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Abstract 

Manufacturability analysis systems (MASs) have been developed to enable the 

evaluation of manufacturability aspects during the design stage. 

MASs have been shown to be useful for macro-manufacturing processes but 

less attention or effort has been put for their development in the scope of 

micro-manufacturing. This thesis describes the development of a MAS for a 

micro-machining domain (MicroMAS) with a custom-made 4-axis Miniature 

Machine Tool (MMT) being the scope of implementation. 

There are three important components in this study which are; MAS, 

Uncertainty Evaluation Model (UEM) and micro-milling experiments. The 

integration between the results from the UEM analysis and micro-machining 

experiments were being incorporated into the MicroMAS to provide the system 

with the real condition of the MMT. 

In MicroMAS, Primitive Feature Analysis (PFA) is introduced as a new 

technique in gathering information from a CAD model and analysing its 

manufacturability. The results from the manufacturability assessment in 

MicroMAS are successfully achieved through the manufacturability index 

which indicates the relative ease of machining the CAD model and list of 

related suggestions. 

UEM is developed to analyse the influence of the errors stemmed from the 

MMT construction on the geometrical accuracy of the machined micro-parts. 

The model has allowed a methodology for the errors in a custom-made 

machine tool to be predicted and to further understand the origin of the errors 

on the machined micro-part (either from the machine or the process itself). The 

abilities of the MMT are evaluated through various types of experiments where 

the surface quality and geometrical accuracy can be concluded to be at an 

acceptable range. 

From the experience gained from the research, the development of MicroMAS 

for micro-milling has been found to be practical in assisting a user to generate 

micro-parts using the MMT. 
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CHAPTER 1: INTRODUCTION 

1.1. Introduction 

This chapter presents the aims and objectives of this study. The background 

information and the problem definition are discussed briefly as well as the 

structure of the thesis. To illustrate the significance of this thesis to the 

academic field, key research highlights and findings will also be described at 

the end of this chapter. 

1.2. Background information 

Traditionally, the translation of a conceptual design into a final product has 

been accomplished by repetitive iterations between design and manufacturing 

stages of the product development life cycle. The concepts generated at the 

design stage are passed to the manufacturing stage for the engineers to check 

on any manufacturing-related problems. If manufacturing engineers encounter 

significant machining difficulties, the designs are passed back to the design 

department for appropriate modifications. Designers might be unaware of 

specific manufacturing details or rules, which sometimes result in 'non- 

manufacturable' designs or require unreasonable increase of machining costs. 

This is the main reason of the time-consuming iterations occurring between the 

designs and manufacturing stages. 

According to Gupta et at. [1], in order to expedite or minimise the number of 

these iterations, manufacturability analysis systems (MASs) were developed 

to allow manufacturability aspects to be analysed during the design stage and 
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thus to enable a `smooth' transition between the design and manufacturing 

stages. When the number of the iterations are lessen, the time taken to bring the 

product to the market is shortened and consequently that enables the reduction 

of manufacturing costs of the designs [2-3]. 

MASs implementation can cover a wide range of applications, either the 

systems were generally developed to cater various types of manufacturing 

process or for a `specific' application. MASs have been proved to work for 

various manufacturing processes such as milling [4-6], drilling [5,7-8], 

turning [9-11], grinding [7,12], dielsand casting [13-14], injection moulding 

[4,15-16], forging [5] and blanking/piercing [17-18]. 

Among the examples of MASs `specific' applications are for shipbuilding 

projects, where MAS supports automated virtual assembly of parts/sub- 

assemblies [19], designing an improved version of golf club heads [20], assist 

product designers, process planners and die designers working in small and 

medium sheet metalworking industries for assessing manufacturability of 

presswork parts [21], the fabrication of printed circuit board (PCB) [22] and 

assisting users in selecting a set of process parameters and a powder material 

that would meet the strength requirement of the part in powder metallurgy 

process for mould fabrication [23-24]. Within the broader context of modem 

design and manufacturing digitisation, the steps made towards the unification 

of concepts (design and manufacturing) into intelligent and industrially usable, 

MASs is regarded as a strategic step towards next fully integrated production 

systems. 
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As product development technology becomes more advanced, the size of 

devices produced decreases and this is where micro-products came into view. 

Micro-engineering deals with the development and manufacture of products, 

whose functional features or at least one dimension are at micro-metric level 

[25]. The use of micro-products and micro-components has been strongly 

increased through the past decade and the product development and design on 

new micro-products is likely to become the core competence of the specialist 

companies [25]. The increasing demands of micro-products in various 

industries have geared up the development of specific micro-manufacturing 

processes and technologies. Thus, all the constitutive elements of micro- 

manufacturing systems have to be optimised to enable cost and time efficient 

mass generation of ever-growing micro-engineered products. The needs to 

bring micro-products faster to the market caused the development and the 

design phases to become more challenging tasks. One of the main issues in 

designing micro-products is the methods used to design them with the required 

quality specifications which can be manufactured ̀easily'. 

MASs have been successfully developed for various manufacturing processes 

but they are mainly applicable for macro-manufacturing domain such as 

milling, drilling, forming and casting. In the present study, MASs have proved 

to work for macro-manufacturing processes but there are less attention or effort 

has been shown for its development in the scope of micro-manufacturing. 
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1.3. Problem definition 

Micro-products with high accuracy such as sensors, lenses, surgery devices, 

gears, and actuators have become demanded products in industries such as 

Information Technology (IT), aerospace, medical and biomedical, automotive, 

telecommunication and electronic industries [25-32]. With the demands for 

micro-products, there is an interesting opportunity in the related research field 

to provide a mechanism or method in assisting the production of micro- 

parts/components. In order to design competitive micro-products, which ideally 

fulfil the required product functions, the designers need to develop products 

that relate to the fast-developing manufacturing details and rules [33]. Thus, a 

systematic approach in designing quality micro-products allows the designs to 

be easily manufactured and compatible with the production needs. 

Currently, the applicability of MASs is also limited to the macro- 

manufacturing domain and less attention is given to the new emerging 

processes such as micro-manufacturing technique. Even though micro- 

machining (e. g. micro-milling/drilling/turning) are becoming more popular for 

generating small and high accuracy parts [25,34-35], there is no clear 

indication that systems to assist with manufacturability assessment of these 

micro-parts have been developed. 

Owing to demands of micro-products in the market, the applicability of MAS 

in this field has a big research potential that needs to be explored as it assists in 

machining high quality micro-products and also provides opportunity for 

manufacturing issues to be incorporated during design stage. This means that 
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the designer is able to check the micro-manufacturability aspects in their 

designs before submitting them for machining. 

Furthermore, there is a strong need of MASs in micro-machining domain as 

these processes (e. g. micro-milling/drilling/turning) have been reported to have 

their own specifics characteristic compared to the macro-manufacturing area 

[25,27,36-38]. The fundamental difference between micro-machining and 

conventional process arises due to scale of the operation, while they are 

kinematically the same. According to Bissacco et al. [39], blind use of the 

geometrical downscaling approach for this process based on the knowledge 

available for the conventional size process would lead to errors such as 

excessive tool deflections and high risk of tool breakage. Among the 

differences due to the downscaled of the process which change the whole 

material removal geometry as compared to the conventional size machining 

process are: 

" Tool runout greatly affect the accuracy of the machined micro-part 

compared in macro-machining [40]. 

" Minimum chip thickness phenomena occurred where no chip is formed 

during the machining of the micro-processes, which is due to the small 

value of the ratio between the depth of cut and the tool edge radius [41]. 

" As the diameter decreases, the rigidity of the tool also decreases which 

leads to tool deflections that greatly affect the chip formation and accuracy 

of the desired surface [42]. 
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" The assumption used in conventional process that the tool is sharp, 

completely cuts the surface and generated chip is not valid in micro- 

machining [43]. 

An implication of this is the possibility of developing an efficient MASs to 

check micro-manufacturability aspects such as materials used, manufacturing 

processes involved, acceptable and suitable tolerances and also dimensions of 

micro-products that can be manufactured by a specific setup/process. Further 

research on implementing MAS in designing and launching micro-products is 

believed to enhance the rapid development of micro-manufacturing techniques. 

Therefore, there is and will be a clear need for analysing the micro- 

manufacturability aspects during the design stage products in order to produce 

accurate and cost-effective micro-products 

In-house developed multi-axis Miniature Machine Tools (MMTs) are now 

becoming more popular with the demand for reduced energy consumption and 

workshop floor when machining small/medium batch size micro-components. 

As an example in watch manufacturing, due to the size of the miniature 

machines used, the amount of energy consumption may be reduced to 

approximately 30% of the conventional factory by the half-miniaturization of 

the production systems [44]. According to Hansen et al. [45], among the 

advantages of machine tools' miniaturization are the decrease of heat 

deformation of machine tools with subsequent reduction of their sizes, decrease 

of material consumption for machine tool construction (more expensive 

material with better properties can be used), decrease of vibration amplitudes, 

and decrease in space and energy consumption. In-line with the above 
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advantages, the development of an in-house 4-axis MMT by the MCM 

Research Group at the University of Nottingham triggers a requirement for a 

system that can assist the user in generating micro-component using this 

custom-made machine. Based on this ground, it is a meaningful effort to 

develop MAS with the MMT as its domain of application for the 

manufacturability aspects of the micro-parts to be evaluated. 

Moreover, as there are no guidelines, standards or manuals to refer to in 

operating the MMT, the need to evaluate its functional characteristics such as 

uncertainties related to the MMT construction is imperative. In this context, 

there is a clear need to understand the influence of the errors stemming from 

the MMT construction on the geometrical accuracy of the machined micro- 

part. Furthermore, as a custom-made machine, there is also an advantage for 

this study to evaluate and assess the capability and performance of the MMT, 

as it can provide the real environment for the MAS. 

1.4. Aims and objectives 

The aim of this study is directed towards the possibility of developing a 

manufacturability analysis system for micro-machining domain (MicroMAS). 

Additionally, it is intended to address the need of the 4-axis Miniature Machine 

Tool (MMT) that require such a system (i. e. MicroMAS) to assist the user in 

generating micro-component through manufacturability evaluation of the 

proposed CAD models that will be machined using this custom-made machine. 

To accomplish this, the following objectives are to be achieved: 
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" To introduce and demonstrate the application of the Primitive Feature 

Analysis (PFA) technique as a key element in the developed MicroMAS. 

The PFA customised and implemented for micro-machining so that it 

assists in defining and gathering essential data from the proposed CAD 

models of the analysed micro-components. Furthermore, this technique is 

being executed throughout the entire system (MicroMAS) intentionally 

for assessing the manufacturability aspects of the analysed CAD models. 

" To develop a new method that is capable to indicate the level of 

manufacturability for each PF and overall part through a novel 

sequential aggregate indexes scheme. Manufacturability Indexes (MIs) 

reflect the relative ease of machining of the micro-component based on 

associated ratings of various aspects such as PF characteristics (e. g. type 

of PF, orientation, shape, end-corner specification), quality measures (e. g. 

surface roughness, tolerances), machinability of selected materials, tool 

dimensions and interactions between PFs. These indexes are represented 

by a rating convention that is divided into three levels: Hard to 

manufacture, Medium to manufacture and Easy to manufacture. 

" To investigate the variables that affect the geometrical accuracy of the 

generated micro-part stemmed from the construction of the MMT. It is 

important to analyse the functional characteristic of the custom-made 

MMT in order to understand the origin of the errors on the machined 

micro-part (either from the machine or the process itself). 

" To analyse the identified errors that affect the geometrical accuracy of 

the generated micro-parts by employing the Uncertainty Evaluation 
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Model (UFM). This analysis calculates the value of uncertainty and 

indicates the main source of errors stemming from the MMT construction. 

" To propose a methodology to evaluate uncertainties of any similar in- 

house developed machine tools. This is through the generated UEM 

model which can identify/predict the main sources of errors that affect the 

quality of the machined part. 

" To evaluate the limitations and capabilities of the custom-made MUT 

through various types of experiments and observations. Among the 

proposed experiments were machining an "adapted standard" of micro- 

testpiece, producing micro-component and finally generating micro-slots 

and thin walls. From here, the surface quality and geometrical accuracy of 

the machined workpieces on the MMT are evaluated and analysed. 

To integrate results from the UEM and micro-machining experiments into 

the MicroMAS. In order to provide the system with the real condition of 

the MIMT, the results from the UEM analysis on the effects of uncertainty 

on micro-machining of the PFs were incorporated. While the results from 

the micro-machining experiments were used to populate relevant data for 

the MicroMAS such as the generated surface quality and geometrical 

accuracy. 

1.5. Structure of the thesis 

Chapter 2 presents general information and an extensive literature review of 

all aspects on manufacturability analysis system (MAS) such as its 

development's methodology, outputs, applicability, advantages and trends. 

Furthermore, a comprehensive review was also made on micro-machining, 
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uncertainty evaluation models and their significance towards this study. 

Besides that, at the end of the chapter a summary will be provided to illustrate 

the main knowledge gaps in this field of research. 

Chapter 3 describes in detail the research approach (e. g. procedures, 

objectives, approaches, software, tools, techniques) taken in this study. The 

development of this study is basically divided into 4 major phases, which are: 

(i) the development of MicroMAS, (ii) UEM analysis; (iii) micro-machining 

experiments; (iv) the integration between UEM, micro-machining experiments 

and MicroMAS 

The Primitive Feature Analysis technique was introduced and explained in 

details in Chapter 4. The principles and mechanism of this technique will be 

discussed extensively in this chapter. Based on this technique, a simulation was 

thoroughly illustrated using a CAD model of a micro-component; this is to 

prove that this technique is applicable in defining and gathering data from the 

CAD model. It also explained on how PFA technique is implemented in 

MicroMAS. 

Chapter 5 describes the development of Uncertainty Evaluation Model that 

analysed the variables that affect the geometrical accuracy of the machined 

micro-parts stemming from the construction of the MMT. It also presents the 

analysis of the model in GUM Workbench (an available commercial software 

to estimate the measurement of uncertainty). The inputs, analysis and results 

obtained for this study are also reported in this chapter. 
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The micro-machining experiments implemented to assess the capability of the 

MMT and on the same time to populate relevant data for the MicroMAS are 

described in details in Chapter 6. For each experiment, the objectives, 

machining procedures and parameters and finally the results and discussion are 

being presented. The limitations and advantages of the MMT are also discussed 

in this chapter. In the end of the chapter, the integration of the results from the 

experiments into the MicroMAS is illustrated and explained. 

Following this chapter, the implementation of MicroMAS is described in 

Chapter 7. The development of the system is explained in this chapter which 

covers the implemented Rule-based system, the usage of database and Visual 

Basic. NET. A simulation of the MicroMAS's application by utilizing the 

micro-component is also illustrated step-by-step in this chapter. 

Finally, Chapter 8 includes the discussion and conclusion of this study. The 

results obtained from micro-machining experiments, UEM analysis are 

discussed and summarised. The possible future studies are reported in the final 

section. 

1.6. Highlights of significant contribution of the thesis 

This thesis consists of many key findings in the field of developing MAS for 

micro-machining domain and explicitly in catering the need of the custom- 

made MMT. In the following section, the major contributions of the thesis are 

listed and a brief description is provided as appropriate. 
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" This study reports for the first time on an approach to develop a 

Manufacturability Analysis System exclusively for micro-machining 

application. At the same time, it provides assistance to the user in using 

the custom-made Miniature Machine Tool by analysing the 

manufacturability aspects of the analysed CAD model of the micro-parts. 

"A new technique (Primitive Feature Analysis) has been developed and 

implemented in the MicroMAS for gathering essential data from the 

proposed CAD model of the analysed micro-component that enables the 

assessment of its manufacturability aspects. This has allowed a novel and 

simple way to `translate' the CAD data into the system, instead of using 

laborious methods of data extraction as implemented in previous MAS. 

"A newly proposed framework on developing the MicroMAS was 

introduced which involved the implementation of PFA technique, 

combination of user-system interaction and a priori database for input 

and also the integration between the system, UEM analysis and micro- 

machining experiments. 

" For the first time, in-depth analysis of indicating the errors that affect the 

geometrical accuracy of the machined micro-part stemming from the 

construction of the MMT has been developed. This can be considered as 

a guideline for academicsrndustrialists that intend to develop and assess 

the associated errors of their own customised miniature machine tools. 

" Uncertainty Evaluation Model has been developed for the first time to 

account for the construction errors that affect the geometrical accuracy of 

the machined micro-part stemming from the construction of the MMT. 
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This model also provides opportunity in predicting errors of an in- 

house/custom-made machine tool. 

