 − x0|. But with this path, the transmitted information
will be B(x0, x1) which is strictly smaller than b0. Consequently, one has b(T ) > 0 which is a
contradiction with item (iii) of Lemma 3.0.8. This proves that β < 0.

Since b0 > 0, there exist a time τ ∈ [0, T ] such that R(|x(τ)|) > 0. Consequently, from (4.4)
(together with β < 0), we deduce that s0 > |β|R(|x(τ)|) > 0.

As a consequence of this result, we assume without loss of generality that β = −1 (recall that
s0, ξ and β are de�ned up to a multiplicative constant).

Let us now show that the adjoint state ξ vanishes at most one time.

Lemma 4.0.3. With the notations and assumptions of Proposition 4.0.1, the adjoint state ξ
vanishes at most one time.

Proof. Assume there exist two times t0 and t1 such that 0 6 t0 < t1 6 T and ξ(t0) = ξ(t1) = 0.
Using (4.4) this yields that R(|x(t0)|) = R(|x(t1)|) = s0. By Assumption 1-(c), we have that R
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is injective on R−1(R∗+). In addition, since s0 > 0 (see e.g. Lemma 4.0.2), we conclude that
R−1({s0}) is a single point and |x(t0)| = |x(t1)|. Using (4.4), once again, we have for every
t ∈ [t0, t1], R(|x(t)|) = s0 − |ξ(t)| 6 s0 = R(|x(t0)|) = R(|x(t1)|). By Assumption 1 (R is
nonincreasing), we deduce that 0 6 |x(t0)| = |x(t1)| 6 |x(t)| for every t ∈ [t0, t1]. Obviously, this
situation is impossible due to the convexity result of Lemma 3.0.10 and the fact that |x(t)| > 0 for
every t ∈ [0, T ] (see item (iii) of Lemma 3.0.8).

Remark 4.0.4. This last result ensures that any time optimal control u is given by (4.3) for
almost every time t ∈ [0, T ].

Case d = 2 Let us now particularise the consequences of the Pontryagin maximum principle to
the particular case d = 2. Recall that the study of the case d = 2 is not a restriction, see Re-
mark 3.0.1 and Lemma 3.0.2.
In order to integrate the Pontryagin maximum principle, we identify R2 with C. Consequently,
we set x(t) = ρ(t)eiθ(t) and ξ(t) = σ(t)eiγ(t), with ρ and σ non-negative. Recall also that due to
the item (ii) of Lemma 3.0.8, if x is a time optimal path, then ρ(t) is positive for every time t.
From (4.2), we deduce that σ and γ satisfy (recall that we have chosen, without loss of generality,
β = −1):

σ̇ = −R′(ρ) cos(θ − γ), (4.5a)

σγ̇ = −R′(ρ) sin(θ − γ). (4.5b)

and we have from (4.4),
σ = s0 −R(ρ). (4.6)

According to Remark 4.0.4, the optimal control u is given by u(t) = eiγ(t) for almost every t ∈ [0, T ].
Thus, from (2.1) and (2.2), we deduce that ρ, θ and b satisfy:

ρ̇ = cos(θ − γ), (4.7a)

ρθ̇ = − sin(θ − γ), (4.7b)

ḃ = −R(ρ). (4.7c)

In addition, from Remark 3.0.1 (with Assumption 2-(a)), we can assume without loss of gener-
ality that the initial and �nal state constraints are

ρ(0) = ρ0 > 0, ρ(T ) = ρ1 > 0 and θ(T ) = −θ(0) = Θ ∈ [0, π/2]. (4.8)

By eventually performing the change of variables t 7→ T − t and using again Remark 3.0.1, it can
also be assumed that

ρ0 > ρ1. (4.9a)

Note also that the cases Θ = 0 and Θ = π/2 means that x0, x1 and 0 are aligned. This situ-
ation is excluded from Assumption 2-(a) and has already been considered in Proposition 3.0.7.
Consequently, in the rest of this section, we also assume that

Θ ∈ (0, π/2). (4.9b)

Let us �nally de�ne α = γ − θ. We are now ready to state the following lemma.
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Lemma 4.0.5. Let x0 = ρ0e−iΘ and x1 = ρ1eiΘ satisfying the assumptions given by (4.9), and let
b0 ∈ R+ satisfying the Assumption 2-(b). Given any minimizer (T, u) of (2.3), we set x = ρeiθ and
b the corresponding optimal state trajectory. Then there exist three constants ρ ∈ [0, ρ1], s0 > R(ρ)
and β < 0, and an absolutely continuous function ξ = σeiγ such that ρ, θ, b, σ, γ, β and s0

satisfy (4.5), (4.6) and (4.7), and in addition,

σ(t) 6= 0 (t ∈ [0, T ]) (4.10)

and α = γ − θ satis�es:

sinα(t) =
ρ (s0 −R(ρ))

ρ(t) (s0 −R(ρ(t)))
(t ∈ [0, T ]), (4.11)

together with α(0) ∈ (π/2, π] (modulo 2π) and α is non-increasing. Finally, the time optimal
control is given by u = eiγ everywhere on [0, T ].

