5 research outputs found

    Adaptive observers-based synchronization of a class of lur'e systems under transmission delays

    No full text
    In revision, submitted to Int. J. Control Theory and ApplicationsWe propose an adaptive observers-based synchronization approach for a class of chaotic Lur'e systems with slope-restricted nonlinearities and uncertain parameters, under transmission time-delays. The delay is assumed to be bounded and time varying and the uncertain parameters are assumed to be piece-wise constant. Based on the Lyapunov-Krasovskii approach, we show that for sufficiently short time-delays, master-slave synchronization is achieved and therefore, the uncertain parameters may be recovered. Then, the proposed approach is extended to the case of long constant time-delays by proposing a synchronization scheme based on cascade observers. Theoretical results are illustrated via two numerical examples

    Synchronisation des systèmes chaotiques par observateurs et applications à la transmission d'informations.

    Get PDF
    Dans ce travail de thèse, nous développons des méthodes de synchronisation des systèmes chaotiques pour les applications de transmission d'informations. La première méthode de synchronisation que nous proposons est basée sur les observateurs adaptatifs à entrées inconnues pour une classe des systèmes chaotiques présentant des incertitudes paramétriques et des perturbations dans leurs dynamiques et du bruit dans les signaux de sortie (bruit dans le canal de communication). La méthode développée repose sur les techniques adaptatives pour la compensation des non-linéarités et des incertitudes paramétriques et pour la restauration des messages transmis. Elle se base également sur les méthodes de synthèse d'observateurs à entrées inconnues pour supprimer l'influence des perturbations et du bruit. Ensuite, nous développons une deuxième méthode de synchronisation utilisant un observateur adaptatif à modes glissants" pour une classe des systèmes chaotiques présentant des entrées inconnues et dont les signaux de sortie sont bruités. La synthèse de l'observateur s'appuie sur la théorie des modes glissants, les techniques de synthèse d'observateurs singuliers et les techniques adaptatives dans le but d'estimer conjointement l'état et les entrées inconnues malgré la présence du bruit dans les équations de sortie. Cette approche de synchronisation est ensuite employée dans un nouveau schéma de communication chaotique sécurisée dont l'objectif est d'augmenter le nombre et l'amplitude des messages transmis, améliorer le niveau de sécurité ainsi que la robustesse aux bruits présents dans le canal de communication. En outre, le scénario de présence des retards de transmission est étudié en élaborant une troisième approche de synchronisation à base d'observateurs adaptatifs pour une classe des systèmes chaotiques de Lur'e avec des non-linéarités à pente restreinte et des signaux de sortie retardés. En se basant sur la théorie de Lyapunov-Krasovskii et en utilisant une hypothèse d'excitation persistante, l'observateur adaptatif proposé garantit la synchronisation maitre-esclave et la restauration des informations transmises malgré l'existence des retards de transmission. Les résultats théoriques obtenus dans ce travail de thèse sont vérifiés à travers des applications de transmission d'informations utilisant différents modèles des systèmes chaotiques tout en étudiant les différents scénarios et cas de figure pouvant se présenter en pratique et en analysant les aspects de sécurité de ces systèmes.In this thesis, we develop synchronization methods of chaotic systems for information transmission applications. The first proposed method is based on adaptive unknown input observers for a class of chaotic systems subject to parametric uncertainties and perturbations in their dynamics and noise in outputs signals (Channel communication noise). The developed method is based on adaptive techniques to compensate nonlinearities to compensate nonlinearities and parametric uncertainties and to reconstruct the transmitted messages. Furthermore, this approach is based on unknown input observers design to reject the influence of perturbations and noise. Then, we develop a second synchronization method using an adaptive sliding mode observer for a class of chaotic systems subject to unknown inputs and such that the output equations are subject to noise. The observer design is based on sliding modes theory, descriptor observers design and adaptive control in order to join state and unknown input estimation despite the presence of noise in output equations. The latter synchronization approach is then exploited in a new secured communication scheme where the objective is to increase the number and amplitude of the transmitted messages, improve the level of security and the robustness to noise present in the communication channel. Moreover, the case of presence of transmission time-delays was investigated and a synchronization approach based on adaptive observers for a class of Lur e systems with slope restricted nonlinearities and delayed outputs. Based on the Lyapunov-Krasovskii theory and using a persistency of excitation property, the proposed adaptive observer ensures master-slave synchronization and the reconstruction of the transmitted messages despite the existence of transmission time-delays. The obtained theoretical results in this thesis are verified through transmission information applications using different models of chaotic systems in different scenarios and case-studies which may occur in practice. Cryptanalysis and security aspects of the proposed communication systems are also investigated.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Multi-Rate Observers for Model-Based Process Monitoring

    Get PDF
    Very often, critical quantities related to safety, product quality and economic performance of a chemical process cannot be measured on line. In an attempt to overcome the challenges caused by inadequate on-line measurements, state estimation provides an alternative approach to reconstruct the unmeasured state variables by utilizing available on-line measurements and a process model. Chemical processes usually possess strong nonlinearities, and involve different types of measurements. It remains a challenging task to incorporate multiple measurements with different sampling rates and different measurement delays into a unified estimation algorithmic framework. This dissertation seeks to present developments in the field of state estimation by providing the theoretical advances in multi-rate multi-delay observer design. A delay-free multi-rate observer is first designed in linear systems under asynchronous sampling. Sufficient and explicit conditions in terms of maximum sampling period are derived to guarantee exponential stability of the observer, using Lyapunov’s second method. A dead time compensation approach is developed to compensate for the effect of measurement delay. Based on the multi-rate formulation, optimal multi-rate observer design is studied in two classes of linear systems where optimal gain selection is performed by formulating and solving an optimization problem. Then a multi-rate observer is developed in nonlinear systems with asynchronous sampling. The input-to-output stability is established for the estimation errors with respect to measurement errors using the Karafyllis-Jiang vector small-gain theorem. Measurement delay is also accounted for in the observer design using dead time compensation. Both the multi-rate designs in linear and nonlinear systems provide robustness with respect to perturbations in the sampling schedule. Multi-rate multi-delay observer is shown to be effective for process monitoring in polymerization reactors. A series of three polycondensation reactors and an industrial gas-phase polyethylene reactor are used to evaluate the observer performance. Reliable on-line estimates are obtained from the multi-rate multi-delay observer through simulation
    corecore