" Various and unique (performed on a proposed "adapted standard" 

testpiece) micro-machining experiments have been developed to assess 

the capability of the MMT; these can become a first step into developing 

a new testing procedure of the performances of the machine tools when 

performing micro-machining. The results from these experiments 

enabled the understanding of the MMT performance in machining micro- 

components based on optimised machining parameters suggested by the 

tool manufacturer. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

In Chapter 2, a comprehensive literature review on manufacturability analysis 

system (MAS) with particular focus on topics such as its development, 

methodology, generated outputs, applicability, advantages, limitations and 

trends are presented. Details on MAS development methodology will discuss 

the input mechanisms and also the method used for assessing the 

manufacturability aspects. Following this, a section on Uncertainty Evaluation 

Modelling (UEM) will be included to provide an overview on its development, 

application and also its relationship in the direction of MAS development for 

micro-machining operations and MMTs utilisation. In addition, relevant to the 

scope of the research on micro-machining field with attention given into micro- 

milling process is also conducted; discussion on the challenges of the process 

and also its utilization in the manufacturing industry are presented. 

Furthermore, a summary that described the in-house miniature-machine tool is 

also provided under the micro-machining sub-topic. Finally at the end of this 

chapter, the knowledge gaps in this field of research will be summarised and 

concluded. 

2.2. Manufacturability analysis system 

Manufacturability is defined as the ability to reproduce a given part with 

minimal waste, such that it satisfies the requirements in intended use while 

meeting the business goal [46]. With the development of Computer Aided 

Design/Manufacturing (CAD/M) and the introduction of the concurrent 
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engineering (CE) concept in product development life cycle, manufacturability 

has become a key element that has to be assessed and analysed at the design 

stage. In order to do so, the designer needs to have access to knowledge and 

information about the manufacturing environment which facilitates the 

decision making activities. 

Manufacturability Analysis Systems (MASs) have been developed to enable 

the evaluation of easy to manufacture parts during the design stage, enabling 

the reduction of costs and time to market of the designed products. Gupta et al. 

[1] highlighted that MASs are one of the tools that have been developed to 

meet the purpose of the concept design right at the first time by allowing the 

manufacturability aspects to be analysed during the design stage that enable a 

`smooth' transition between the design and manufacturing phase. 

The main objective of the current efforts' in this field is to develop a tool for 

computer-aided design for manufacture (DFM) that can be used during early 

design stages to improve product quality from the manufacturing point of view 

[47-48]. It is envisaged that a MAS will enable the analysis of both 

manufacturability and functionality aspects such as tolerances, surface finish, 

dimension, machining strategies related to material properties and part 

geometrical specifications, all considered at the early stages of product 

development with direct implications on the reduction of lead times taken of 

the product to the market. 
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Figure 2.1 shows the stages involved in product development life cycle as 

illustrated by Pugh [49] MAS was proposed to be implemented at the tie wiled 

design stage to reduce the iterations between the design and manufacturing 

phase [1]. While Figure 2.2 shows the role of MAS in the design process, such 

system vary significantly by approach, scope and level of sophistication. 

Market 

Specification 

Concept Design 

Detailed design 

Sell 

Figure 2.1 Product development life cycle and MAS [49] 

Performance II Manufacturing 

requirements constraints 

Release to 
Engineering Analysis 

Synthesize Design 
manufactu 

a new design satisfactory YES 
Manufacturability Analysis 

L 

NO 

Figure 2.2 Role of manufacturability analysis in the design process [I ] 
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In this section, the discussion is on the methodologies and approaches of MAS 

construction, output generation, applicability, advantages, limitations and 

trends. 

2.2.1. Approach and methodologies of MAS construction 

The development of MASs uses different combination of approaches, 

technologies, software and tools. The result of this study indicated that most 

MASs have been constructed based on a three-steps unidirectional flowchart 

methodology that includes data input mechanisms, engines for 

manufacturability aspects analysis and reasoning and finally outputs reporting. 

Figure 2.3 shows the flowchart of MAS construction. The first step to be 

considered in constructing a MAS is the data input mechanism where all 

required design data and manufacturing information are fed into the system. 

For example, properties- of the proposed design, such as dimension and 

tolerance, are input into the system. 

The next step in this methodology is to analyse the gathered input for part 

manufacturability assessment. This is the most important step in MAS as it 

determines the accuracy of manufacturability outputs. All input data are 

analysed according to the manufacturability constraints to determine the level 

of difficulty in manufacturing the proposed design. The final component in this 

methodology is generating outputs to reflect the assessment and evaluation of 

manufacturability aspects of the proposed designs and to interactively assist 

designers in considering manufacturing aspects during the design stage. 
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Input Mechanism 

a Extracted data from CAD Model 

a User-system interaction 

aA priori database 

Analysing manufacturability aspects 
Q Artificial Intelligence technique 

" Tool for developing Al technique 
" Knowledge base containing data and 

rules on manufacturing process 

Output generated 

Q Redesign suggestions 
o Manufacturing processes sequencing 

Q Selection of suitable manufacturing 
processes and materials 

Figure 2.3 Basic methodology of MAS development 

2.2.1.1. Data input mechanisms 

The current study found that there are three mechanisms that have been 

implemented in MASs for inputting data into the system: obtaining data from 

CAD model, using user-system interactions and a priori database. The type of 

data extracted or collected from the input mechanisms consist of geometrical, 

material and technological properties of the `to be analysed' part such as: 

dimensional, geometrical, tolerance and surface finish specifications, material 

composition and mechanical properties, production rates and quality control 

measures. 
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From the published literature, it can be concluded that there are various 

techniques that can be used in obtaining data from a CAD model such as a 

feature-based extraction system and neutral files usage such as STEP, IGES 

and STL. Additionally, data extraction can also be performed via the algorithm 

embedded into the CAD system such as using Auto LISP [21] and CADKEY 

[49]. Geometric reasoning technique has also been implemented in order to 

extract part definition from a CAD model [12-13,50]. Other techniques 

developed are 3D recognition model based on the design specifications of 

CAD model [20,51-53], attribute extractor [54], CAD modeller [7] and data 

extraction from process simulation [22,55]. The data obtained from a CAD 

model interprets the design details such as geometrical specifications and feeds 

the needed information to the system. Geometrical specifications, such as 

features, shapes, dimensions, and technological requirements (tolerances and 

surface finish) are some of the essential parameters extracted from a CAD 

model which are considered as main input parameters into a MAS. 

Another type of input mechanism is based on user-system interaction where 

the system prompts the user with questions leading towards the collection of 

information necessary to perform part manufacturability analysis [5,17,21, 

55-57]. Usual questions are related to workpiece material, part dimensional and 

geometrical specifications, processing techniques [21] and technological/ 

functional properties of the component object such as geometric volume, 

production output rates, expected surface finish, dimensional tolerance, critical 

surfaces (e. g. wall thickness) [5]. For example, during a consultation session, 

users input the needed data in the provided interface that, once sufficient, the 
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program starts to analyse them based on the rules embedded in the knowledge- 

based (KB) [21]. In this system, important data and information related to the 

fabrication of a sheet metal component, such as type of material, sheet 

thickness, minimum corner radius sheet metal part, minimum width of slots 

along blank profile, shapes and dimensions of holes on the part and maximum 

dimension (length/width) of component, are gathered from the user-system 

interaction mechanism for the purpose of manufacturability assessment [21]. 

The last input mechanism is a priori database that is embedded into MAS. 

Data related to manufacturing process, materials and machining tools are 

available for the user to select during the data input step [4,55-56]. In this 

mechanism, users are allowed to choose related data and parameters from the 

collection of manufacturing information (database) embedded in the system. 

The difference between this mechanism and the previous one is that all 

information already exists, and users only have to choose the appropriate one, 

while in the previous mechanism, users were required to input all needed data 

through the interface during the interaction. 

From the above discussion, it can be concluded that most of the developed 

MASs used a feature-extraction system to obtain related data from CAD 

model. Research in this field is rapidly developing to find ways and approaches 

for accurately extracting design details from the features. One major drawback 

of this approach is difficulty in appropriately recognising and interpreting the 

relationship between intersecting features on the analysed part [1,8,15,47,58- 
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60]. Other limitations originate from loss of design intent and incompleteness 

of design and manufacturing information [15,60]. 

The other two mechanisms (user-system interaction and a priori database) are 

not yet widely used as it involves input activities from the user and then 

additional effort for gauging/interpreting their applicability in other 

manufacturing environments. Nevertheless, these two mechanisms are also 

given significant attention in the research community as they could offer the 

advantage of inputting more accurate information into a MAS. This is because 

the input mechanism gets data directly from designer (user-system interaction) 

and from related manufacturing process constraints. 

2.2.1.2. Approaches in analysing manufacturability aspects 

The next step in this methodology is to analyse the gathered input. This is the 

most important step in MAS as it determines the output measures on which 

part manufacturability is assessed. Most developed MASs employ Expert 

System (ES) techniques to analyse design manufacturability aspects. ES is a 

computer application system that employs artificial intelligence (AI) to solve 

problems in a specific domain. ES can provide a relatively inexperienced user 

with a comprehensible assessment of a problem where an expert is unavailable. 

In the following the review focuses on the implementation of ES techniques in 

assisting the analysing of the manufacturability aspects. 

Recent studies show that general manufacturability aspects can be analysed 

automatically using various ES approaches especially at the design stages of 
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the product realisation. The assessment of manufacturability aspects are done 

by using different approaches such as: neural network (NN), fuzzy logic (FL), 

agent-based system (ABS), rule-based system (RBS), object oriented technique 

(OOT), analytical hierarchy process (AHP) and case-based reasoning (CBR). 

Manufacturing rules such as processes/materials constraints and properties 

which are obtained from experts, handbooks, catalogues, experiences and 

brochures are embedded in the system to be used as guide for assessing the 

manufacturability of the design. The analysis is made based on rules of 

manufacturing processes, usual practice of fabrication of specific features or 

designs, materials/processes constraints and production cost and time. 

Approach of expert system modelling 

Literature survey on the implementation of ES in developing MAS identified 

various combinations of specific AI techniques. Statistically analysing the 

techniques used for building ES it seams that among the most popular 

approaches (approximately 40%) used RBS [9,12,17,21,24,52,56-57,59, 

61-64]. RBSs use IF-THEN clauses with logical combinations to represent its 

knowledge base. According to Kusiak and Chen [65], RBS is being frequently 

applied because the IF-THEN rules are easily acceptable as they are similar to 

common sense logic and the familiarisation with logic-based languages such as 

LISP and Prolog. For example, the IF-THEN rules related to the fabrication of 

sheet metal parts are structured in the KB, then the system interactively 

searches the list of rules in order to determine which rules are satisfied with the 

given input [21]. 
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On the other hand, approximately 22% of the researches used OOT in 

developing the MAS [8,13,22,51,66-68]. OOTs represent the solution in the 

form of a program that contains model entities, where each model can be 

represented by an object. For each object defining the model, it contains data 

and programming codes that can be performed on those data. In the 

development of MASs, OOT offers a way of representing objects that are 

reasoned about, properties and relationships between them. Each of the 

subclasses of objects has other subclasses related to them and the relationships 

occurring between them are clearly defined. Using the OOT approach, the 

analysis is based on the objects and the relations between its sub-classes. For 

example, electrochemical machining is defined as the main object in the 

manufacturability model and its machining criteria, such as workpiece 

material, electrolyte solution, tool electrode, geometric feature and 

electrochemical machine, are defined as the subclasses [58,66-67]. This 

approach has been used for analysing the manufacturability aspects by 

considering the relationships that occur between the design features and the 

subclasses stated above. 

Another approach used to build ES is AHP which totals up to 16% of the 

published researches. The AHP is a mathematically based decision-making 

technique that allows both qualitative and quantitative aspects to be taken into 

account when making decisions [11,69]. It not only helps the decision makers 

to choose the best alternative or solution, but also provides a clear rationale for 

the choice of AHP by developing and assigning priorities of criteria to judge 

these alternatives [70]. AHP allows the use of weighting factors to reflect the 
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functional importance of the features contained in the design [11], or to 

determine the relative weight [69], for each attribute involved in the estimation 

of the manufacturability index. This index is a useful indicator of the relative 

ease of manufacturing parts/features while expressing associated 

manufacturing difficulties. AHP is implemented to assign weighting factors to 

features in order to indicate their functional importance, as various features 

have different roles in supporting the functional requirements of the part [11, 

69,71]. 

Another approach in modelling ES is called the hybrid approach (HA) in which 

the assessment is done by a combination of different approaches, among which 

the implemented HA could be specified as follows: RBS and FL [10], OOT 

and RBS [5,16,18], frame-based and RBS [6], NN, FL and RBS [72], 

combinations of ABS, OOT and RBS [73], and FL and NN [74]. 

For example, in a MAS developed by Cherian et al. [23], HA is implemented 

by combining RBS, Bayesian NN and heuristics for assessing the 

manufacturability aspects. RBS is implemented to evaluate the design 

geometry while Bayesian NN and heuristics are used to evaluate the material 

and process parameter selection. The heuristic here is defined as the knowledge 

of good practice, good judgment, and plausible reasoning in the field of 

material and process combination. In this study, the overall usage of HA 

accounted for almost 19% of the reported approaches of ES in MAS 

development. 
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Other approaches, accounting for 6% of the research approaches, are NN [59] 

and ABS [75-78]. NN in ES applications consists of many nonlinear 

computational elements which form the network nodes and linked by weighted 

interconnections [79]. It is defined as an interconnected group of artificial 

neurons (nodes or units) that uses mathematical or computational models for 

data processing based on a process of adaptation/learning from a set of training 

patterns [79]. 

This shows that NN is an adaptive system which changes its structure based on 

external or internal information flowing through the network [80]. They are 

usually employed to model any nonlinear mapping between variables and are 

usually used in classification tasks. Korosec et al. [59] used NN to 

simultaneously evaluate the features complexity in a CAD model with 

manufacturing capability. In this work, the relationship between surface finish, 

surface hardness and part manufacturability are expressed as a matrix, which 

shows a very strong non-linear correlation between the parameters mentioned. 

Here, NN is capable of analysing the non-linear correlation by sufficient 

training using calibrated examples while being able to acquire new knowledge 

from practice. 

For ABS, the agent's functionality is defined by the specific needs for the 

integration of decision-making steps into a common manufacturing decision- 

making environment. For example [75-76], the manufacturability assessment 

could be based on several distributed cooperating agents supporting the design, 

manufacturing and facility assignment activities. Each agent (design agent, 
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manufacturing agent and facility agent) is related and acts as a decision maker 

according to its activities. 

Figure 2.4 shows an estimative distribution of the `popularity' of the 

approaches implemented in modelling ES for MAS development. From the 

timeline perspective, RBS, OOT and HA have been implemented since 1996 

and are still being employed in developing MAS while the most recent 

techniques, NN, ABS, and AHP are fast expanding. 

Figure 2.4 Type of approach used for modelling expert system for MAS 

Tools to develop expert system (ES) 

There are many types of tool, software packages and programming languages 

available in the market for MAS development using ES. According to 

Hopgood [79], there are four types of tools available in assisting user to 

construct ES as follows: 
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" ES shells. It is a complete ES that includes an inference engine (IE), a 

user interface for programming and for running the system, but it does 

not provide the KB. Users are required to develop the KB by entering the 

rules into the system while no supervision is required for the 

development of IE. Such an approach is easy to use and allows the 

construction of simple ES; however, the major drawback is the 

inflexibility in supporting knowledge representation. 

" Toolkits. These offer almost complete facilities to develop ES such as the 

features of ES shells, object-oriented programming and AI languages. 

However, the main drawbacks of the toolkits are as follows: 

o Need of powerful processor, large amounts of disk space and 

memory (RAM). 

o Costly license fees. 

o `Embedded knowledge' with reduced flexibility for customisation. 

Among the toolkits available are KEE, ART and Goldworks. Currently, 

there are some toolkits available in the market that has been built using 

non Al languages such as C or C++ (Pro Kappa and Nexpert). 

" Programming languages for AI. A programming language is generated 

specifically to cater the development of various AI applications. Two 

important features of Al languages consist of the ability to manipulate 

symbolic data such as characters, words and numbers and to provide an 

interactive programming environment. Programming languages that 

focus totally on Al applications such as LISP and Prolog, offer increased 

flexibility compared with the above tools. 
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" Conventional programming languages. Programming languages such as 

C, Pascal and FORTRAN are used as tools for developing the ES. These 

types of tools require more complicated and tedious program routines 

compared to the above mentioned tools. Even though it requires 

complicated programs, they offer the most flexibility in developing Al 

program. 