Proof. Most of the results of this lemma are direct consequences of the previous results introduced
in this paper. In fact, it remains to prove (4.10), the existence of ρ, that s0 > R(ρ) and the claimed
properties on α.

Using the notation α = γ − θ, (4.5) and (4.7), become:

ρ̇ = cosα, ρθ̇ = sinα,

σ̇ = −R′(ρ) cosα, σγ̇ = R′(ρ) sinα.

and, for every t ∈ [0, T ] such that σ(t) 6= 0, we have

α̇ =

(
−1

ρ
+
R′(ρ)

σ

)
sinα. (4.12)

Let us denote by T a connected component of [0, T ]\σ−1({0}) (recall that according to Lemma 4.0.3,
σ−1({0}) is either the empty set or a singleton). Note that, if α(t) is given for some t ∈ T , then α
solution of (4.12), is uniquely determined in T . Consequently, we have either α(t) = 0, or α(t) 6= 0
(modulo π) for every t ∈ T .

1. If we are in the second situation (α(t) 6= 0 (modulo π) for every t ∈ T ), we have,

cosα

sinα
α̇ = − ρ̇

ρ
− σ̇

σ
(on T ).

From which we obtain,

sinα =
c

ρσ
=

c

ρ (s0 −R(ρ))
(on T ), (4.13)

with c a constant depending only on of the connected component T of [0, T ]\σ−1({0}). Note
that if σ−1({0}) =

{
t
}
is not empty, we have

lim
t→t

ρ(t) (s0 −R(ρ(t))) = 0.

Hence, this ensures that if σ−1({0}) is not empty, we have c = 0.

2. If we are in the second situation (α = 0 (modulo π) on T ), then by continuity of α on T , we
conclude that α is constant equal to 0 (modulo π) on T .
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In both cases, if σ−1({0}) is not empty or if there exist t ∈ [0, T ] \ σ−1({0}) such that α(t) = 0
(modulo π), then α is constant equal to 0 (modulo π) on each connected component of [0, T ] \
σ−1({0}). Thus, using the expression of θ̇ and γ̇, we deduce that θ and γ are constant on each
component of [0, T ] \ σ−1({0}). Note that θ is also continuous on each connected component
of [0, T ] \ σ−1({0}), and the only point of discontinuity of θ can be when ρ = 0. But, since
θ(T ) = −θ(0) = Θ ∈ (0, π/2), θ necessarily have a discontinuity point, meaning that there exist
a time t such that ρ(t) = 0. This leads to a contradiction with the item (ii) of Lemma 3.0.8. In
conclusion, we have σ(t) 6= 0 for every t ∈ [0, T ] and there exist a constant c 6= 0 such that (4.13)
holds on [0, T ]. In particular, this ensures that ρ, σ, θ, γ and α are continuous on [0, T ]. Note that
this also ensure that u = eiγ everywhere on [0, T ].

Note that, due to the assumption ρ0 > ρ1 and due to the convexity result (Lemma 3.0.10), one
has γ(0) ∈ (−Θ+π/2,−Θ+π] (modulo 2π), and hence α(0) ∈ (π/2, π] (modulo 2π) (see Figure 1).
This, in particular, ensures that c > 0, and hence α(t) ∈ (0, π) (modulo 2π) for every t ∈ [0, T ].
From the above result, and using (4.12), we can now state that α is a non-increasing function.

0

x1

2Θ

ρ 0

ρ
1 6 ρ

0

x0

u(0)

−Θ + π/2

x(t)

−Θ + π

γ(0)

Figure 1: Graphical illustration of the fact that γ(0) ∈ (−Θ + π/2,−Θ + π] (modulo 2π), and
α(0) = γ(0)− θ(0) = γ(0) + Θ ∈ (π/2, π] (modulo 2π).

