1,212 research outputs found

    Product Design and Development using Polyjet Rapid Prototyping Technology

    Get PDF
    The Rapid prototyping process has proved to be a good approach since all requirements could be fulfilled. With the help of this technology design and size of product will be easily changed.Complicated small shape products are also manufactured easily. We integrate polyjet technology for product development which is used to become a game-changing innovation for designers, engineers and manufacturers. It improves customer satisfaction. 3D printing helps organizations get better products to market faster than ever before. It enables design teams to quickly produce a high-quality, realistic prototype with moving parts, at low cost when compared to other methods such as CNC machining or outsourcing .The modifications on the product are simple to execute. The Poly Jet technology for manufacture of prototype models is adequate with respect to shape as well as dimension requirements. The advantages are obvious particularly in case of exacting shapes which would be difficult to manufactured by conventional processes or the price would be too high and the time of manufacture too long. Taking into consideration the experience in rapid manufacture of prototype models, their applicability and the responses of users, In cases only a few products not exposed to high mechanical loadings are needed, the models made by Poly Jet process are undoubtedly a good solution.In this paper we also reviewed effect of process parameter on mechanical properties and takentime consideration. Keywords: 3D Printing, Model Making, Additive manufacturing, Innovation, Polyjet Technology, Rapid Prototypin

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Portable 6 Lead 4 Electrode EKG

    Get PDF
    This project focused on designing a small, portable, 6 lead 4 electrode electrocardiogram (EKG) machine with enough accuracy and resolution to successfully diagnose clinical issues. The electrical design used to measure signals originating from the heart can be broken up into three stages. The first stage is the human device interface. Next, is the analog block that filters out common mode noise and conditions the signal for digital encoding using instrumentation amplifiers, a right leg circuit, high pass, low pass, and an amplifier. This circuit filters all frequencies above and below the frequency band of meaningful data (1-160Hz), rejects signals common to all of the electrodes, and amplifies signals to a value measurable by the digital ADC. After the three data signals have gone through the analog block they are passed to the digital block. Here the data is digitized using an analog converter, formatted to be sent in a useful way to an external device. This device can save or display the information in real time. This is done by using a serial USB connection to a computer, and then presenting that data using a GUI built in C#. A microcontroller with an on-board ADC was used to digitize, format, and transmit the data. The graphical user interface on a computer was used to simultaneously save the data in a text file and plot that data on a graph for easy analyzing. The final analog design function at the bread board level, but critical mistakes were made when designing the printed circuit board. The microcontroller and user interface on the computer worked with marginal success. This project provided an important first step in the development of a viable product

    The Flying Monkey: a Mesoscale Robot that can Run, Fly, and Grasp

    Get PDF
    The agility and ease of control make a quadrotor aircraft an attractive platform for studying swarm behavior, modeling, and control. The energetics of sustained flight for small aircraft, however, limit typical applications to only a few minutes. Adding payloads – and the mechanisms used to manipulate them – reduces this flight time even further. In this paper we present the flying monkey, a novel robot platform having three main capabilities: walking, grasping, and flight. This new robotic platform merges one of the world’s smallest quadrotor aircraft with a lightweight, single-degree-of-freedom walking mechanism and an SMA-actuated gripper to enable all three functions in a 30 g package. The main goal and key contribution of this paper is to design and prototype the flying monkey that has increased mission life and capabilities through the combination of the functionalities of legged and aerial roots.National Science Foundation (U.S.) (IIS-1138847)National Science Foundation (U.S.) (EFRI-124038)National Science Foundation (U.S.) (CCF-1138967)United States. Army Research Laboratory (W911NF-08-2-0004)Wyss Institute for Biologically Inspired Engineerin

    Clear Circuit Contact Lens

    Get PDF
    The clear active contact lens project aims to address safety and hazard awareness with an unexplored field of eye wear technology. With advancements in nanotechnology and the advent of circuits on contact lens, this project is one of the first research and development into this new field, following University of Washington and Google. The team focuses on the safety and biocompatibility of the contact lens for a comfortable ease of use. The designs push the limits of thin film printed technology with its pursuit of fine designs of 250ÎŒm antennas. The project streamlines the manufacturing process for a combination substrate of PET and PDMS and mounting of antenna, IC, and battery. To produce a product that operates at simulated specifications, the team tests and characterize the substrate, antenna, IC, and battery separately, while ensuring their designs function effectively together. The designs and processes provide a large stepping stone to the realization of a marketable active contact lens