The distribution of tools usage in developing the ES for MAS based on the four 

types of tools discussed above is concluded as shown in Table 2.1. 

Table 2.1 Distribution of expert system tools 

Programming Conventional 

ES shells Toolkits languages programming 
for Al languages 

" CLIPS [17, " Nexpert [5,13, " Auto LISP [21, " C++ [12,18, 
62] 49,66-67] 24,52,56,58] 59,63-64,69, 

" EXPRESS [22, " Prolog [9] 81-82] 
55] " Java [57] 1 

Figure 2.5 shows an estimation of the percentage distribution of tools used in 

developing ES for MAS. The study on the published literature shows that 

approximately 43% of the developed MAS used conventional programming 

language, 33% implemented the AI languages, 19% used toolkits to develop 

MAS and only 5% used ES shells. 
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Figure 2.5 Distribution of tools used in developing expert system 

2.2.1.3. Outputs generated from MAS assessment 

The final component of a MAS generates the outputs as an evaluation of 

manufacturability aspects which can take the form of. redesign suggestions; 

selection of processes and materials sequencing setups; estimation of 

production costs and times; process planning setups. The main objective of 

MAS is to analyse the manufacturability aspects in determining whether the 

design can be manufactured or which are the necessary changes on the design 

to enable its materialisation into a real part. Thus, the results of MAS can take 

the following forms. 

0 Redesign suggestion 

During the manufacturability analysis, the users are prompted with 

suggestions for changes of the part design in order to ensure its 

manufacturability. The redesign suggestions are usually made after the 

design has been analysed on the manufacturability aspects, i. e. ES has 

been run entirely, or during the input session of the design data. 
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The redesigns suggestions are based on the rules embedded in the KB 

and are directed to assist designers lacking manufacturability knowledge 

and thus enabling the reduction of iterations between designs and 

manufacturing stages. 

In a MAS developed by Kumar et al. [21 ], redesign suggestion was 

provided for the fabrication of die components for sheet metal operations. 

The advice and suggestion on the design of features were prompted to 

user from product manufacturability point of view at the initial stage of 

die design. Among the redesign suggested in this work are changes to 

minimum corner radius, maximum dimension of the component and the 

thickness of the sheet metal. While Zha and Du [57] offered advices on 

how to modify the design of MEMS product that satisfied the constraints 

of the particular manufacturing processes. The MAS developed by Lee et 

al. [49] was able to provide advice to designer regarding the design of the 

mould which include feature evaluation. Among the redesign suggestions 

provided are changes in the size of workpiece, part weight and volume 

and wall thickness. 

From the survey made in this study towards various developed MAS, 

approximately 56% of them provide redesign suggestions as the MAS 

outputs [8,11-12,16,18,21,49,57-58,69]. It can be concluded that 

redesign suggestion is one of the major outputs of a MAS that can assist 

designing products correctly with the helps of manufacturing information 

available at the design stage. 
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" Provide selection of processes and materials 

MASs can also provide assistance in selecting suitable combinations of 

processes and materials for the proposed design based on process 

knowledge and rules. MAS supporting material selection have been 

reported in relation to the following manufacturing processes: 

o Machining such as milling [5,54,62], drilling [5,62], 

electrochemical machining [66], grinding [12,62], turning [9], solid 

free-form fabrication process (e. g. stereolithography and selective 

laser sintering) [83]. 

o Forming and shaping such as injection moulding [16,54], powder 

metallurgy [24], forging [76]. 

o Casting: die casting, sand casting [76]. 

o Other: LIGA process [64], various manufacturing processes that 

support the fabrication of MEMS devices such as plastic injection 

moulding, sheet metal forming, extrusion, die casting, shell mould 

casting, investment casting and electro-discharge machining [57]. 

Usually the material selection is based on the compatibility of the 

particular groups of materials with types of manufacturing processes 

such as those stated before. It can be concluded that MAS have been 

mainly developed for particular processing techniques. This is 

somehow expected since the relationships between processing 

techniques and workpiece material have reduced transferability to other 

processes/environments. 
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" Process sequencing 

MASs can also identify/propose suitable process sequences in fabricating 

the proposed design [12,18,51,59,74,81-82]. In this approach, the 

system matches the manufacturing process requirements against existing 

machine capabilities and availabilities while seeking the reduction of 

production cost and times. The selection of process sequences are based 

on the related factors such as process type and capabilities, process 

sequence applicability and the relationship between features of the 

analysed part. Thus, process sequencing can be suggested based on the 

analysis of manufacturability aspects of the design while minimising 

production cost and time. 

" Other outputs 

Additionally, MASs are capable of producing other outputs such as 

estimation of production cost and time, process planning setup and 

tooling approaches/orientations. The estimation of production cost and 

time is generated using mathematical models based on the results of the 

analysis of the optimised manufacturing processes [5,47,54,62,66-67, 

84]. For example, cost estimation has been developed for die casting 

based on the mathematical modelling used in the industry practice for 

this process with input in form of design and process parameters [5]. 

While parameters such as air travel, cutting length, feeds and hourly rate 

were adapted in cost estimation module for calculating the value for 

milling process [54]. 
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Moreover, a process planning setup was generated based on the 

optimised geometrical and technological properties of the design related 

to process plan guidelines for specific manufacturing processes [17,19, 

74]. Additionally, by manipulating information related to part geometry 

and specific tools libraries, a MAS is reported to be capable of providing 

optimised tooling orientation for a 5-axis sculptured surface machining 

[85-86]. 

2.2.2. Applicability of a MAS to various manufacturing processes 

Up to now most of the developments of MASs have been related to particular 

categories of manufacturing processes such as casting, forming/shaping and 

machining. An overview of the implementation of MAS into various categories 

of manufacturing processes adapted from Kalpakjian et al. [87] is presented in 

Table 2.2. 

33 



Table 2.2 Categories of manufacturing processes implemented with MAS 

CATEGORY 

Casting Forming and Machining Others 
Shaping F 

Process and 
literatures 

related 

" Die/Sand 

casting [5,13- 
14,53,88] 

74,84] 

" Free-form 

machining [59, 
83,85-86] 

i" Electro- 

chemical 
machining [66] 

" 
, 
Shaping [7] 

" Spinning [10, " Turning [9-11] " PCB 
63] " Milling [4-8, fabrication 

" Forging [5] 11,54] [22,55] 
" Powder !" Drilling [5,7- " MEMS 

metallurgy 8] processes [57, 
[23-24,50] " Grinding [7, 89] 

" Roll forming 12] " LIGA [64] 
[63] i" Wire-electro- 

" Injection discharge [67] 

moulding [4, " Machining 
15-16,49,54, selected to 
72] address 

" Blanking/ particular part 
piercing [17- geometries 
18] (e. g. 

" Fabricating cylindrical, 
sheet metal prismatic) [7, 

[18,21,63,82] 11-12,56,58, 

Based on the references in this table, it can be noted that most of the developed 

MAS cater the manufacturability assessment for macro-manufacturing 

processes while less attention is given to MAS applicability for micro-size 

product. From the above list of manufacturing processes, it can be concluded 

that the research in manufacturability assessment can be divided into two broad 

areas: macro and micro-manufacturing process. 

Rough statistical analysis of published work shows that approximately 92% 

(Figure 2.6) of the researches are focusing on applicability of MAS to macro- 
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manufacturing processes. Only 8% are targeting the micro-manufacturing 

processes such as fabrication of MEMS devices [57,89] and LIGA process 

[64]. For example, a system that is able to select the `best combination' of 

material and process in a concurrent environment for fabricating MEMS 

devices, based on proposed design and constraints imposed from the material 

and process selected, is claimed to be developed by Zha and Du [57]. The 

proposed micro-structures design is dynamically checked by an inference 

machine supported by rules related to LIGA process that are embedded in KB 

[64]. In this line, it can be concluded that the major differences between the 

MAS in macro and micro-manufacturing process lies in the content of the KB 

developed. 

Micro 

Manufacturing 
Process 

8% 

..... 

.ý... .... ý. . ... ...... . .. a. 
fi 

it°: 'as. 

Macro 

Manufacturing 

Process 
92% 

Figure 2.6 Distribution of MAS applicability towards two divisions of 

manufacturing process 
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2.2.3. Other aspects that can be analysed through a MAS 

MASs can also provide users with indices/indicators to enable the comparison 

between available processes reflecting the ease of machining unitary/combined 

features of the analysed part. The manufacturability indices are generated 

based on geometrical (orientation, intricacy, accessibility, dimensions), 

technological (workpiece surface finish, part tolerance, employed processing 

method) [7,11,56,69,71-72] and assembly (part relationships, type and 

behaviour of the assembly such as how the mating between features take place) 

[7]. 

An index for each feature of a component with respect to each attribute stated 

above is obtained using parametric fuzzy membership technique [7,11,69,71- 

72]. Manufacturability indices generated by Yannoulakis [84] are calculated 

based on the estimated manufacturing times for each feature of a part and then 

they are used to rank the manufacturing sequences to be employed for the 

features. The overall manufacturability index is determined from the 

summation of the indices of the attributes and multiplied by their respective 

weighting factors [7,11,69,71-72]. Gupta et al. [68] also mentioned the 

development of manufacturability rating to reflect the ease or difficulty of 

which design can be manufactured but there are no details explanation given. It 

can be concluded from the current published literature that the assessment of 

the manufacturability indices are based on the cost and time aspects in order to 

manufacture the design. 
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Another important aspect being analysed in MAS is fixturability, where 

surfaces are rated for fixturing purposes based on related attributes. A 

fixturability index (FI) is generated based on the summation of the indices from 

various related attributes such as: surface finish, relation between features, 

geometrical complexity of surfaces, symmetries, percentage area of the not 

machined surfaces and orientation of a machined surface with respect to tool 

direction. The current research suggested that only planar surfaces of the 

features were considered for fixturability assessment because it provides easy 

fixturing set-up [69,71] 
. 

The generated Fl indicates the suitability of the 

planer for fixturing purposes. 

2.2.4. Advantages of MAS 

The assessment of manufacturability aspects of the proposed designs not only 

acts as a supportive tool to generate designs with the correct measures but it 

also provides other relevant and useful such as redesign suggestions, material 

and process selection, process sequencing and set-up of process planning. The 

implementation of MAS in the design stage is believed to give positive impact 

to the product development life-cycle as a whole. The main advantages offered 

by the use of MAS originated from the recent published literature are as 

follow: 

0 During the manufacturability analysis, users can be supported with 

suggestions for critical changes of the designs to enable their 

manufacture. These redesign suggestions are based on rules embedded in 

the knowledge-based of the expert system leading towards the reduction 

of iterations between design and manufacturing stages. Thus, redesign 
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suggestions represent the major outputs of MASs as it enhances the 

quality of single/interrelated part designs. 

" Provides intelligent assistance in selecting suitable processes and 

materials based on the compatibility of the proposed designs and built-in 

knowledge on materials and processes, rules and constraints related to 

them. 

" Assists in determining suitable process sequences for fabricating the 

proposed designs, this can be done based on contained feature (e. g. holes, 

slot) in the design and manufacturing interactions, production cost and 

time criteria for the purpose of production optimisation. 

" Represents a key step in incorporating manufacturing issues during 

design stage to shorten product development time, reduce the number of 

iteration between design and manufacturing stages, minimises 

development costs, reduce rework and ensure a smooth transition of 

designs into production. 

2.2.5. Problems and limitations in current MAS 

The development and implementation of MAS in the design-manufacturing 

stage has progressed rapidly over the last decades. From the advantages and 

applications discussed above, it shows that MAS has a promising future to be 

implemented in various manufacturing fields especially in assisting designers 

and manufacturing engineers to minimise the numbers of iterations between 

corresponding stages of the production routes. Beside all the advantages and its 

promising future, there are still limitations and challenges occurring in the 

current MAS. 
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" The applicability of MASs is restricted to single manufacturing process 

Even though MASs have been applied to various types of manufacturing 

processes, most of the current systems provide assessment to cater for only 

a single type of manufacturing process. This means that the analysis of 

manufacturability aspects is done based on that single manufacturing 

process while the opportunity to take into account the successions, 

interactions or options with other processes are not considered. This is 

especially for MAS developed for a particular machine tool which can run 

other manufacturing processes but not considered in the system. 

Significant limitations lie in the fact that with fewer manufacturing 

processes available in the system, the flexibility in assessing the 

manufacturability aspects is reduced. Besides that, the applicability of 

MASs is limited to the macro-manufacturing domain while less attention is 

given to the new emerging processes such as micro-manufacturing 

techniques. 

" Limited outputs produced by MASs 

Despite various outputs that can be produced by MASs, most studies have 

only focused on providing a limited number of output combinations. The 

study shows that approximately 74% of the developed MASs provide only 

one or two combinations of outputs. Redesign suggestion is the most 

popular single output provided by developed MASs while the most popular 

combined outputs are process and material selections supported by 

cost/time estimations and redesign suggestion combined with 

manufacturability index. Limited outputs of MASs can be regarded as an 
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inefficient use of technical database/information built in the system. 

Choosing to produce a limited number of outputs will reduce the 

effectiveness, and also the accuracy, of MAS assessments and interactive 

suggestions. 

" Issues with the input mechanisms 

Most of the developed MAS applied a feature-extraction system to gather 

CAD data as input to the MAS. Limitations in using this approach can arise 

from: imprecision/fuzziness of extracted data, inflexibility of type of data, 

difficulty in interpreting relationships between various features of the part. 

Implementation of the latest feature-extraction systems in a MAS that can 

provide a more accurate input mechanism depend on the on-going research 

in this field. The development of feature-extraction systems is still a 

stringent research topic targeted to identify ways to collect accurate and 

self-sufficient data/design details from the features. Thus, this affects the 

accuracy of the data being input to the system in assessing 

manufacturability aspects. 

" Limited capabilities in analysing manufacturability aspects 

Most researches are limited by focusing solely on the analysing of the 

manufacturability aspects of the proposed design, while neglecting other 

important aspects such as part functionality. For example, estimates of 

design accuracy using the tolerances are made based on the 

manufacturability aspects only, while the influence on part functionality is 

totally neglected. Dimensional and geometrical tolerances should be 
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employed to specify permissible variations for compatibility with the 

functionality of the proposed design; thus, tolerances are not only design 

specifications but also play an important role in assessing manufacturability 

and functionality of parts. Most MASs reported to date consider only 

manufacturability aspects while sacrificing the functionality aspects in their 

assessment [12,47,58,63,69]. Even though the functionality aspects are 

usually assessed manually or totally neglected, the developed system still 

reaches the target of producing the proposed design that fulfils the 

manufacturability aspects but lack of functionality. 

It can be concluded that even though MASs offer technical advantages in 

connecting design and manufacturing engineering, they still have limitations to 

be tackled. With their significant implications for future practice and industrial 

exploitation, the limitations highlighted above offer a large incentive for 

further research development and exploration. 

2.3. Uncertainty evaluation modelling (UEM) 

Measurement and test results are the basic information underlying the 

statement of conformity of many products and activities. It is important to have 

some indication of the quality of the results. For this purpose, it needs ̀precise 

measurements' to ensure high reproducibility in the performance or operation 

of products and parts. In order to ensure the reliability of measurement, a 

standard procedure/approach that are accepted and supported worldwide needs 

to be incorporated. According to International Vocabulary of Basic and 

General Terms in Metrology (VIM) [90], measurement is defined as "set of 
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operations having the object of determining a value of quantity". Furthermore, 

as stated in the National Institute of Standards and Technology (NIST) 

Technical Note 1297 [91], `the result of a measurement is only an 

approximation or estimate of the value of the specific quantify in question, that 

is, the measurand (which is the particular quantity subjected to measurement), 

and thus the result is complete only when accompanied by a quantitative 

statement of its uncertainty'. Uncertainty of measurement is defined by VIM 

[90] as a parameter associated with the result of a measurement that 

characterises the dispersion of the values that could reasonably be attributed to 

the measurand. 

Based on this, it is truly important and necessary to present the result of 

measurement accompanied with its uncertainty in order to make the 

measurement comparable, complete and reliable. It is clearly indicated by 

Desenfant [92] that a measurement or a test result without the assessment of its 

reliability is completely useless while the comparison between different 

measurements of the same parameter without knowing the uncertainty is 

impossible to assess. Uncertainty of measurement when used correctly leads to 

continuous improvement and often results in improved efficiency, cost 

reductions and better value for user/customers [93]. The main importance of 

uncertainty measurement according to Kaarls [94] is providing the opportunity 

to represent the result of a measurement that gains international acceptance 

which is important in aspect such as improvement in health care, environment 

and safety, technical and scientific development, quality assurance, 

accreditation and certification of products and systems. 
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There are various procedures and concepts of uncertainty evaluation were 

proposed and discussed, but in 1993 the publication of Guide to the Expression 

of Uncertainty in Measurement (GUM) [95] offered a unified method for the 

evaluation and expression of measurement uncertainties that has been accepted 

by almost all calibration services worldwide and has become a standard in the 

field of metrology [96-97]. The basic approach of GUM is to describe a 

measurement using a model in the form of functional relationship between 

input and output quantities [93]. The input quantities are defined as the aspect 

that actually determined during measurement process while output quantities 

describe the result of the measurement. 