Let us �nally prove the existence of ρ such that c = R(ρ). Note that ρ 7→ ρ(s0 − R(ρ)) is
increasing on [ρm,∞) with ρm = 0 if s0 > R(0), and ρm ∈ R+ is such that s0 = R(ρm) otherwise.
In any cases, we have 0 = ρm(s0 − R(ρm)) 6 c 6 ρ1(s0 − R(ρ1)) (the second inequality follows
from the fact that (4.13) holds on the full interval [0, T ]). Consequently, there exist ρ ∈ (ρm, ρ

1]
such that c = ρ(s0 −R(ρ)) yielding that s0 > R(ρ).

Remark 4.0.6. Let us mention that once s0 and ρ are found, the control law is purely a feed-back
control law. More precisely, the optimal control is given by u = eiγ with γ given by the ordinary
di�erential equation:

γ̇ =
ρR′(ρ)(s0 −R(ρ))

ρ(s0 −R(ρ))2
, (4.14a)

with the initial condition:

γ(0) = −Θ + π − arcsin
ρ(s0 −R(ρ))

ρ0(s0 −R(ρ0))
. (4.14b)

In what follows we distinguish two possible situations α(T ) < π/2 and α(T ) > π/2 (modulo 2π).
Let us �rst set

fs0,ρ(ρ) =
ρ(s0 −R(ρ))

ρ(s0 −R(ρ))
(ρ1 > ρ > 0, s0 > R(ρ), ρ > ρ). (4.15)
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• Case α(T ) 6 π/2 (modulo 2π):
In this case, there exist t ∈ [0, T ] such that sinα(t) = 1, we then have ρ = ρ(t). Note that
according to (4.7a), we have ρ = min[0,T ] ρ. Using the monotonicity properties of ρ, we can see
that t ∈ [0, t] 7→ ρ(t) ∈ [ρ, ρ0] and t ∈ [t, T ] 7→ ρ(t) ∈ [ρ, ρ1] are two di�eomorphisms. Thus, using
(4.7a)�(4.7c) and the expression (4.11), we deduce that s0 and ρ shall, in addition to s0 > R(ρ),
satisfy

2Θ =

∫ ρ0

ρ

fs0,ρ(ρ)

ρ
√

1− fs0,ρ(ρ)2
dρ+

∫ ρ1

ρ

fs0,ρ(ρ)

ρ
√

1− fs0,ρ(ρ)2
dρ (4.16a)

and

b0 =

∫ ρ0

ρ

R(ρ)√
1− fs0,ρ(ρ)2

dρ+

∫ ρ1

ρ

R(ρ)√
1− fs0,ρ(ρ)2

dρ. (4.16b)

The corresponding minimal time is given by

T =

∫ ρ0

ρ

dρ√
1− fs0,ρ(ρ)2

+

∫ ρ1

ρ

dρ√
1− fs0,ρ(ρ)2

. (4.16c)

Note that the above integrals are well-de�ned as soon as s0 > R(ρ).
• Case α(T ) > π/2 (modulo 2π):

In this case, ρ is strictly decreasing and t ∈ [0, T ] 7→ ρ(t) ∈ [ρ1, ρ0] is a di�eomorphism. Using
(4.7a)�(4.7c) and the expression (4.11), we deduce that s0 and ρ shall, in addition to s0 > R(ρ),
satisfy

2Θ =

∫ ρ0

ρ1

fs0,ρ(ρ)

ρ
√

1− fs0,ρ(ρ)2
dρ (4.17a)

and

b0 =

∫ ρ0

ρ1

R(ρ)√
1− fs0,ρ(ρ)2

dρ. (4.17b)

The corresponding minimal time is given by

T =

∫ ρ0

ρ1

dρ√
1− fs0,ρ(ρ)2

. (4.17c)

Remark 4.0.7.

1. We can have α(T ) > π/2 only if Θ < π/4 and ρ0 > ρ1/ cos(2Θ).
If α(T ) > π/2, then we have min[0,T ] ρ = ρ1 and ρ′(T ) 6= 0. This together with the convexity
result Lemma 3.0.10 leads to the claim of the remark. To clarify the reasoning, we refer to
Figure 2.

2. If α(T ) > π/2, then ρ > ρm, with

ρm = min
λ∈R
|x0 + λ(x1 − x0)| =

√
|x0|2 −

〈
x1−x0

|x1−x0| , x
0
〉2

.