    Modelling and simulation of paradigms for printed circuit board assembly to support the UK's competency in high reliability electronics

    Get PDF
    The fundamental requirement of the research reported within this thesis is the provision of physical models to enable model based simulation of mainstream printed circuit assembly (PCA) process discrete events for use within to-be-developed (or under development) software tools which codify cause & effects knowledge for use in product and process design optimisation. To support a national competitive advantage in high reliability electronics UK based producers of aircraft electronic subsystems require advanced simulation tools which offer model based guidance. In turn, maximization of manufacturability and minimization of uncontrolled rework must therefore enhance inservice sustainability for ‘power-by-the-hour’ commercial aircraft operation business models. [Continues.

    An intelligent knowledge based cost modelling system for innovative product development

    Get PDF
    This research work aims to develop an intelligent knowledge-based system for product cost modelling and design for automation at an early design stage of the product development cycle, that would enable designers/manufacturing planners to make more accurate estimates of the product cost. Consequently, a quicker response to customers’ expectations. The main objectives of the research are to: (1) develop a prototype system that assists an inexperienced designer to estimate the manufacturing cost of the product, (2) advise designers on how to eliminate design and manufacturing related conflicts that may arise during the product development process, (3) recommend the most economic assembly technique for the product in order to consider this technique during the design process and provide design improvement suggestions to simplify the assembly operations (i.e. to provide an opportunity for designers to design for assembly (DFA)), (4) apply a fuzzy logic approach to certain cases, and (5) evaluate the developed prototype system through five case studies. The developed system for cost modelling comprises of a CAD solid modelling system, a material selection module, knowledge-based system (KBS), process optimisation module, design for assembly module, cost estimation technique module, and a user interface. In addition, the system encompasses two types of databases, permanent (static) and temporary (dynamic). These databases are categorised into five separate groups of database, Feature database, Material database, Machinability database, Machine database, and Mould database. The system development process has passed through four major steps: firstly, constructing the knowledge-based and process optimisation system, secondly developing a design for assembly module. Thirdly, integrating the KBS with both material selection database and a CAD system. Finally, developing and implementing a ii fuzzy logic approach to generate reliable estimation of cost and to handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods. The developed system has, besides estimating the total cost of a product, the capability to: (1) select a material as well as the machining processes, their sequence and machining parameters based on a set of design and production parameters that the user provides to the system, and (2) recommend the most economic assembly technique for a product and provide design improvement suggestion, in the early stages of the design process, based on a design feasibility technique. It provides recommendations when a design cannot be manufactured with the available manufacturing resources and capabilities. In addition, a feature-by-feature cost estimation report was generated using the system to highlight the features of high manufacturing cost. The system can be applied without the need for detailed design information, so that it can be implemented at an early design stage and consequently cost redesign, and longer lead-time can be avoided. One of the tangible advantages of this system is that it warns users of features that are costly and difficult to manufacture. In addition, the system is developed in such a way that, users can modify the product design at any stage of the design processes. This research dealt with cost modelling of both machined components and injection moulded components. The developed cost effective design environment was evaluated on real products, including a scientific calculator, a telephone handset, and two machined components. Conclusions drawn from the system indicated that the developed prototype system could help companies reducing product cost and lead time by estimating the total product cost throughout the entire product development cycle including assembly cost. Case studies demonstrated that designing a product using the developed system is more cost effective than using traditional systems. The cost estimated for a number of products used in the case studies was almost 10 to 15% less than cost estimated by the traditional system since the latter does not take into consideration process optimisation, design alternatives, nor design for assembly issue

    Automated Manufacturability Analysis: A Survey

    Get PDF
    In the marketplace of the 21st century, there is no place for traditional ``over-the-wall'' communications between design and manufacturing. In order to ``design it right the very first time,'' designers must ensure that their products are both functional and easy to manufacture. Software tools have had some successes in reducing the barriers between design and manufacturing. Manufacturability analysis systems are emerging as one such tool---enabling identification of potential manufacturing problems during the design phase and providing suggestions to designers on how to eliminate them.In this paper, we provide a survey of current state of the art in automated manufacturability analysis. We present the historical context in which this area has emerged and outline characteristics to compare and classify various systems. We describe the two dominant approaches to automated manufacturability analysis and overview representative systems based on their application domain. We describe support tools that enhance the effectiveness of manufacturability analysis systems. Finally, we attempt to expose some of the existing research challenges and future directions.<P
    • 

    corecore