2.3.1. Introduction and definitions 

Before venturing into the details of uncertainty evaluation based on the GUM 

procedures, it is appropriate to define all important terminology employed in 

this study as the following [90-91,95,98]: 

9 Measurand is the particular quantity subjected to the measurement; it is an 

approximation of the value of the specific quantity to be determined 

through measurement. The specification of a measurand may require 

statements about quantities such as time, temperature and pressure. 

Examples: analysing the cutting force for turning [99], evaluation of shore 

hardness testers [100], assessing the relative humidity (RH) of the humidity 

sensor [101]. 

" Standard uncertainty is the estimated standard deviation of each input 

quantity (sources of uncertainty), which can be evaluated differently for 

Type A and Type B categories (will be discussed in section 2.3.2.1) 
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Examples: value of standard deviation of the multiple reading of the 

dynamometer due to temperature variation [99], standard deviation of the 

values read by a hygrometer [101]. 

9 Combined standard uncertainty is obtained by combining the individual 

standard uncertainties, calculated based on the propagation law of 

uncertainties (will be presented in section 2.3.2.1). 

Expanded uncertainty is the quantity that defines the interval of the 

measurement result within the value of the measurand that confidently 

believed to lie. It is obtained by multiplying the combined standard 

uncertainty by a coverage factor. 

9 Coverage factor is the numerical factor used as multiplier of the combined 

standard uncertainty in order to obtain the expanded uncertainty value, 

typically in the range between 2 and 3. The determination of the coverage 

factor will be discussed in section 2.3.2.1. 

In general, the result of a measurement is only an approximation or estimate of 

the value of the measurand and thus it is complete only when accompanied by 

a statement of the uncertainty. The measurement therefore begins with an 

appropriate specification of the measurand, the method of measurement and the 

measurement procedure. The uncertainty of the measurement results reflect the 

lack of exact knowledge of the measurand and it arises from random sources 

(there are not necessarily independent) such as [95]: 

" Incomplete definition of the measurand 

9 Imperfect measurement of environmental condition 

9 Improper sampling of the measurand 
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Personnel's bias in reading analogue instruments 

" Limited instrument accuracy 

" Vague values of measurement standards and reference materials 

" Assumptions in the measurement procedure 

" Variations in repeated observations of the measurand even though taken in 

the identical conditions 

The method of evaluating the uncertainty should be universal where it enable 

the application on a wide range of measurements and measurands, consistent 

which allows its decomposition into lower level components and transferable 

where the uncertainty can be implemented as input to calculate other 

uncertainties (upper level measurements). Even though the GUM provides the 

de facto framework in assessing uncertainty, it still depends on the detailed 

knowledge and deep understanding of the measurand's nature, measurement 

procedures and input quantities. 

2.3.2. Evaluating standard uncertainty 

The GUM provides general rules for evaluating and expressing uncertainty in 

measurement that can be implemented in various fields such as [95]: 

" Maintaining quality control and quality assurance in production 

9 Complying with and enforcing laws and regulations 

9 Conducting research in science and engineering 

" Calibrating standards and instruments and performing tests throughout a 

national measurement system to achieve the national standards 

" Developing and comparing international and physical reference standards 
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The wide acceptance of the GUM is basically supported by seven renowned 

international institutional dealing with the fundamentals of metrology [91,95]: 

BIPM International Bureau of Weights and Measures 
http: //www. bipm. org 

IEC International Electrotechnical Commission 
http: //www. iec. ch 

IFCC International Federation of Clinical Chemistry 
http: //www. ifcc. org 

ISO International Organization for Standardization 
http: //www. iso. ch 

IUPAC International Union of Pure and Applied Chemistry 
http: //www. iupac. oriz 

IUPAP International Union of Pure and Applied Physics 
http: //www. iupap. orR 

OIML International Organization of Legal Metrology 
http: //www. oiml. org 

2.3.2.1. Evaluating uncertainty based on GUMframework 

The development of uncertainty evaluation which is based on GUM can be 

summarised into 4 major steps [95]: (1) Establish the measurement model, (ii) 

Evaluate the standard uncertainty; (iii) Determine the combined standard 

uncertainty; (iv) Calculate the expanded uncertainty. The details of each step 

are discussed as the following: 

" Establish the measurement model 

Basically a measurand Y is not measured directly but it is determined from 

N other quantities X1, X2, 
..., 

XN through a functional relationship f. 

Y=A XI 
9 
XZ 

,..., X�) Equation 2.1 

The input quantities (XI, X2, 
..., 

XN) which the output quantity (19 depends 

to, can be classified into: 
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o Quantities (values and uncertainties) are determined directly during 

the current measurement. These values are obtained from various 

ways such as single/repeated observations, determination of 

corrections to instrument readings and judgement based on 

experience. 

o Quantities (values and uncertainties) are brought into the 

measurement from external sources such as quantities associated 

with calibrated measurement standards, certified reference materials 

an also reference data obtained from handbooks. 

As the estimation of the measurement result, if y and xJ, x2,..., xN are the 

estimations of the output (Y) and the input quantities (XI, X2, 
..., 

XN ), is 

given by: 

Y= f(x,, x2 ,..., xN) Equation 2.2 

Once the model has been developed, the next step is to evaluate the 

standard uncertainties of the estimates input quantities (xl, x2, ..., xN ). 

" Evaluate the standard uncertainty (u(x; )) 

In this step, the uncertainty of output y (combined standard uncertainty 

denoted by uc(y)) is determined from the estimated standard deviation of 

each input estimation (x, ) which is termed as standard uncertainty (u(x; )). 

The standard uncertainties are evaluated based on the two different 

methods [91,95,97] : 
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o Type A: those which are evaluated by statistical method 

The standard uncertainty evaluation may be based on any valid 

statistical method for treating data. Examples are calculating the 

standard deviation of the mean of a series of independent 

observations; using the method of least squares to fit a curve of data 

in order to estimate the parameters of the curve and their standard 

deviations, and carrying out an analysis of variance in order to 

identify and quantify random effects in certain kinds of 

measurements. 

o Type B: those which are evaluated by other means 

Basically the estimate x; of an input quantity X, has not been 

obtained from repeated observations. The evaluation of standard 

uncertainty is usually based on scientific judgement using all the 

relevant information available, which may include previous 

measurement data, experience with or general knowledge of the 

behaviour and property of relevant materials and instruments, 

manufacturer's specifications, data provided in calibration and other 

reports, and uncertainties assigned to reference data taken from 

handbooks. 

" Determine the combined standard uncertainty (uc(y)) 

The combined standard uncertainty (uc(y)) is an estimated standard 

deviation and characterises the dispersion of the values that could 

reasonably attributed to the measurand Y. By considering that all input 
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quantities in Equation 2.1 are independent, the u, (y) of the estimate output 

y can be calculated based on the propagation law of uncertainties: 

z 

uc (y) 
cu2 

(XI Uc (y) 
t12u2(x1) OY 

k=I 
ax; 

IkIjJ 

= 

Equation 2.3 

Where: 

aY Describes how the output estimate varies when the value of the 
ax; 

input estimates vary 

u(x; ) Standard uncertainty evaluated based on Type A or Type B 

" Calculate the expanded uncertainty (U) 

Although the combined standard uncertainty (uc(y)) can be universally used 

to express the uncertainty of a measurement result, in some commercial 

industrial and regulatory applications, it is often necessary to give a 

measure of uncertainty that defines an interval about the measurement 

result that may be expected to encompass a large fraction of the distribution 

of values that could reasonably be attributed to the measurand. The interval 

is provided by expanded uncertainty (U) which is obtained by multiplying 

the uc(y) by a coverage factor k. 

U=k*u, (y) Equation 2.4 

The result of measurement if then expressed as Y=y±U which means 

that the best estimate of the value attributable to the measurand Y is y with 

the interval of y-U5y: 5 y+U. U enables the definition of the interval 
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that covers a large fractionp of the probability distribution characterised by 

the results and its combined standard uncertainty (p is the level of 

confidence of the interval). The value of the coverage factor k is based on 

the level of confidence of the interval and generally in the range 2 to 3. 

Basically p depends on the coverage factor and subjected to the probability 

distribution function that models the outputs. As example, for a normal 

distribution which frequently occurs in practice, k=2 produces an interval 

that gives a level of confidence of 95% while k=3 provides 99% level of 

confidence. 
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Based on the GUM framework, the development of UEM can be summarised 

as the following (Figure 2.7) [97,101-104]: 

Define the measurand 
Y 

Identify the uncertainty 
sources (xi) 

I 

Generate the measurement 
model 

Y=. f(XI)XZ,..., X�) 

1 
Calculate: 

Standard uncertainty (u(xt)) 
Sensitivity coefficient c; = of / Ox; 

Based on Type A/B 

1 
Define combined standard 

uncertainty 

u, (Y) = 
ýýýu(x, ))Z 

1 
Expanded uncertainty 

U=ku, (y) 

Figure 2.7 GUM framework 
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2.3.3. Reporting uncertainty 

When reporting the result of measurement and its uncertainty, it is preferable to 

provide a clear description on the methods used to calculate the measurement 

(e. g. experimental observations, input data) and its uncertainty analysis in 

details. Specifically, these are the required information in reporting the 

uncertainty [95,98]: 

" Fully defined measurand (Y) 

" How the estimation y was calculated (e. g. number of repeated 

measurements) 

9 How the combined standard uncertainty, uc(y), was evaluated and its 

components (xi X,, ) 

9 List all the uncertainty components and how they were evaluated (Type A 

or Type B) 

" Provide all used constants (if applicable) 

" State the coverage interval at the chosen level of confidence 

9 The measurement should be quoted only to the number of significant 

figures indicated by the error 

9 The unit of the measurement of the measurand must be clearly stated 

2.3.4. The implementation of uncertainty evaluation 

Since the introduction of the GUM framework for evaluating uncertainty in 

1993, a considerable amount of literature has been published related to this 

field. Numerous studies have implemented the GUM framework in evaluating 

and expressing the uncertainty in measurements in various knowledge 
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disciplines (e. g. chemistry, health, physics). Among the objectives of 

evaluating uncertainties stated in these studies are as the following: 

" To evaluate the sources of uncertainty and further up to eliminate or at least 

reduce it [99-100,105-111]. 

9 To calculate the value of uncertainty for the particular measurement [100- 

101,105-106,108-109,111-113]. 

" To compare and assess the uncertainty results with the available 

standard/guidelines (e. g. ISO) [96,110]. 

" To assess the measurement instrument for calibration purposes [100-101, 

105,114-117]. 

In this section, Table 2.3 presents various examples of study related to 

uncertainty evaluation implementation with highlights on the objective of the 

analysis, the determined sources of uncertainty and the results. 
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Among the challenges in evaluating the uncertainty in measurements that have 

been raised from these studies are as the following: 

9 Difficulty in determining the related sources of uncertainty which are 

relevant to the measurand [107,110,112,115,119]. 

" Some of the conventional classification of uncertainty sources stated by the 

international standard is hardly suitable for applications in accordance with 

uncertainty models to evaluate the measurement uncertainty [116]. 

9 Lack of reliable and accurate calibration results of instruments used in the 

measurement [117,119]. 

9 Doubtful in determining the type of standard uncertainty evaluation (Type 

A/B) that could affect the calculated uncertainty value (e. g. overestimate/ 

underestimate) [110]. 

Based on the provided examples in Table 2.3, it can be concluded that the 

uncertainty evaluation has been implemented in various fields/purposes. 

Among the benefits that can be concluded in implementing the uncertainty 

evaluation are: 

" Provide information on the variability measurements that make them 

comparable, reliable and confidently accepted at the international level. 

9 Major source/s of uncertainty can be determined from the analysis; this 

allows actions to be taken to reduce or eliminate the errors occurred that 

leads to constant improvement of the measurement procedure or the 

measurand itself. 

9 It also can offer guidelines via the generated uncertainty model in handling 

the measurement procedure or instruments [99,120]. 
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" Provide better approaches or rules related to the measurement procedure 

that can be implemented in international standard (e. g. ISO)[96]. 

2.3.5. Software for uncertainty evaluation 

Referring to Figure 2.7, it is clear that GUM approach encompasses a tedious 

and error-prone series of mathematical calculations (e. g. calculation u(x; ) and 

uc(y)). According to Losinger [121], the implication of manually calculating 

the u(xt) and uc(y) can be horrendous especially when computing the partial 

derivatives. It can be noted that as the number of the calculations/computations 

increase, the confidence in the final results tends to decrease. Moreover, users 

who are involved in uncertainty analysis are aware of the benefits of using a 

software packages to perform the calculations [122]. 

Efforts have been made to assist users in evaluating uncertainty with less 

mathematical error by developing related software that are able to do the 

analysis especially the tedious calculations. It also allows user to concentrate 

fully in the more important phase which is determining the input quantities and 

model development. In order to enable the uncertainty analysis, the software 

should have the following features [123]: 

" Provide several important items such as: model equation, input quantities, 

observations, correlations, budget, report review, import observations and 

configurations on uncertainty analysis attribute (e. g. setting the coverage 

factor). 
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" The analysis is controlled by a standard classification of the input 

quantities; the result analysis is a clear table of the uncertainty budget that 

holds all used measurands. 

" Perform the classical GUM evaluation of measurement uncertainty which 

adapt the numerical partial derivates to calculate the sensitive coefficients 

when error propagation is performed. 

" Provide the assigned standard uncertainty and effective degrees of freedom, 

the sensitivity coefficient derived from the model equation and also the 

contribution to the standard uncertainty of the result of the measurement. 

" The complete result of the analysis is presented as a value with associated 

expanded uncertainty and automatically or manually selected coverage 

factors. 

" It provides full implementation of Type A and Type B uncertainties. 

" It has facilities for structured information that allows documentation of 

changes and amendments to be recorded in freely editable fields. Any 

changes made in the data are automatically updated in all related fields in 

the system. 

Among the available software package for computing the uncertainties result 

based on the GUM framework are GUM Workbench, Assistant and 

Uncertainty Pro [122]. 
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2.4. Micro-machining 

As product development technology becomes more advanced, the size of 

produced devices decreases and this is where micro-products came into view. 

According to Brinksmeier et al. [124], micro-manufacturing technologies can 

be distinguished into two categories: micro-system technologies (MST) and 

micro-engineering technologies (MET) (see Figure 2.8). MST is mainly using 

processes from micro-electronic technology such as lithography, etching, 

LIGA while MET utilizes the readapted processes of mechanical and 

physically material removing techniques such as milling, grinding and laser 

beam machining. 

Micro-System Technologies Micro-Engineering Technologies 

(MST) (MET) 

F 
, 
-Process 

" Lithography Mechanical Energy assisted 

" Electroplating process process 

" LIGA " Turning " EDM 

" Etching " Milling I" Ion/Laser 

" Drilling Beam 

I Grinding machining 

Figure 2.8 Micro-manufacturing technologies [124] 

Most of the knowledge that have been utilised in MET are existing 

technologies adapted to the miniaturisation of structures, devices and systems 

[26,31]. Among the examples of this type of micro-machining methods are 

milling, drilling, grinding and turning where the general principles are similar 

to those conventional machining operations. Micro-machining is a method of 

creating miniature devices and components with features that range from tens 

of micrometers to a few millimetres in size by removing the unwanted material 

from the workpiece, using the mechanical force of the micro tools [25-26,30, 
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35,125-126]. In this study, focus is given into one of the mechanical process of 

MET which is micro-milling performed on a custom-made 4-axis Miniature 

Machine Tool (MMT). 

2.4.1. Micro-milling process 

In this study, micro-milling process is given the focus in the literature review 

as it is the main domain for the implementation of the system. According to 

Bissacco [127], micro-milling is defined as the downscaling of the 

conventional milling process, involving the use of tools with diameters in the 

sub-millimetre range. Even though micro-milling can be consider as a rather 

recent process, not much research interest was focused until the late nineties 

[127]. Among the advantages of micro-milling are: 

" Possibility to machine full 3D micro-structures by high aspect ratio and high 

geometric complexity [25-28,30,128-134]. 