In fact, this relation is obvious if ρ = ρ1. If ρ < ρ1, then for every τ > 0, the optimal
trajectory can be continued on [T, T + τ ], to create a new optimal path for some other initial
bu�er b0τ > b0. Knowing that at time T , ρ(T ) = ρ1, this result can be proved using the
convexity result Lemma 3.0.10 for t1 < T and t2 > T . This is illustrated on Figure 3.
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0

x1

x0

2Θ

π/2
ρ
1

ρ 1
/ cos(2Θ)

(a) Case Θ < π/4.

0

x1

x0

2Θ

(b) Case Θ > π/4.

Figure 2: Illustration of the 1st claim of Remark 4.0.7.

0

x1

x0

ρ
1

ρm

x(t)

Figure 3: Illustration of the 2nd claim of Remark 4.0.7.
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3. In any cases, if (s0, ρ) is a solution to the equation (4.16b) or (4.17b), with b0 > 0, we
necessarily have ρ > 0.

Remark 4.0.8. In both situations, the time t, the angle θ and the bu�er size b can be recovered
in term of ρ, for instance, in the situation α(T ) < π/2, we set,

t =

∫ ρ0

ρ

dr√
1− fs0,ρ(r)2

and for t 6 t, we have,

t = t(ρ) =

∫ ρ0

ρ

dr√
1− fs0,ρ(r)2

and for t > t, we have,

t = t(ρ) = t+

∫ ρ

ρ

dr√
1− fs0,ρ(r)2

.

Let us also de�ne for ε = ±1 the maps

JTε (s0, ρ) =

∫ ρ0

ρ

dρ√
1− fs0,ρ(ρ)2

+ ε

∫ ρ1

ρ

dρ√
1− fs0,ρ(ρ)2

, (4.18a)

CΘ
ε (s0, ρ) =

∫ ρ0

ρ

fs0,ρ(ρ) dρ

ρ
√

1− fs0,ρ(ρ)2
+ ε

∫ ρ1

ρ

fs0,ρ(ρ) dρ

ρ
√

1− fs0,ρ(ρ)2
(4.18b)

and

Cbε (s0, ρ) =

∫ ρ0

ρ

R(ρ) dρ√
1− fs0,ρ(ρ)2

+ ε

∫ ρ1

ρ

R(ρ) dρ√
1− fs0,ρ(ρ)2

, (4.18c)

and the sets

Eε =
{

(s0, ρ) ∈ R+ × [0, ρ1] | s0 > R(ρ), CΘ
ε (s0, ρ) = 2Θ and Cbε (s0, ρ) = b0

}
. (4.19)

We are now in a position to give the main result.

Theorem 4.0.9. Let x0, x1 ∈ Rd and b0 ∈ R+ satisfying the Assumption 2, and let (T, u) be
a minimizer of (2.3). Let us de�ne ρ0 = min

{
|x0|, |x1|

}
and ρ1 = max

{
|x0|, |x1|

}
. Then T =

min {T−1, T+1}, where for ε = ±1, Tε is the minimum of JTε (de�ned by (4.18a)) on the set Eε
(de�ned by (4.19)) (by convention, we have set Tε =∞ if Eε = ∅).

In addition, once ε ∈ {−1, 1} and the parameters s0 and ρ minimizing JTε on Eε are found, the
control u = eiγ can be recovered from (4.14), and the state trajectories can be recovered by using
the process described in Remark 4.0.8.

Recall that according to Remark 4.0.7, we already know that E−1 = ∅ for Θ > π/4 or for
Θ < π/4 and ρ0 6 ρ1/ cos(2Θ). The problem is now to minimize JTε on the set Eε. We conjecture
that the set Eε is the empty set or a singleton. Proving such a fact does not seem to be an easy
task. However, we can make the next remark ensuring that s0 is uniquely determined by ρ.

Remark 4.0.10. Let ρ ∈ (0, ρ1], then when (4.9) holds, for every ε ∈ {−1, 1}, there exists at most
one s0 = s0(ρ) such that (s0, ρ) ∈ Eε.
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Let us �rst recall that according to the 3rd claim of Remark 4.0.7, we necessarily have R(ρ) > 0.
To prove the claim of the remark, we �rst de�ne,

I ρ̂Θ(s0, ρ) =

∫ ρ̂

ρ

fs0,ρ(ρ)

ρ
√

1− fs0,ρ(ρ)2
dρ (ρ̂ ∈ R∗+, (s0, ρ) ∈ D(ρ̂)),

where D(ρ̂) = {(s0, ρ) ∈ R+ × (0, ρ̂) | s0 > R(ρ) > 0}, and where fs0,ρ is given by (4.15).
Note that we have:

CΘ
ε (s0, ρ) = Iρ

0

Θ (s0, ρ) + εIρ
1

Θ (s0, ρ).

