296 research outputs found

    Multimedia Content Distribution in Hybrid Wireless Networks using Weighted Clustering

    Get PDF
    Fixed infrastructured networks naturally support centralized approaches for group management and information provisioning. Contrary to infrastructured networks, in multi-hop ad-hoc networks each node acts as a router as well as sender and receiver. Some applications, however, requires hierarchical arrangements that-for practical reasons-has to be done locally and self-organized. An additional challenge is to deal with mobility that causes permanent network partitioning and re-organizations. Technically, these problems can be tackled by providing additional uplinks to a backbone network, which can be used to access resources in the Internet as well as to inter-link multiple ad-hoc network partitions, creating a hybrid wireless network. In this paper, we present a prototypically implemented hybrid wireless network system optimized for multimedia content distribution. To efficiently manage the ad-hoc communicating devices a weighted clustering algorithm is introduced. The proposed localized algorithm deals with mobility, but does not require geographical information or distances.Comment: 2nd ACM Workshop on Wireless Multimedia Networking and Performance Modeling 2006 (ISBN 1-59593-485

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Enhanced Cluster Based Routing Protocol for MANETS

    Full text link
    Mobile ad-hoc networks (MANETs) are a set of self organized wireless mobile nodes that works without any predefined infrastructure. For routing data in MANETs, the routing protocols relay on mobile wireless nodes. In general, any routing protocol performance suffers i) with resource constraints and ii) due to the mobility of the nodes. Due to existing routing challenges in MANETs clustering based protocols suffers frequently with cluster head failure problem, which degrades the cluster stability. This paper proposes, Enhanced CBRP, a schema to improve the cluster stability and in-turn improves the performance of traditional cluster based routing protocol (CBRP), by electing better cluster head using weighted clustering algorithm and considering some crucial routing challenges. Moreover, proposed protocol suggests a secondary cluster head for each cluster, to increase the stability of the cluster and implicitly the network infrastructure in case of sudden failure of cluster head.Comment: 6 page

    Study of different mobility models and clustering algorithms like weighted clustering algorithm (WCA) and dynamic moblity adaptive clustering algorithm (DMAC)

    Get PDF
    This project addresses issues pertaining to mobile multi-hop radio networks called mobile ad hoc networks (MANET), which plays a critical role in places where a wired backbone is neither available nor economical to deploy. Our objective was to form and maintain clusters for efficient routing, scalability and energy utilization. To map the cellular architecture into the mobile ad hoc network cluster heads are elected that form the virtual backbone for packet transmission. However, the constant movement of the nodes changes the topology of the network, which perturbs the transmission. This demands the cluster maintenance. Weighed Clustering Algorithm (WCA)[4] and Distributed and Mobility adaptive Clustering (DMAC) [1,2,3] are two better proven algorithms on which we have implemented different mobility models like Random Walk (RW), Random Way Point (RWP) and Random Direction (RD). In both the algorithms each node is assigned some weight .In WCA the weight is a function of parameters like Battery power, mobility, transmission range and degree of connectivity. DMAC is mobility adaptive, i.e. it takes the mobility of the nodes into consideration while forming the clusters. We have chosen some measuring parameters like no of clusterheads, Average cluster lifetime, and Reaffilation rate for comparing the performance of both the algorithms

    Design of Simulator for Energy Efficient Clustering in Mobile Ad Hoc Networks

    Get PDF
    The research on various issues in Mobile ad hoc networks are getting popularity because of its challenging nature and all time connectivity to communicate. MANET (Mobile Ad-hoc Networks) is a random deployable network where devices are mobile with dynamic topology. In the network topology, each device is termed as a node and the virtual connectivity among each node is termed as the link .Nodes in a network are dynamically organized into virtual partitions called clusters. Network simulators provide the platform to analyse and imitate the working of computer networks along with the typical devices, traffic and other entities. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. Clustering is a proven solution to preserve the battery power of certain nodes. In the mechanism of clustering, there exists a cluster head in every cluster that works similar to a base station in the cellular architecture. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. The mobile ad hoc network can be modelled as a unidirectional graph G = (V, L) where V is the set of mobile nodes and L is the set of links that exist between the nodes. We assume that there exists a bidirectional link L between the nodes and when the distance between the nodes < (transmission range) of the nodes. In the dynamic network the cardinality of the nodes remains constant, but the cardinality of links changes due to the mobility of the nodes. Network simulators are used by researchers, developers and engineers to design various kinds of networks, simulate and then analyze the effect of various parameters on the network performance. A typical network simulator encompasses a wide range of networking technologies and can help the users to build complex networks from basic building blocks such as a variety of nodes and links. The objective of our work is to design a simulator for energy efficient clustering so that the data flow as well as the control flow could be easily handled and maintained. The proposed energy efficient clustering algorithm is a distributed algorithm that takes into account the consumed battery power of a node and its average transmission power for serving the neighbour nodes as the parameters to decide its suitability to act as a cluster head. These two parameters are added with different weight factors to find the weights of the individual nodes. After the clusters are formed, gateway nodes are selected in the network that help for the inter cluster communication. The graph for the number of cluster heads selected for different number of nodes are also drawn to study the functionality of the simulator

    STABLE CLUSTERING ON AODV WITH SLEEP MODE

    Get PDF
    Clustering has evolved as an imperative research domain that enhances system performance such as throughput and delay in Mobile Ad hoc Networks (MANETs) in the presence of both mobility and a large number of mobile terminals. In this thesis, we present a clustering scheme that minimizes message overhead and congestion for cluster formation and maintenance. The algorithm is devised to be dependent on Ad-hoc On Demand Distance Vector (AODV) Routing with sleep mode algorithm of MANET. The dynamic formation of clusters helps reduce data packet overhead, node complexity and power consumption. The goal of this algorithm is to decrease the number of cluster forming, maintain stable clustering structure and maximize lifespan of mobile nodes in the system. Nodes in MANET networks are basically battery operated, and thus have access to a limited amount of energy. This process proposes an Energy based Ad-Hoc on-Demand Routing algorithm that balances energy among nodes so that a minimum energy level is maintained among nodes and the lifetime of network is increased. The simulation has been performed in ns-2. The simulation shows that the number of clusters formed is in proportion with the number of nodes in MANET
    corecore