" High flexibility where the electrical properties of the workpiece do not 

influence the process so that a variety of materials can be machined 

(plastics, metallic, composite) in different size, shape and features [25-26, 

28,130-131,133-137]. 

" Not requiring expensive set-ups such as in lithographic methods [26,132] 
. 

Conventional milling is one of the most versatile machining processes and 

based on this, micro-milling is being analysed and studied to ensure its 

versatility in generating good quality micro-product. Micro-milling 

incorporates many characteristics of conventional milling thus, reasonable 
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limits, a number of issues have been raised concerning the `size effect' 

phenomena [27,30-31,138]. Different characteristics such as reduced tool 

dimensions which primarily reduce the tool strength, stiffness and cutting 

speed, very low material removal rate and increase surface roughness due to 

built-up edge have been identified due to the downscaling of the existing 

conventional process which also becoming challenges in micro-milling. 

Among the problems occurred due to `size effect' are [127,135,139-140]: 

" The availability of highly accurate and repeatable machine tools and cutting 

tools 

" Low tool stiffness that makes the system more prone to vibrations 

9 Process limitations related to minimum chip thickness that can lead to 

material rubbing 

" Low production rate when compared to conventional machining 

2.4.1.1. Examples of micro-milling application/implementation 

Table 2.4 below presents various literature that utilized micro-milling in 

producing micro-structure/micro-component. 
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Referring to Table 2.4, it shows that micro-milling process has been utilized to 

produce various type of micro-structure in different materials using a wide 

range of tool size. The flexibility and efficiency of micro-milling process 

allows the generation of good quality micro-component. Even though the 

researches in micro-milling technology have been recently taking shape, a 

number of micro-parts/components have been successfully produced such as: 

The `nature' of mechanically removing the workpiece material for producing 

parts is well-suited to support the development of micro-injection mould 

industry because of the promise for accurate, low cost, small batch size 

processes of 3D moulds using various materials [26]. Among the example of 

generated micro-moulds are micro-injection moulds made of steel [132], 

copper [29], stainless steel and aluminium 6061-T6511 [148] and micro-mould 

for chemical-mechanical polishing pad on polymethyl methacrylate (PMMA) 

[ 144]. Moreover, micro-mould for the tyre-rim in micro-car as shown in Figure 

2.9 has been successfully machined on steel (SAE H13) [131,149]. 

Figure 2.9 Micro-mould (tyre-rim for micro car) on steel (SAE H13) [131,149] 
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While the examples in generating micro-embossing dies are: mould made from 

brass with feature size less than 80µm [150]; master for hot embossing micro- 

fluidic chips in polymers generated on brass plate (alloy 353) [151] (see Figure 

2.10). 

711 

Figure 2.10 Micro-milled mould master on brass (a) Hot-embossed 

replications on polymer (b) [ 151 ] 

Another advantage of micro-milling is the capability of generating 3D full 

features at micro-scale level in a variety of materials also provides new 

opportunities and applications. The existing published work has presented 

various of 3D micro-features machined by micro-milling such as three 

exponential spiral with a single straight trench (height=0.062mm) on PMMA 

[126] and micro-grooves (width=55µm, depth=40µm) on brass [152]. Beside 

that, various micro-component have been produced precisely such as micro- 

turbines (0=3.4mm, blade length=0.35mm) [147], micro-gears, neurovascular 

device components (Figure 2.11) [153], bio-medical devices made from brass 

with feature size less than 50µm [150], micro-accelerators and gyroscopes 

made from elastic alloy [154], tooling inserts for micro-filters fabrication [34] 

and copper electrodes for micro-EDM [29,143]. 
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Figure 2.11 Neurovascular device (a) Micro-gear (b) [153] 

2.4.1.2. Challenges in micro-milling 

Even though micro-milling replicates the conventional process, it is still 

difficult to predict the operational and the result of micro-milling process. The 

issues mainly come from the miniaturisation of the components, tools and 

processes [26]. The main challenges are the following: 

9 The availability of machine tools 

Precision machine tools are available but at high cost because of their 

relatively large scale and specialised controlling/motion systems [26,127]. 

In contrast with these, the miniature machine tools (MMT) are basically 

based on the fact that they are cost-effective and have low inertial masses, 

require low energy [26], easy to achieve high-speed machining and high- 

precision/rigidity due to reduce inertia [146], encompass lower vibration 

amplitudes compared to macro-machine [155] and easy deployment around 

the factory [146]. Among the features that are required for a MMT to 

support the micro-machining needs are: 

o High spindle speed [26,127,133,135,141,149,156-157] 

o High precision positioning systems [26,127,133,135,141,156] 

o Rigidity of the machine structure [26,127,156] 
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Further discussion on the MMT from the previous and current literature 

will be presented briefly in section 2.4.2. 

" The development of micro-tooling 

The size of micro-tools determine the feature size of micro-components; if 

the diameter can be decreases further, the size of features can be reduced 

comparable to those produced with lithographic techniques. Since the 

productivity in micro-machining has been limited by employing low values 

of cutting parameters (e. g. feed per tooth, axial/radial depth of cuts), tools 

with improved wear resistance and improved stiffness must be developed to 

improve the accuracy and repeatability of the process [28]. Among the 

issues in micro-tool developments are: 

o Tool must be harder than the workpiece material and no thermally 

activated diffusion has to take place between the tool and workpiece 

[25,39]. 

o Tool edge radius must be much smaller than the dimension of the 

cut thickness (with minimum factor of 2) [25,156]. 

o Even though the current commercial micro-tools have a well 

defined geometry and small tolerance but it has limitation as most 

of them are designed for steel machining [135]. However, the 

availability of tungsten carbide tools which are generally used for 

micro-machining processes provide a better choice for the user due 

to their high hardness and strength over a broad range of 

temperatures [26]. 
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o Unpredictable and premature tool life are among the major concerns 

[29,150] especially when machining hard materials, such as 

hardened tool steels [131]. 

o To enhance the performances of the cutting tools, a variety of 

coatings (e. g. TiAl, TiA1N, CBN, CBD) have been developed for 

micro-cutting application; however, with the application of 

coatings, the cutting edge radius is likely to increase leading to less 

ability of the cutting edge to remove small amount of materials. 

o As the micro-tools require to be replaced frequently, new methods 

to produce cost-effective tool with quality are a necessity. 

" The nature of the workpiece material properties 

The effects of material properties of the workpiece (e. g. hardness, grain 

size effect) are considered highly important because in micro-machining 

the material removal process is ruled by the interfacial interaction between 

the cutting edge and the workpiece [158]. Moreover, in micro-machining 

usually the chip forms within a single grain at a time compared to the 

conventional machining where the chip formed by several grain, as in 

micro-machining the material grain size is not downscaled with the process 

dimensions. This issue has been extensively reported in various literatures 

[127-128,130,158-159]. The distinct difference between micro and macro- 

machining are the assumption of homogeneity in workpiece material 

properties is not valid because, in micro-machining, the grain size could be 

of the same order of magnitude with the depth of cut/radius of the cutting 

edge (Figure 2.12). Popov et al. [128] suggested that refinements of the 

grain structure could lead to more `favourable' conditions during tool- 
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material interactions. The preferable grain structure of material for micro- 

machining is homogeneous workpiece of very fine composition with 

narrow grain size distribution and without internal stresses [127,131,158]. 

It was also proposed for the cutter edge radius of the tool not to be smaller 

than the average grain size of the material [ 141 ]. 

Figure 2.12 Relation between grain size and chip thickness for 

conventional milling (a) and micro-milling (b) [127] 

" The quality of the generated surface 

Burr-free machining strategies have to be developed as it is difficult to 

handle the machined micro-parts after the machining process have been 

completed [25,30,39,128,131,135,152,160]. In machining ductile 

metallic materials such as brass, the burr occurrence is higher when the 

feed per tooth (fa) is low and when utilizing the down milling approach 

[131,141,160]. At lower fZ, the rubbing and compression (ploughing 

mechanism) of the material take place instead of cutting and this generates 

more burrs [131,160]. De-burring process as practiced in macro-machining 

are unfeasible at micro-scale as it can destroy the delicate micro-features. 

One of the causes of low quality surfaces is tool wear and high tool wear 
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occur when machining hard materials which change drastically the tool 

condition and consequently the process performance [135]. 

" Machining thin-walled or minimal structural dimensions 

Generating thin features represents a major challenge in micro-milling 

because of the instability of the machining operation [128,142,154,161]. 

By making features thin, their stiffness decreases which could result in the 

occurrence of vibration during machining. This could lead to the 

deterioration of the component's accuracy and poor surface quality [128]. 

Listed below are the suggested strategies in machining thin walls and small 

dimension structures [126,128,142]: 

o The toolpath should be selected in such a way that the cutting 

should process from the least supported area toward the best 

supported thin features in the micro-component. 

o In producing filleted thin features, it should be machined in a 

number of subsequent passes by removing the material layer by 

layer that are carried out with a sufficiently low spindle speed to 

prevent vibration. 

o Avoid sharp corners and introduce fillets for this minimal structural 

dimensions and thin wall. 

The following are examples of thin walls that were generated in various 

literatures: 

o Thin wall (height=O. Olmm, width=0.008mm) has been machined 

on PMMA [126]. 

o Trench made by micro-slotting (width=15µm, depth=150µm) and 

thin wall between slots (width=55µm, height= 150µm) [134]. 
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o Thin wall (width=65.5µm, length=3.43mm, height=778.7µm) has 

been machined on Mg-Zn-Y alloy which was used for biomedical 

application [161]. 

o Micro-component with thin wall (length=0.02mm, height=0.31 mm 

and width=0.8mm) was successfully machined on brass [128] 

(Figure 2.13). 

Figure 2.13 Example of thin wall on brass [128] 

" In order to avoid tool breakage and to maintain the desired tolerance, the 

depth of cut is often less than the critical minimum chip thickness [26,30, 

39,41-42,131,136]. The major challenge in micro-machining processes is 

the limits that have to be imposed on the resulting machining forces that 

may influence the accuracy of the process because of the elastic 

deformations of the micro-tools and/or parts [25-26,28,35,130]. As 

example, in micro-end mill, the machining forces exerts a larger influence 

on accuracy because the main direction of the force is perpendicular to the 

tool axis [35]. Even though there are various models have been developed 

to predict the cutting forces for conventional milling, but none can be 

successfully implemented for micro-milling. Various researches have been 
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developing the cutting force models especially for micro-machining that 

can accommodate the requirement for various materials and cutting 

conditions [26,28,40,130,135]. From these literatures, the aspects that 

were suggested to be considered in the micro-cutting force analysis such as 

the chip thickness model [26,28,41,131,162], the workpiece material's 

elastic-plastic effect and tool run-out [40,140] and the static deflection of 

the tool and cutting edge radius [39]. 

" Furthermore, small depths of cut and cutting edge radii increase the friction 

between the tool and the workpiece that resulted in thermal growth and 

wear which can also cause ploughing phenomena. This phenomena leads to 

material rubbing that produce a rough surface and elastic recovery of the 

workpiece [26,28,30,130,135]. 

" In micro-milling, the effect of tool run-out is clearly noticed as it creates a 

great problem for the dimensional accuracy and surface quality of the 

micro-milled part, shorter tool life and higher tool breakage [40,140]. For 

a conventional macro-scale machining, the run-out which is typically in the 

order of micrometers has a small effect and often being negligible on the 

dimensional accuracy of the machined feature. Due to `size effect', the 

value of the tool run-out to tool diameter ratio becomes larger than the 

conventional milling. The tool run-out is caused by the imperfect tool 

alignment, asymmetric tool geometry, mismatch between tool and machine 

tool and vibration of tools during machining. Since the tool is not 

accurately and asymmetrically oriented relative to the surface being cut, the 

loading of the cutting edges will vary and this provide negative impact 

towards the surface roughness, tool wear and vibration [40,141]. 
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Even though micro-machining imitates conventional machining in many ways 

(e. g. operational, process), due to the differences/challenges discussed above, 

the existing knowledge and experience on current macro-machining cannot be 

directly applied and adapted to the micro-scale. In order to make micro- 

machining more flexible, robust and productive, it is essential to understand 

and tackle the differences and issues occurred between the macro and micro- 

machining. The adaptation of the knowledge from conventional process can be 

materialised in micro-machining with the conditions stated below: 

" Deep understanding of micro-phenomena 

" Extensive investigation in chip removal processes 

9 Detailed approach of analysing the micro-cutting force prediction 

" Thorough study of the workpiece material properties effect 

" Systematic approach on the process of handling/inspecting the produced 

micro-product 

2.4.2. Development of miniature machine tool 

Although manufacturing of such miniature features and components can be 

achieved on large-scale Precision Machine Tools (PMTs), the design and 

construction of Miniature Machine Tools (MMTs) is acquiring great interest 

due to the recent advancements in Micro-Electro Mechanical Systems 

(MEMSs). 
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From the concept of miniaturization of machine tools has emerged the use of 

small-scale all-in-one manufacturing systems called micro-factories. Okazaki 

et al. [155] defines the term "micro-factory" as an entirely new approach to 

design and manufacture that minimizes production systems to match the 

requirements of miniature parts. Such systems leads to reduction of space and 

energy as well as the minimisation of investment and operational costs, aiming 

to achieve light and agile manufacturing systems that are optimized for current 

manufacturing needs in producing micro-components. 

On the other hand, the interest has recently focused on use of MMTs for 

specific chip removal processes such as turning, milling, drilling and grinding 

as well as Electro Discharge Machining (EDM) and Electro Chemical 

Machining (ECM) in order to understand the mechanics of micro-machining 

process and optimize the process parameters. Liu et al. [130] states that there 

are a number of issues that prevail in micro-scale machining. Such issues are 

fundamentally different from macro-scale machining and influencing the 

underlying mechanisms of the process, resulting in changes in the chip- 

formation process, cutting forces, vibrations and process stability, and hence 

leading to significant influences on the surface topography of the machine 

surfaces and dimensional accuracy of the produced components. Thus, 

dedicated MMTs are currently built for analysis of the aspects of precision, 

accuracy, stability and reconfigurability of MMTs as well as their integration 

with MEMSs for in-situ inspection and metrology purposes. 
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Table 2.5 gives a summary of selected examples of MMTs and systems while 

Figure 2.14 shows examples of developed MMT from the literature. Although 

there are a number of works on building micro-factories and multi-purpose 

MMTs for implementing several machining operations using the same machine 

tool, the majority of research is related to construction of dedicated MMTs for 

conducting specific operations for the generation of components with complex 

geometries. This is due to the fact that the process mechanics can be well 

understood and the stand-alone characteristics of such dedicated machine tools 

can be investigated extensively. 

Table 2.5 Examples of selected micro-factories and miniaturised machining 

systems 

Reference Developed System and addressed machining Machine Size 

operations (mm) 

Kussul et al. [163] 3-axis Micro-factory (turning, milling, drilling, l30xl6Ox85 
grinding) 

Asad et al. [164] 3-axis Micro machining centre (milling, turning, 1500x1100x1900 
grinding) 

Kurita et al. [145] 3-axis Hybrid MMT (milling, EDM, ECM) 557x604x655 

Azizur et al. [165] 3-axis MMT (milling, turning, drilling, grinding, EDM) 600x560x660 

Vogler et al. [36] 3-axis MMT (milling and drilling) 250x150x200 

I Ashida et al. [166] 3-axis Micro-milling machine 119x119x102 

Okazaki et al. [146] 3-axis Desktop micro-milling machine 
[450x380 

Iijima et al. [167] Micro-turning machine 
F0x100 

Ho Bae et al [168] Micro-lathe 45x44x39 

Kitahara et al. [169] Micro-turning machine 32x25x30.5 

Ashida et al. [166] Micro-forming machine 111x66x170 
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Hirano et al. [ 170] 

Shi et al. [ 161 ] 

Mishima [1711 

Subrahmaniam and 
Ehmann [ 172] 

Bang et al. [ 147] 

Ibi 

600x65Ox750 

400x320x100 

600 x 900 

90x6Ox60 

294x220x328 

Figure 2.14 Example of MMT: (a) 3-axis MMT [161]; (b) 3-axis Desktop 

micro-milling machine [146]; (c) Micro-turning machine [167] (d) 3-axis 

Hybrid MMT [145] 

Desktop micro-ECM machine 

3-axis MMT 

Micro-factory (lathe, press, milling) 

Meso-scale Machine Tools (milling) 

5-axis micro milling machine 
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It can be seen from Table 2.5 that the overall size of MMTs are varying 

significantly. Therefore, the construction of a MMT with optimal features and 

characteristics is of significant importance not only to achieve the required 

technical performances in a particular setup, but also to consider handling and 

versatility aspects. 