Note also that the above functions are continuously di�erentiable on D(ρ̂) for every ρ̂ > 0, and,
after some computations, we obtain,

∂s0I
ρ̂
Θ(s0, ρ) =

∫ ρ̂

ρ

∂s0fs0,ρ(ρ)

ρ (1− fs0,ρ(ρ)2)
3/2

dρ,

with,

∂s0fs0,ρ(ρ) =
ρ (R(ρ)−R(ρ))

ρ (s0 −R(ρ))
2 .

Using the monotonicity of R, we obtain (recall that R(ρ) > 0) that

∂s0

(
Iρ

0

Θ (s0, ρ) + εIρ
1

Θ (s0, ρ)
)
> 0.

This in particular ensures that given ρ, there exist at most one s0 = s0(ρ) such that

2Θ = Iρ
0

Θ (s0(ρ), ρ) + εIρ
1

Θ (s0(ρ), ρ).

Furthermore, if such an s0 exist, then, using the implicit function Theorem, ρ 7→ s0(ρ) is absolutely
continuous.

5 Numerical example with a particular choice of transmission

rate

Let us �rst de�ne the transmission rate R used to provide some numerical simulations. We chose
R de�ned by

R(ρ) = Q(a(ρ− ρ0)) (ρ > 0), (5.1)

where ρ0 is a non-negative constant, and Q is the Q-function given by Q(ρ) = 1√
2π

∫∞
ρ
e−τ

2/2 dτ .

The expected rate is of this form when packets of a �xed size are received only if the SNR is above
a certain threshold, where the SNR depends on both the path loss and a random Gaussian variable
due to fast fading in the wireless channel, see [9]. For the practical examples below, we chose
ρ0 = 3 and a = 2. The corresponding graph of ρ 7→ R(ρ) is displayed on Figure 4, which is similar
to the rate function for a �xed modulation given in [11, Figure 2].

Let us precise our choice of initial and �nal conditions. We place ourselves in the case d = 2,
and we set x1 = ρ1eiΘ and x0 = ρ0e−iΘ, with Θ = π/8, ρ1 = 2 and ρ0 = 2ρ1/ cos(2Θ). This
choice has been made in order to allow the existence of a minimizer of JT−1 on the set E−1 (see
Remark 4.0.7). Let us de�ne b00 = B(x0, x1) and b020 = B(x0, 0) + B(0, x1). Numerically we
obtain b00 ' 1.4858 and b020 ' 4.9958, for the initial condition on b, we will take b0 = b0k, with
b0k = b00 + k(b020 − b00)/20, for k = 0, . . . , 20. In order to also show the optimal trajectory in
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Figure 4: Illustration of the transmission rate function R, given by (5.1), for ρ0 = 3 and a = 2.

the situations given by Propositions 3.0.5 and 3.0.6, we will also consider the initial conditions
b0 = 2b00/3 < b00 and b0 = b020 + b00/2 > b020. In order to obtain the optimal solution for the
given initial condition b0, we chose to use the property claimed in Remark 4.0.10, that is to say
that for every ρ ∈ [0, ρ1], and every ε ∈ {−1,+1} we try to compute an s0 > R(ρ) such that
CΘ
ε (s0, ρ) = 2Θ. The results of these computations are given on Figure 5a, and the computation

has been done with the fsolve function of matlab. Once s0 is known in term of ε and ρ, we draw
the corresponding bu�er and time, see Figures 5b and 5c.
Let us also mention that in order to numerically compute the integrals given in (4.16) and (4.17), we
use the midpoint rule, which is known to be convergent for improper integrals. For the computation
presented here, we have used 105 discretization points.
On Figure 5b, we observe that given b0 ∈ (b00, b

0
20), there exist one and only one corresponding

value for ρ and ε, leading to the time optimal solution.
Finally, on Figure 6, we display the optimal state trajectories associated to b00, . . . , b

0
20.

6 Conclusions

In this paper, we design a time-optimal control strategy allowing a mobile robot to reach a target
while transmitting a message in minimum time. We consider one of the simplest situations in
which there is only one antenna, there are no shadowing e�ects (the transmission rate only depend
on the distance to the antenna) and the dynamics of the robot is described by a single integrator.
In this framework, we give both a theoretical description of the optimal control and a strategy for
its numerical implementation. Further works should consider the presence of multiple antennas
and noises.
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