8,528 research outputs found

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    tiphys an open networked platform for higher education on industry 4 0

    Get PDF
    Abstract Objective of Tiphys project is building an Open Networked Platform for the learning of Industry 4.0 themes. The project will create a Virtual Reality (VR) platform, where users will be able to design and create a VR based environment for training and simulating industrial processes but they will be able to study and select among a set of models in order to standardize the learning and physical processes as a virtual representation of the real industrial world and the required interactions so that to acquire learning and training capabilities. The models will be structured in a modular approach to promote the integration in the existing mechanisms as well as for future necessary adaptations. The students will be able to co-create their learning track and the learning contents by collaborative working in a dynamic environment. The paper presents the development and validation of the learning model, built on CONALI learning ontology. The concepts of the ontology will be detailed and the platform functions will be demonstrated on selected use cases

    Trustworthiness in Social Big Data Incorporating Semantic Analysis, Machine Learning and Distributed Data Processing

    Get PDF
    This thesis presents several state-of-the-art approaches constructed for the purpose of (i) studying the trustworthiness of users in Online Social Network platforms, (ii) deriving concealed knowledge from their textual content, and (iii) classifying and predicting the domain knowledge of users and their content. The developed approaches are refined through proof-of-concept experiments, several benchmark comparisons, and appropriate and rigorous evaluation metrics to verify and validate their effectiveness and efficiency, and hence, those of the applied frameworks

    Artificial Intelligence and Big Data Analytics in Support of Cyber Defense

    Get PDF
    Cybersecurity analysts rely on vast volumes of security event data to predict, identify, characterize, and deal with security threats. These analysts must understand and make sense of these huge datasets in order to discover patterns which lead to intelligent decision making and advance warnings of possible threats, and this ability requires automation. Big data analytics and artificial intelligence can improve cyber defense. Big data analytics methods are applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends, and other useful information. Artificial intelligence provides algorithms that can reason or learn and improve their behavior, and includes semantic technologies. A large number of automated systems are currently based on syntactic rules which are generally not sophisticated enough to deal with the level of complexity in this domain. An overview of artificial intelligence and big data technologies in cyber defense is provided, and important areas for future research are identified and discussed

    A Self-Regulated Learning Approach to Educational Recommender Design

    Get PDF
    Recommender systems, or recommenders, are information filtering systems prevalent today in many fields. One type of recommender found in the field of education, the educational recommender, is a key component of adaptive learning solutions as these systems avoid “one-size-fits-all” approaches by tailoring the learning process to the needs of individual learners. To function, these systems utilize learning analytics in a student-facing manner. While existing research has shown promise and explores a variety of types of educational recommenders, there is currently a lack of research that ties educational theory to the design and implementation of these systems. The theory considered here, self-regulated learning, is underexplored in educational recommender research. Self-regulated learning advocates a cyclical feedback loop that focuses on putting students in control of their learning with consideration for activities such as goal setting, selection of learning strategies, and monitoring of one’s performance. The goal of this research is to explore how best to build a self-regulated learning guided educational recommender and discover its influence on academic success. This research applies a design science methodology in the creation of a novel educational recommender framework with a theoretical base in self-regulated learning. Guided by existing research, it advocates for a hybrid recommender approach consisting of knowledge-based and collaborative filtering, made possible by supporting ontologies that represent the learner, learning objects, and learner actions. This research also incorporates existing Information Systems (IS) theory in the evaluation, drawing further connections between these systems and the field of IS. The self-regulated learning-based recommender framework is evaluated in a higher education environment via a web-based demonstration in several case study instances using mixed-method analysis to determine this approach’s fit and perceived impact on academic success. Results indicate that the self-regulated learning-based approach demonstrated a technology fit that was positively related to student academic performance while student comments illuminated many advantages to this approach, such as its ability to focus and support various studying efforts. In addition to contributing to the field of IS research by delivering an innovative framework and demonstration, this research also results in self-regulated learning-based educational recommender design principles that serve to guide both future researchers and practitioners in IS and education

    Personalisation in MOOCs: a critical literature review

    No full text
    The advent and rise of Massive Open Online Courses (MOOCs) have brought many issues to the area of educational technology. Researchers in the field have been addressing these issues such as pedagogical quality of MOOCs, high attrition rates, and sustainability of MOOCs. However, MOOCs personalisation has not been subject of the wide discussions around MOOCs. This paper presents a critical literature survey and analysis of the available literature on personalisation in MOOCs to identify the needs, the current states and efforts to personalise learning in MOOCs. The findings illustrate that there is a growing attention to personalisation to improve learners’ individual learning experiences in MOOCs. In order to implement personalised services, personalised learning path, personalised assessment and feedback, personalised forum thread and recommendation service for related learning materials or learning tasks are commonly applied
    • 

    corecore