Process capability is defined as the ability of the process to meet technological 

or other requirements to fulfil demands put on it [173-174]. There are two parts 

of process capability which are measuring the variability of the output of a 

process and comparing the variability with a proposed specification or product 

tolerance. Among the variability factors or criteria are [174-175]: 

" Tool and functional accuracy 

" Operator 

" Set-up errors 

" Deformation - due to mechanical and thermal effects 

" Measurement impurities 

" Specifications 

" Equipment 

" Method or job instructions 

" Environment 

According to Booker et al. [174], in analysing a design at the concept 

development or early detailing stage, it is only necessary to focus on the main 

variabilities associated with manufacturing process. Based on this, in reviewing 

the literature related to the custom-made MMT, it was found out that in order 

to assess the capability of the machine tool, the surface quality and the 
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geometrical accuracy of the machined part (e. g. groove, thin wall, honeycomb) 

were selected to be the main evaluation criteria [36,145-147,161]. Various 

tool and workpiece materials were utilized in machining parts using in-house 

developed MMTs and the results indicate their capabilities to produce surfaces 

of acceptable quality and geometrical accuracy. Another important finding was 

that the machine tools were also able to machine full 3D features; one of the 

examples is shown in Figure 2.15 where a micro-impeller was successfully 

generated from a 5-axis micro-milling machine tool [147]. Moreover, based on 

the listed machine size in Table 2.5, it is believed that most of the MMTs can 

be categorized as portable desktop machines which allow flexible deployment 

around the workshop/factory. 

Figure 2.15 Assembled micro-impeller and base block [147] 

2.5. Knowledge gaps and discussion 

From the extensive literature review it can be noted that the development of 

Manufacturability Analysis System (MAS) should be able to assist the user in 

assessing the CAD model at the design level to ensure that the product can be 

manufactured. The main advantage of implementing MAS is providing 
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supports for the user with suggestion of critical changes for the design to make 

it easy to manufacture. Furthermore, it also represents a solution in integrating 

manufacturing issues during the design stage that helps to shorten the product 

development time by reducing the iteration between the design and 

manufacturing stages. However, despite all the advantages offered by the MAS 

implementation, there are still areas of improvement that can be explored to 

enhance the MAS capabilities. Therefore, to fully appreciate the MAS 

implementation towards assisting the user/designer in producing product which 

is manufacturable at the design stage, the research gap must be filled to 

enhance the knowledge in micro-product manufacturing. Among knowledge 

gaps to be addressed in this study are as following: 

2.5.1. MAS for micro-milling process 

MASs have been applied to various types of manufacturing processes and most 

of them are in the macro-manufacturing domain and less attention has been 

given to micro-manufacturing processes. As MASs has proved to work for 

macro-manufacturing processes [19-21,23-24], an implication of this is the 

possibility of the MAS to check micro-manufacturability aspects for micro- 

manufacturing process. 

A few publications claim that MAS for micro-domain have been developed, 

however, it is not very encouraging because they are mainly for Micro-System 

Technologies (MST) processes such as MEMS [57,89] and LIGA [64]. So far, 

there is no clear evidence of MAS implementation for Micro-Engineering 

Technologies (MET) processes such as micro-milling/drilling/turning. More 
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importantly, with the current demands in producing micro-product via the 

MET processes [124], it prompts the requirement of a systematic approach in 

the design stage so that the manufacturing information can be considered and 

make the micro-product easy to manufacture. The development of MAS for 

micro-milling process where various aspects (e. g. materials used, acceptable 

and suitable tolerances and dimensions) can be assessed to allow the design 

being compatible with the production needs that leads to improved quality of 

machined micro-product. In this study, MAS can be defined as a system that 

assists the MMT user in generating micro-part based on the manufacturability 

analysis of a CAD model. The manufacturability aspects being considered are 

dimensions, tolerances, tool size, surface roughness, features interactions, 

impact of uncertainty in machining the recognized primitive feature and 

material. At the same time, it also can boost the confidence in applicability of 

MET processes in producing micro-component. 

Although MET is adapted from conventional macro-processes, the differences 

generated due to `size effect' has made it emerge as a new process which give 

strong grounds why MAS specifically for micro-domain is needed. Due to this 

fact, a new MAS for micro-milling process was proposed to be developed in 

order to assess the applicability of MAS in this area which appears to be 

missing from the literature. Moreover, to make this MAS development in this 

study more appealing and interesting, the custom-made 4-axis Miniature 

Machine Tool was selected to be the main domain of the system application. 

This is somehow in line with the call for a system that can assist users in 

generating micro-component using this MMT with better judgement. 
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2.5.2. New technique for data input and manufacturability assessment 

The input mechanism plays an important role in providing data needed for 

manufacturability analysis. In order to feed the system with accurate and 

relevant data, it is necessary to investigate and develop efficient and 

comprehensive combinations of input mechanisms. Currently, the literature 

reports that feature-extraction system is mainly used in extracting related CAD 

data into MAS, and this approach has been limited by vagueness of collected 

data [1,8,15,47,58-60], incomplete design and manufacturing information 

being extracted [15,60] which is laborious for the user. Furthermore, the 

development of this method is still a stringent research topic targeted to 

identify ways to collect accurate and self-sufficient data/design details from the 

features. Thus, this affects the accuracy of the data being input to the system in 

assessing manufacturability aspects. Therefore, the development of new 

techniques in gathering data from CAD model and, at the same time, to assess 

its manufacturability can lead to improving the data reliability. 

Moreover, the combination of user-system interaction and a priori database 

can be introduced and adapted for inputting the required data into the MAS. 

Prior studies in the literature have shown that these two methods of data 

gathering were not given much attention by MAS developers and this makes 

them worth to explore. 
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2.5.3. Development of uncertainty evaluation model (UEM) for Miniature 

Machine Tool (MMT) 

Uncertainty evaluation has been proved through several publications that it can 

provide the analysis for calculating the uncertainty value and on the same time 

to identify the main source of the errors with the intention to assist the user to 

eliminate or reduce them. This helps to enhance the quality and reliability of 

the analysed measurand and can possibly propose a better approach for the 

measurement procedure. 

Based on this fact, a better understanding is required as to how the construction 

of the MMT can influence the geometrical accuracy of the machined micro- 

part by employing the uncertainty evaluation. Even though a similar study 

made by Uriarte et al. [118] has reported the uncertainty analysis made for an 

ultraprecision milling machine, but the focus is mainly for the errors which 

occurred during the micro-milling process itself such as the tool, tool holder 

and machine stiffness during machining. 

From the literature, there is no evidence that the implementation of uncertainty 

analysis has been made to evaluate the errors stemming from the construction 

of the MMT and its effect towards the machined micro-part. More 

importantly, this study also proposes to provide an uncertainty model and 

method/procedure to account for the errors when constructing any similar in- 

house MMT systems where knowledge concerning this matter is scarce and 

limited in the current literature. The developed model can provide a better 
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understanding in assessing errors that affect the quality of the final machined 

micro-parts. 

2.5.4. Integration between MAS, UEM and micro-machining 

Most of the developed MAS are limited by solely focusing on assessing the 

manufacturability aspects based on the proposed design while abandoning 

other aspects such as tolerances, materials, dimensions, tooling, tools/parts 

orientations and process capabilities in determining the level of 

manufacturability. Moreover, as mentioned in the limitation of current MAS, 

not much attention has been given towards enriching the knowledge 

/recommendations that can assist the end-user of the system in making more 

comprehensive technical decisions regarding the manufacturing of the 

proposed designs. However, most MASs evaluate the functionality aspects 

manually or totally neglected [12,47,58,63,69]. It would be worth 

considering this aspect during the design stage as it also plays an important role 

in determining the function of the design. 

Therefore, in order to enhance the capacity of MAS in assessing 

manufacturability aspects, the results from micro-machining experiments and 

uncertainty evaluation towards the MMT will be integrated in the system's 

database. This is to fully understand the capabilities of the MMT which is the 

main scope of the developed MAS. 
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CHAPTER 3: METHODOLOGY 

3.1. Introduction 

In this chapter, the methodology to achieve the aims and objectives of this 

study are described in detail. Principally, there were four important phases in 

the proposed methodology for this study: 

(i) Development of the system (MicroMAS) 

(ii) Analysis of uncertainty evaluation model (UEM) 

(iii) Micro-machining experiments 

(iv) Integration of MicroMAS, UEM and micro-machining experiments 

This chapter begins with a synopsis of overall research approach that briefly 

describes each phase. Following this, each phase has been presented in detail 

and all the related procedures, objectives, ideas, software packages, tools, 

technologies used to facilitate the development are also discussed. 

3.2. Overall research approach 

Table 3.1 presents the synopsis of each phase of the methodology; it lists the 

components, contents, objectives, approaches, technologies/tools and software 

used in this study. More detailed explanation on the each phase will be laid out 

throughout this chapter. 
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3.3. System development 

As the prime phase, the objective of this stage is to develop the concept of 

MicroMAS for micro-machining environment addressed to a custom-made 4- 

axis Miniature Machine Tool (MMT). The development of the system is based 

on the three-step unidirectional which was divided into three 

modules/components (Figure 3.1): (i) data input module, (ii) manufacturability 

assessment module, (iii) output generation module. The exclusiveness of this 

approach for MicroMAS is relying on the content of each module, which is the 

combination of approach/tool/software used to develop the system. As 

summarized in Table 3.1, each module has its own purpose and contribution 

towards the development of MicroMAS. 

The data input module is where all the relevant and related data were feed 

into the system. In this study, two approaches were selected and combined 

which were the user-system interaction and a priori database. In the user- 

system interaction method, the system prompts the user with enquiry leading 

towards the collection of related information. While for the second method, 

the users are allowed to choose related data and parameters from the 

manufacturing information in the system's database. The difference between 

this method and the previous one is that all information was already embedded, 

and users only have to choose the appropriate one. While in the previous 

method, users were required to input all needed data through the interface 

during the interaction. 
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II Data input module 11 

A priori 
database 

.................... ....................... 
NEW MAS APPROACH 

I"y..:.. 
." °e: 

'A 
@.. 

Implementation ofPFA technique' 

" ... .................. ......... ............. 

User-system 
interactions 

r Manufacturability assessment module 

Primitive Single /Coupled Manufacturability 
Feature Feature Indices 

Identification Analysis 

Using Visual BASIC. NET 

11 Output module 11 

Redesign Overall Material 

suggestions 
manufacturability selection 

index 
10 

Figure 3.1 Framework of MicroMAS developments 
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In the manufacturability assessment module, the approach chosen to assess 

the manufacturability of the proposed CAD model was by using the 

conventional programming language provided in the Visual Basic. NET® (VB) 

software. VB was derived from BASIC programming language and enables the 

development of graphical user interface (GUI) applications and access to 

database. GUI is a type of user interface which allows the user to interact with 

the developed system with images and text commands. VB was selected as the 

backbone of this system development as it provides user-friendly environment 

for developing interfaces and linkages that suits the overall MicroMAS 

approach and requirement. 

Figure 3.2 presents an example of the VB integrated development environment 

(IDE), where the windows application for the MicroMAS is being generated. 

The four items in the IDE which is essential for developing a project in VB are 

as following: 

0 Designer - The area where the designing of the forms/interfaces and also 

the related codes are generated. 

0 Toolbox - Provides list of user-interface controls (e. g. button, list box, 

text box, label, menu). 

0 Solution Explorer - Gives an overview to the user of the developed 

project such as generated files, forms while allowing switching between 

coding and designing forms/interfaces. 

0 Properties -A useful tool to configure the related items such as selected 

user-interface controls, forms and database development in the 

application during design time. 
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In this module, the development of the manufacturability assessment was 

divided into three elements: Primitive Feature Identification (PFI), 

Single/Coupled Feature Analysis (S/CFA) and Manufacturability Indices. The 

details of these elements will be presented in Chapter 4. 

Furthermore, the Ruled-based System (RBS) was implemented to assist the 

decision making in the manufacturability assessment through the IF-THEN 

clauses. It helps to control the analysis of MicroMAS and represents the 

systems' knowledge base via logical combinations. RBS has been applied in 

manufacturing based inference engines because the IF-THEN rules are similar 

to common sense logic [65]. Moreover, the concept of RBS and IF-THEN 

clauses can be implemented in any programming language or software 

packages including VB. In this study, the related rules and conditions 

correlated to micro-milling, the MMT and primitive features elements are 

saved in the form of IF-THEN clauses. All the rules and conditions stored in 

database are interactively being searched based on IF-THEN clauses in order to 

determine which rules satisfy the inputs. 

Finally, in the third module, the output generation, provides the outputs from 

the manufacturability assessment such as redesign suggestion, overall MI and 

selection of materials. This result was displayed in various types of interfaces 

(e. g. pop-up window, reports, forms) generated using VB. 

The database is the medium where all the data and information needed for the 

analysis is stored; it was developed using Microsoft Access (MS ACCESS) and 
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linked to the VB. Figure 3.3 illustrated the relationship between the software 

(VB. NET, MS ACCESS, GUM Workbench) and the practical aspects 

(machining experiments, uncertainty analysis) of the work. All related 

manufacturing information and rules are embedded in the database to be used 

as guide for assessing the manufacturability of the proposed design. 

Machining 

experiments 

" Surface roughness value 

" Tolerance value MS ACCESS 

" Provide the required 
information, decision and 
feedback 

GUM 
Workbench 

" Uncertainty effect in 

machining the PF 

" Enquire information based 

on inputs 

Figure 3.3 Schematic of relationship between the VB. NET, MS ACCESS, 

GUM Workbench and Machining experiments 

For this study, a new approach which is the Primitive Feature Analysis (PFA) 

technique was introduced for data gathering and manufacturability evaluation 

in between the data input module and manufacturability assessment module as 

shown in Figure 3.1. The details of the system generation will be discussed in 

Chapter 4 for the development of the PFA technique and Chapter 7 for the 

implementation of the MicroMAS. 
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3.4. Micro-machining experiments 

As stated before, the domain of the MicroMAS application is the in-house 

developed MMT which provides the micro-machining environment for the 

system implementation. In this study, MicroMAS is also developed to cater the 

needs of the MMT that requires a system to support a robust and efficient 

generation of micro-parts. In order to understand the MMT response in 

producing micro-product and, on the same time, to populate relevant data into 

the MicroMAS, a series of experiments have been carried out using various 

materials and cutting tools. Furthermore, these experiments are based on the 

recommended machining parameters from the tool manufacturers (Sandvik 

Coromant) and it was not the aim of this study to seek for any further 

optimisation of cutting parameters. Among the proposed experiments are: 

" Machining the ̀ adapted standard' micro-testpiece 

" Generating micro-slots and thin walls 

" Producing a micro-component demonstrator 

These experiments have been carried out on different materials (e. g. Stainless 

steel, Steel, Titanium Alloyed), using various machining parameters and micro- 

cutting tools (end-mill with 0 between 0.5 and 0.8mm). 

3.4.1. Miniature machine tool (MMT) 

The custom-made 4 axis Miniature Machine Tool (see Figure 3.4) has been 

used for all the micro-machining trials performed within this study. This 4-axis 

Miniature Machine Tool (MMT) addresses the machining of micro-parts, i. e. 

dimensions at or sub millimetre range with high dimensional and geometrical 

accuracies, through mechanical chip removal processes (micro-milling) was 
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developed with purpose to investigate its capability and contributions to this 

field. 

Figure 3.4 (a) shows the illustration of the 4-axis MMT that was constructed 

and used as the benchmark of the MicroMAS development for micro- 

machining environment, while Figure 3.4 (b) shows the complete MMT (with 

the cover of the machine has been removed) which has been set-up in a micro- 

machine lab, University of Nottingham - MCM group. 

Component 
1 Granite base 
2 Machine frame 

3,4 Linear stage (X and Y axis) 
5 Goniometre (U axis) 
6 Dual counter-balance head 

Z axis 
7 Brushless motor spindle 
8 Spindle arm 
9 Cutting tool 

Figure 3.4 (a) Illustration of 4-axis Miniature Machine Tool (Source : [3S]) 
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Figure 3.4 (b) The set-up of the miniature machine tool 



3.4.1.1. MMT components 

In the development of the MMT, a gantry configuration has been adopted for 

construction of the system in order to allow easy access to the working space 

and to exploit the advantages offered by the new-technology miniature weight- 

compensated linear stages. Details on the major components of the MMT are 

described as the following: 

" Machine tool frame 

The frame was manufactured of INVAR 36 alloy (INVARiable Ni - 

36%, Fe-63%) that was particularly chosen due to its low thermal 

expansion coefficient (1.3x10"6 °C"1 between 20-100°C), thus minimising 

the dimensional errors due to temperature variations. 

0 Machine base 

The gantry frame was mounted on a granite base (Figure 3.4) that with its 

low thermal expansion coefficient (8.6x10"6 °C" between 20-100°C) not 

only minimises the effect of temperature variation on the dimensional 

chain of the MMT system but also has, to some extent, the capability to 

damp external vibrations (140-1600Hz) [173]. 

0 Positioning tables 

The realisation of the 4-axis of MMT has been achieved by employing 

high resolution positioning stages (manufactured by Aerotech) with 

technical capabilities presented in Table 3.2. Two linear motor stages 

(ALS 130-025) assembled perpendicular to each other provide 25mm 

travel in X and Y directions. The direct drive goniometre (ANT-20G-90) 

placed on top of linear stages enables swivel (rotary) action of 20° in U 

direction. In addition, the vertical movement of 25mm in Z direction is 
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achieved using a dual counter-balanced linear motor stage (ALS 130-025) 

that is fed by regulated dry air for suspension inside the cylinders at both 

ends to ensure smooth and stable operation of the stage. 

Table 3.2 Characteristics of the positioning system and spindle units of the 4- 

axis MMT 

Characteristics of the multi-axis motion system of the 4-axis MMT ` 

X and Y axis tables: Linear motor stages 

Total travel: 

Drive system: 
Feedback: 

Resolution: 

Max. travel speed: 
Max. linear acceleration: 
Max. load: 

Repeatability: 

Nominal stage weight: 

25 mm 
Linear Brushless Servomotor 

Noncontact Linear Encoder 

0.005 - 1.0 µm 
300 mm/s 
10 m/s2 
12 kg (horizontal); 10 kg (side) 

±0.1 µm 
3.0 kg 

U axis table: Direct drive goniometre 

Transverse axis radius: 90 mm 

Travel: 20° 

Resolution: 0.00082 arc sec 

Repeatability: ±0.5 are sec 

Max. load: 2.0 kg 

Velocity: 150 °/sec 

Nominal stage weight: 1.1 kg 

Z axis table: Dual counter-balanced linear motor stage 

Total travel: 25 mm 

Drive system: Linear Brushless Servomotor 

Feedback: Noncontact Linear Encoder 

Resolution: 0.005 - 1.0 µm 
Max. travel speed: 300 mm/s 

Repeatability: ±0.1 µm 

Characteristics of the spindles of, the 4-axis MMT 

AC brushless motor spindle 

Spindle speed: Up to 50,000 rpm 
Spindle accuracy: within 1 µm 
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Max. output power: 250 W 

Weight: 1,067 g (w/cord) 

Collet chuck: 01 mm; 03 mm; 06 mm 

Air driven spindle 

Spindle speed Up to 200,000 rpm 

Spindle accuracy within 1 µm 

Weight 200g 

Air pressure 0.3MPa 

Collet chuck 01.6 mm 

0 Motor and spindle unit 

A brushless motor-spindle unit with controller and airline kit (ASTRO-E 

500Z) was chosen (Table 3.2). Brushless motor-spindle unit with ceramic 

bearings (EMS-3057) is an integrated motor and spindle solution with 

high speed rotation of 50,000rpm and low tool run-outs (<1 µm). The 

controller (NE147) enables high degree of control over the speed while 

the airline kit (AL-0201) supplies dry and regulated air into the spindle. 

The spindle unit was attached to the dual counter-balanced head via the 

spindle arm that was manufactured of INVAR 36. 

0 Cooling system 

The cooling system designed for the MMT which consists of two 

sections: the suction/pumping system and the plastic container able to 

allow wet machining condition to be run in the MMT. The 

suction/pumping system functions are to deliver and to pump out the 

cooling liquid from the machining area and also to filter the coolant. The 

plastic container which comprises of two parts (the tray cover and the 

working tray) takes the role in protecting the motion tables. The coolant 

that will be used in this study is Hocut 3380 high lubricity chlorine and 
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sulphur free soluble oil blended with severely refined mineral oils. The 

resultant rich milky emulsion is very low foaming and suitable for high 

pressure coolant systems which associated with modem CNC machine 

tools. It was recommended to use between 4% and 6% concentration for 

general machining [174]. 

0 Active vibration isolation system 

To ensure high degree of insulation of the working environment from the 

external sources of vibrations, an active vibration isolation system (TS- 

150) has been used as a dedicated table for the MMT. The active 

vibration isolation table has been placed under the granite base of the 

micro-machining system (Figure 3.4(b)). 

3.4.2. Materials 

The workpiece materials that were selected are AISI 1040 Steel, 316L- 

Stainless Steel and Titanium Alloyed (TiA16V4) which are widely used in 

machining of wide range of micro-products, forms and finishes. As example: 

Mild and 316L steels have been used for developing micro-moulds [39,127, 

131-132,148-149] while 316L and TiAL6V4 have been utilized in producing 

medical devices such as such as micro-spray valve for precise aseptic and 

sterile fluid applicant [175]. 

In this study, these materials were used for generating the micro-testpiece, 

machining micro-slots and thin walls and also producing micro-component 

demonstrator. The material properties are important to be analysed, as example 
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the hardness has a significant impact in terms of the tool capability to machine 

them as it is essential for the tool to be harder than the workpiece material. 

Table 3.3 displays the basic characteristics of the materials used in the 

experimental part of this study. 

Table 3.3 Material properties [87] 

S l 
316L - Titanium 

tee 
Property (AISI1040) 

Stainless Alloyed 
Steel (Ti-6A1-4V) 

C: 0.37 - 0.44, 
C: 0.07, 

Cr: 16 - 180, ± C: 0.08, C 
Composition Mn: 0.6 - 0.9, Fe: 61.9 - 72.0,1 Al: 5.5 - 6.75, 

(WT %) P: 0.04, Mn: 2, Ni: 10.0 -! Fe: 0.3, 
S: 0.05 14.0, P: 0.045, Si: j H: 0.01 

1.0 Mo: 2.0-3.0 

Density 
(kg/m 

6920 -9130 i 
8000 

430 
-4700 

Hardness 
I HR 

7.4-12.0 
110.5-18 

32.8-34.5 
E( c) I 

3.4.3. Cutting tools 

In this study, the selected cutting tools are Sandvik Coromant flat end mill 

cutters with diameters between 0.5 and 0.8mm. These solid carbide milling 

cutters (CoroMill® Plura) are commercially available and suitable for wet or 

dry machining. The cutting edges had a rake angle of 10° and a helix angle of 

300. 

As suggested by the manufacturer, these tools are compatible for general 

machining (e. g. shoulder/face/slot-milling) and also profile-milling in most 

materials. Figure 3.5 presents an example of the specifications of a flat end 
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milling cutter with diameter of 0.6mm. Appendix 3.1 illustrated the 

specifications of the other tools employed (e. g. cutter diameter of 0.5 and 

0.8mm). Figure 3.6(a) shows the tools used in this study, while Figure 3.6 (b) 

presents the magnified version (X100) of 0.6 mm cutter. 

8216.32-00630-AEO6G 

Zn 2 

D, (mm) 0.6 

12 (mm) 54 

ap (mm) 0.6 

D4 (mm) 

dm, n (mm) 

00 

A-A 

/'" _ go 
.\ 

N 
u4T 

-L 
I 

0.56 8p AA I3 

1 '30, 6 
-T- 

10 30' 
3.5 Specifications of Sandvik-Coromant end mill cutter 
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Figure 3.6 (a) Examples of micro-milling cutters employed in testing 



3.4.4. Machining of the `adapted standard' micro-testpiece 

In order to assess the cutting accuracy of the MMT, an `adapted standard' 

micro-testpiece which is similar to the one suggested in ISO 10791-7: 1998 

(Test conditions for machining centres- Part 7: Accuracy of a finished 

testpiece) has been selected [176]. For the purpose of assessing the capability 

of the MMT, the defined standard micro-testpiece was scaled down 

appropriately as shown in Figure 3.7. It carries all the significant features of the 

machining standard and would be an appropriate example for assessing cutting 

accuracy of the MMT. Some of the significant features are: 

" Circularity with the inner circle. 

" Linearity or straightness of the outer square. 

" Perpendicularity at the comers. 

" Angular accuracy (45° at the edge of the inner diamond with outer square). 

" Parallelism with the opposite sides of a square. 
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Figure 3.6 (b) End mill 0.6 mm cutter 
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Figure 3.7 The ̀ adapted-standard' micro-testpiece (in mm) 

On completion of machining the micro-testpiece, the workpieces were 

evaluated for their geometrical accuracy and surface quality. In the following 

paragraphs, the procedures and criteria of these assessments are demonstrated. 

The results from these evaluations can provide an overview on the capability of 

the MMT in producing micro-part. 

Geometrical accuracy analysis 

Two approaches were implemented for the geometrical accuracy assessment: 

firstly by using the coordinate measuring machine (CMM) and secondly via a 

Keyence VHX-Optical Digital Microscope. The AISI 1040 sample was 

evaluated using a Carl Zeiss F25 Microsystem CMM (Figure 3.8(a)) with 0.3 

mm stylus diameter. The 3D CMM which is supported on air bearing with a 

measuring volume of one cubic decimetre is capable of measuring micro- 

system components at a resolution of 7.5nm. The silicon stylus was developed 

based on a 6.5 x 6.5 mm silicon chip membrane and integrated piezo-resistive 
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elements. As shown in Figure 3.8 (b), an additional camera aids visualisation 

when probing the miniaturised features, thus simplifying part programming. 

Figure 3.8(b) also presents the example of AISI 1040 micro-testpiece sample 

being evaluated via the Carl Zeiss F25 Microsystem CMM. 

,? 

ý` 
". 

F25 

kl- ".. 

  

Figure 3.8 (a) Carl Zeiss F25 Microsystem CMM 
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Aspects that are being focused on the CMM analysis of the AISI 1040 micro- 

testpiece are: 

" Circularity of the circle (from top of the cylinder) 

9 Straightness of outer square and the diamond shape 

" Perpendicularity at the corners 

" Angular accuracy (45° at the edge of the inner diamond with outer square) 

9 Flatness on top of cylinder 

For the Keyence VHX-Optical Digital Microscope (Figure 3.9) evaluation, 

TiA16V4 sample was analysed based on the aspects listed below: 

" OCylinder 

" LA, ZB, ZC and ZD 

"L EC 

" 11 AB 11,11AC11,11CD11 and 11 BD 11 
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Figure 3.8 (b) AISI 1040 micro-testpiece being evaluated via CMM 



Figure 3.10 shows the example of on screen image of measuring the diameter 

of the cylinder under the microscope. All aspects mentioned above are being 

repeatedly measured (3 to 5 times) and the results are being averaged with 

standard deviation values are included. 

Figure 3.10 The example of on screen image of measuring the cylinder 
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Figure 3.9 Keyence VHX-Optical Digital Microscope 



Surface quality measurements 

For the surface quality assessment, the machined micro-testpieces were 

analysed using a Taylor Hobson Talysurf CLI 1000 (Figure 3.11) equipped 

with an inductive gauge (stylus tip radius 2µm - with resolution of 40nm). It is 

a scanning surface topography instrument that moves the workpiece under a 

stationary gauge head. Data is collected one point at a time with each point 

having a discrete X, Y, Z location. For the inductive gauge (also shown in 

Figure 3.11), a diamond stylus which is attached to a lever arm is drawn over 

the surface. Vertical movement of the stylus (when it travels across the peaks 

and valleys) is converted into an electrical signal by the inductive gauge [ 177]. 

R^Q 

Gauge selection 

Vertical (Z) slide 

Horizontal (X-Y) slides 

Remote control keypad 

Stylus 

Granite base end 

Figure 3.11 Talysurf CLI 1000 system for surface quality analysis [177] 
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The procedures in analysing the surface roughness of the micro-testpieces are 

described as below: 

0 The inductive gauge was placed on top of the cylinder (Figure 3.12(a)) 

" The surface profile was analysed at 8 different positions as shown in 

Figure 3.12(b). 

The parameters used to evaluate the surface quality were the arithmetic average 

roughness (Ra) and also the average maximum height of the analysed profile 

(RZ). Surface roughness values (Ra and RZ) were averaged results of 8 

measurements executed across the cylinder's top surface with sampling length 

=0.8mm and cut-off value of 0.04mm. 

3 

Stylus 4 
5 

6 

Workpiece 

(a) Placement of inductive gauge (b) Number of measurement 

Figure 3.12 Measurement procedure using Talysurf CLI 100 

The details of machining procedures and parameters will be discussed in 

Chapter 6. 
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3.4.5. Machining micro-slots and thin walls 

Another crucial attribute in assessing the ability of a machine tool is to produce 

thin features because they represent one of a major challenge in micro- 

machining [128]. To address this, the experiment of producing thin walls 

between two micro-slots was proposed in this study. The experiment was 

performed by machining different dimension (for different cutters diameter) of 

the micro-slots and thin walls in various materials. The selected materials for 

these trials were 316L and TiA16V4. Table 3.4 shows the dimensions for 

micro-slots and thin walls that have been proportionately determined based on 

the cutter's size. The dimensions of the thin wall and micro-slot were 

determined based on the previous study that produced milled thin walls and 

slot in micro-levels [134,154,158,161,178-180]. 

The width of the thin wall was determined based on 20% of the cutter's size 

while the height was the maximum depth of cut recommended by the tool 

manufacturer. Whereas for the micro-slots, the width was determined based on 

the ratio of 1.2 of the cutter's size while the height follows the maximum depth 

suggested by the tool manufacturer. 

Table 3.4 Dimension of thin wall and slot 

Tool diameter 
(mm) 

Thin wall (WxHxL) 
in mm 

Slot (WxHxL) 
in mm 

0.5 O. lOxO. 50x5.00 0.60x0.50x5.00 

0.6 0.12 x 0.60 x 5.00 0.72 x 0.60 x 5.00 

0.8 0.16x0.80x5.00 0.96x0.80x5.00 
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Besides analysing the thin wall and micro-slots, this set of experiments also 

give an opportunity for surface roughness aspect to be analysed and more data 

for MicroMAS being collected. In order to do so, by using the same tool after 

producing the micro-slots and thin walls, an area of surface profiling were 

machined at the end of the workpiece. Figure 3.13 illustrates the proposed 

micro-slots, thin wall and surface profiling area to be machined on the 

workpieces. 

Slotl Slot2 
Surface 

profiling 
area 

Thin (ARa) 

wall 

WW 

a, 
r(aX2 

Axa 
WI W2 

Figure 3.13 Illustration of the testpiece containing a thin wall and micro-slots 

The procedure of evaluating the geometrical accuracy of the thin walls, micro- 

slots and also the surface quality of the surface profiling area is presented in the 

following section. The details of the machining procedures and parameters 

implemented to generate this sample demonstrator will be discussed in Chapter 

6. 
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Geometrical accuracy analysis 

For the geometrical accuracy measurement, these samples are measured using 

a Keyence VHX-Optical Digital Microscope (Figure 3.9) (x25 - x175 

magnifications) on the dimensions of the generated micro-slots and thin walls. 

The accuracy of the angles (a,, a2), the width of the micro-slots (WI and W2) 

and of the thin walls (W3) were measured 3 times, the average and standard 

deviation values were then calculated. 

Surface quality measurement 

The surface roughness measurement was performed using a Talysurf CLI 

10000 (inductive gauge) at the area (Age) as shown in Figure 3.13 in 10 

different locations along the AR. (Figure 3.14). Surface roughness values (R8 

and RZ) were averaged with sampling length of 0.8mm and cut-off length of 

0.025mm. 

MMMMMMIIMM- 

The direction of the inductive 

gauge movement 

Figure 3.14 Measurement procedures (from top view of the workpiece) 
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3.4.6. Producing the micro-component demonstrator 

To further understand the ability of the MMT, a generic micro-component that 

includes various features/shapes such as blind cavities (holes), slots and bosses 

is employed for machining. This micro-component is proposed to be machined 

in a difficult-to-cut material such as TiAl6V4. Figure 3.15 shows the 

dimensional details of the selected micro-component. 

4_ 

0- 15 

Front view 

Figure 3.15 Details dimensions of the micro-component demonstrator 
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On completion of machining operations, the micro-component was assessed for 

its geometrical accuracy and surface quality. The methods and criteria of the 

evaluations are presented in the following paragraphs, while the machining 

procedures and parameters will be discussed in Chapter 6. The results from 

this assessment can provide an indication of the ability of the MMT in 

producing micro-component. 

Geometrical accuracy analysis 

For the geometrical accuracy assessment, all features (as illustrated in Figure 

3.16) were measured using a Keyence VHX-Optical Digital Microscope 

(Figure 3.9) as the following: 

. Width - WFi, WFz, WF39 WFS, WF6, WF7, WTw=Thin Wall between F2 and F3. 

. Length - LFI, LF2, LF3, LF5, LF6, LF7 

. Radius - RF4. 

All measured values were averaged results of 3 to 5 measurements with 

standard deviation values (a - 99% of confidence interval) are being 

considered. 
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LF5 14- 
WF7 

LF7 

WF5 

Figure 3.16 Dimensions measured from the machined micro-component 

Surface quality measurement 

The surface roughness measurement was again performed using a Talysurf CLI 

1000® (inductive gauge). The stylus was located on the top of workpiece at 

four different areas (outer part of F1, within F2, F3 and F5) as highlighted in 

Figure 3.17. The arrows in the figure indicate the direction of the inductive 

gauge in measuring the surface profile. Surface roughness values (Ra and RZ) 

were averaged from 3 measurements with sampling length between 0.5 and 

0.8mm and a cut-off length of 0.025mm. 
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Figure 3.17 Area of surface roughness measurements indicating the directions 

of the inductive gauge 

3.5. Uncertainty evaluation model (UEM) 

In the third phase, the development of the UEM was considered to analyse the 

influence of the occurred errors in constructing the MMT on the geometrical 

accuracy of the machined micro-parts. Furthermore, it also allowed on 

understanding of how these errors are transferred into kinematic (tool path 

generation) flaws. However, the errors occurring/generated during machining 

(e. g. tool deflections, tool wear, vibrations) are not considered in this study. 

Besides developing a model/method that can predict errors of a (custom-made) 

machine tool, the results from this analysis is proposed to be integrated into the 

MicroMAS. The integration can portray the real condition of the MMT in the 

developed MicroMAS. For this reason, the effect of flaws in the MIMT 
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construction is taken into consideration in determining the MIs. The details of 

this approach will be discussed in Chapter 4 and Chapter S. 

Figure 3.18 shows the steps taken to develop the UEM which is based on the 

ISO GUM [95,102]. The analysis of the UEM is carried out in GUM 

Workbench which is a software tool for evaluation of uncertainties in 

measurements. Basically, the approach taken to develop the UEM is divided 

into three main phases: model development, model analysis and finally 

simulation and validation. 

' 
.oW: 

Phase I Model development 

Define sources of errors 

Generate model 

g:, F. 
Phase` II -Model Analysis 

Formula and data input 

Model interpretation and evaluation 

Results generation 

.,. 
Phase III Simulation and Validation 

Simulation of result 

Validating the result 

Figure 3.18 The UEM development phases 
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Referring to the above figure, the UEM is developed based on the following 

description: 

3.5.1. Phase I: Model developments 

3.5.1.1. Define the output quantity or the measurand (1) 

The first step in developing the uncertainty model is to define the measurand Y 

which is the particular quantity to be determined. In this study, Y is defined as 

the coordinates (x, y, z) from the tool path of generating a cylinder using spiral 

milling movement. The measurand Y is often not measured directly but 

determined from N other quantities: X1, X2, 
..., 

XN through a functional 

relationship f as described in Equation 2.1 [95]: 

Y=f(X1, X2, 
..., 

XN) (Refer to Equation 2.1) 

The input quantities in the measurand model can be evaluated during the 

current measurement or can be themselves function of other low level 

quantities. From here, the estimate of the measurand Y denoted by y is 

obtained by Equation 2.1 using input estimates xt, x2, ..., xN for the values of 

the N quantities X1, X2, 
..., 

XN. Thus the output estimate y, which is the result of 

the measurement, is given by Equation 2.2: 

y=f (X1, X2, ..., XN) (Refer to Equation 2.2) 

3.5.1.2. Define the input quantities (xl, x2,..., xN) 

Next is to identify and fully define the errors (variables) stemming from the 

MMT construction that affect the geometrical accuracy of the generated micro- 

parts. All essential information regarding the identified errors should be taken 

into consideration. In order to identify the errors, the MMT was placed under 

121 



the CMM for metrological analysis. The CMM used was a Mitutoyo Euro-C- 

A121210 CMM with a 2mm stylus diameter (Figure 3.19(a)). Initially the 

CMM must be calibrated with a dedicated sphere ball to ensure the 

measurements are to be accurate. The MMT was placed on the CMM machine 

table and the error minimisation procedures on the MMT assembly will be 

discussed in details in Chapter 6 (Figure 3.19(b)). 

Beside the CMM evaluations, the errors were also identified from the in-work 

MMT observations, previous literatures and related standards (e. g. ISO 230 - 

Test code for machine tools). 

122 

(a) 

Figure 3.19 a) Image of Mitutoyo CMM b) Measurement of the MMT 



3.5.1.3. Establish the measurement model 

Once the errors were identified, the uncertainty model was derived from: the 

outcome of the CMM evaluation, in-work MMT observations, reported values, 

manufacturer's specifications, handbooks and general knowledge. In this, the 

uncertainty of output y which is a combined standard uncertainty was obtained 

from the estimated standard deviation of each input estimation x; that is termed 

as standard uncertainty. The purpose of this step was to evaluate the standard 

uncertainties of the estimates (XI, X2,... XN) of the input quantities where each of 

them were evaluated differently based on its type (A or B) [95,123]. 

3.5.2. Phase II: Model analysis (GUM Workbench) 

As a well-established approach in evaluating the measurement uncertainty, the 

GUide to the expression of uncertainty in Measurements (GUM) was chosen as 

the dedicated uncertainty analysis environment for this study. The GUM 

approach involves a tedious and error-prone series of calculations, but by using 

GUM-software package to perform them, removed from all the difficulty in 

analysing the measurement of uncertainty [122-123]. 

In this study, GUM Workbench which is one of the available commercial 

GUM based software package that has been developed by Metrodata GmbH, 

Germany [123] was selected to estimate uncertainty measurement for errors in 

constructing the MMT. This software is available from the Metrodata website 

(httl2: //www. metrodata. de/download en. html) and it can be freely used for 

educational purposes. Moreover, based on the discussed features in section 

2.3.5 (Chapter 2), GUM Workbench claimed to own all of them [121-123, 
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181]. This software tool is used to analyse the uncertainty of physical 

measurements and calibrations based on the internationally recognised GUM- 

method. It supports a systematic procedure in building an uncertainty analysis 

starting with the mathematical equation which models the physical relationship 

of quantities in the respective measurement. The analysis process is controlled 

by the appropriate classification of the input values according to the available 

information that are based on the procedures and formula given in the 

following publications [121,181]: 

" Guide to the expression of uncertainty in measurement (GUM). 

" Expression of the Uncertainty of Measurement in Calibration (EAL R2). 

" ISO/DTR 14253-2: "Geometrical Product Specifications (GPS) - 

Inspection by measurement of workpieces and measurement equipment - 

Part 2: Guide to the estimation of uncertainty of measurement, in 

calibration of measuring equipment and in product verification" (PUMA - 

method). 

" NIST Technical Note 1297 Guidelines for Evaluating and Expressing the 

Uncertainty of NIST measurement Results. 

GUM Workbench was claimed to be very intuitive, easy, user-friendly and 

systematic [121-123]. Based on the experience of using the GUM Workbench, 

Jalukse et al. [181] described this software as a very good program for 

modelling measurement procedures which allows the main sources of 

uncertainty to be highlighted and suitable for a wide range of measurement 

problems from very simple to very complex procedures. It also provides a very 

clear interface in presenting the formulas and its definition and offers a 
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standard format of uncertainty report. While Axinte et al. [99,106] has also 

successfully carried out uncertainty evaluation in both quantifying tool life 

measurements for turning process and also expressing the uncertainty in cutting 

force measurement which takes into account process-related contributions. 

3.5.2.1. Model input in GUM Workbench 

The generated model as in Equation 2.2 is then inputted into the GUM 

Workbench for the uncertainty analysis by considering the details of all the 

input quantities (XI, X22 ... xN). Figure 3.20 shows the example of the model 

equation interface in GUM Workbench where all the parameters in the 

developed model (Equation 2.2) and its descriptions (e. g. units) are being 

input. 
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Following the completion of providing the generated model into the model 

equation interface, the details of each declared parameter are required in the 

Quantities interface as shown in Figure 3.21. As stated in Chapter 2, each input 

quantity can be classified as either Type A (repeated observed quantity) or 

Type B (non-repeated observed quantity/known uncertainty). In GUM 

Workbench, for Type A, it is evaluated by a statistical analysis of a series of 

observations (e. g. experimental results). While for Type B, it can be associated 

with different type of probability distributions (e. g. Normal, t-distribution, 

rectangular, u-shaped, triangular and trapezoidal). It is very important to 

classify the input quantity as each type (A and B) has different approach of 

evaluation. 

Then, the uncertainty analysis towards the generated model is being done by 

selecting the Budget button (as shown in Figure 3.21). In here, the GUM 

approach calculation of standard uncertainty, sensitivity coefficient, combined 

standard uncertainty, degrees of freedom, coverage factor and expanded 

uncertainty are being made. 
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The result of the analysis is clearly defined on a table that contains all variables 

with their symbols and values, the assigned standard uncertainty and actual 

degrees of freedom, the sensitivity coefficient worked out by the model 

equation and their contribution to the standard uncertainty of the 

measurement's result. Finally, the complete result of the uncertainty analysis is 

presented as a value with the connected expanded uncertainty and 

automatically selected coverage factor. 

3.5.3. Phase III: Simulation and validation 

The generated uncertainty results obtained from the GUM Workbench analysis 

were simulated and validated via machining experiments and observations. 

i. In order to simulate the validity of the uncertainty model, the spiral milling 

tool path was performed without cutting while stopping the tool at particular 

time intervals and the tool tip position was evaluated using CMM. 

ii. The results from the CMM measurements have been compared with those 

obtained with the uncertainty model in terms of errors in roundness and 

height of the cylinder on which spiral milling was simulated. 

3.6. Integration of MicroMAS, micro-machining experiments' results 

and UEM's results 

In the final phase, it was the aim of the study to incorporate the results from 

micro-machining experiments and UEM analysis into the developed 

MicroMAS. This was to ensure that the system emulated its domain (the 

MMT). Table 3.5 summarised the contribution of UEM and micro-machining 

experiments into the MicroMAS. Figure 3.22 shows the overall built of the 
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MicroMAS where it presents the contributions and relationship between the 

UEM, micro-machining experiments and MicroMAS. 

Table 3.5 Contributions of UEM and micro-machining experiments into 

MicroMAS 

Aspect Contributions/Relationship 

Micro-machining " Provide surface roughness and geometrical 
experiments accuracy values for the related MIs. 

" Validate the UEM analysis when spiral 
milling of a cylinder. 

" Present the overview of the MMT capability 
in producing various types of micro-features. 

UEM analysis " Propose a model/method that can predict the 

errors of a custom-made machine tool. 

" Visualise the real condition of the MMT 
construction. 

" Provide the effect of the errors in the MMT 

construction through MIs. 
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CHAPTER 4: PRIMITIVE FEATURE ANALYSIS TECHNIQUE 

4.1. Introduction 

In developing the Manufacturability Analysis System (MAS), the feature 

analysis approach is one of the methods used to extract information from 

proposed design (CAD model) for its manufacturability assessment purposes. 

A new technique called "Primitive Feature Analysis" (PFA) has been 

developed in this study for gathering essential data from CAD models and to 

further analyse their manufacturability. Furthermore, this is the technique that 

is implemented in the developed MicroMAS explicitly for micro-milling 

process run on the custom-made 4-axis Miniature Machine Tool (MMT) for 

the above mentioned purposes (data gathering and manufacturability 

assessment). 

This chapter describes and illustrates the mechanism of the PFA technique 

which consists of three phases: primitive feature identification, Single Feature 

Analysis (SFA) and Coupled Feature Analysis (CFA). The concepts, objectives 

and flowcharts of each phase are discussed. Then, the implementation of the 

PFA technique's algorithm on a CAD model is described and demonstrated. 

Finally, the execution of the PFA technique in the developed MicroMAS is 

defined and briefly discussed. 

4.2. Description of Primitive Feature Analysis (PFA) technique 

Instead of using laborious methods of data extraction from CAD models and to 

address the limitations of other methods (e. g. feature-based extraction system, 
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neutral files usage) mentioned in Chapter 2, this study proposes a new structure 

for MASs that relies on a "translation" of CAD essential information into a set 

of algebraic primitive features whose manufacturability are analysed in a 

singular and interrelated (i. e. coupled) manner. In contrast with the common 

approach that focuses on extracting the data based on a wide range of single 

entity features (e. g. holes, slots, pockets, steps, dovetails, counter bores/sinks), 

this study proposed the opportunity of feature analysis based on a reduced 

number of algebraic primitives (e. g. box, sphere, cylinder, cones). The 

introduction of Primitive Feature Analysis (PFA) technique manifests a new 

opportunity in obtaining data from CAD models and further to analyse their 

manufacturability as a prerequisite for more efficient MASs. In CAD systems, 

Primitive Feature (PF) is a known concept and by using this as the foundation 

for the feature analysis in PFA technique, it is believed MAS users will define 

the parts easier. 

In this study, the PFA technique is implemented by gathering data from CAD 

models and being executed throughout the entire MicroMAS for the purpose of 

manufacturability aspects assessment. PFA is defined as a method for assessing 

the manufacturability of singular PF as well as their interactions (coupled PFs) 

in making possible the realisation of the CAD models and further enabling the 

manufacturability analysis of the part. In this study, the selected PFs are: box, 

sphere, cylinder and cone (as illustrated in Table 4.1). 
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The approach of the PFA technique is to define and to gather data from the 

proposed CAD models, based on the contained PF, and further to express their 

existence as bosses (positive PF) or pockets (negative PF) on the analysed 

parts. Furthermore, once the manufacturability of each negative/positive PF is 

evaluated, the next step is to interact them by assessing their degree of 

compatibilities which lead to the evaluation of part manufacturability by use of 

aggregate indexes that will be discussed in this chapter. 
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Table 4.1 Illustration of Primitive Features 

Type Primitive Feature (PF) 

71 

H 

Box L /w 

0. 

Cylinder 
H 

Cone y 

D 

Sphere Cpl 

Legend: "L- Length 

"W- Width 

"H- Height 
"D- Diameter 

" oc, - Extension angle of the cilindrical surface 
"0- Surface angle = Angle made from the surface to the centre point 

4.3. Manufacturability indexes 

The manufacturability analysis which is based on the PFA technique is 

expressed through specific Manufacturability Indexes (MIs). MIs reflect the 

relative ease of machining of the component based on associated ratings of 
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various aspects such as PF characteristics, surface roughness, tool dimension, 

tolerances, machinability of selected materials and also uncertainty effect in 

machining the micro-feature using the custom-made 4-axis Miniature Machine 

Tool (MMT). The MMT is being highlighted because it is the domain for the 

MicroMAS where the PFA technique is being implemented in this study. 

MI evaluations are based on the results from Single Feature Analysis (SFA) 

performed for each PF that is followed by Coupled Feature Analysis (CFA) to 

reflect their interactions. In calculating MI at SFA level, there are five key 

characteristics that have been considered: form of singular PF (as in Table 4.1), 

uncertainty impact in machining the feature, surface roughness, tolerances and 

tool diameter effect on machining the PF's minimum curvature. For each key 

characteristic an MI value is assigned. 

MI for singular PF (MIFF) reflect the level of manufacturability based on the 

geometrical aspects of a PF such as: orientation of the PF (boss or cavity), 

shape (straight, negative or positive tapered) and end-corner specifications. MI 

for surface roughness (MIRa), tolerances (MITOL) and tool dimension effect 

(MIpim) emulate the quality measures of the part as chosen by the user. While 

the UEM impact is represented by MIUEM, where this index justifies the real 

condition of the MMT will be discussed in Chapter 5. The simulation of 

determining all the MIs will be presented in sections 4.4 and 4.5. 

All these indexes are summed up to an index (MISFA) that reflects the level of 

manufacturability for the analysed PF as shown in Equation 4.1. A weighting 

factor (0<K;: 51) is assigned to each index based on the user decision in 
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determining which key characteristics are more important when considering 

the manufacturability of the PF. 

j K, 
. 
MI; 

MISFA =5 
(Equation 4.1) 

Where i= PF, Ra, TOL, DIM, UEM 

The indexes are represented by a rating convention generated based on micro- 

machine specifications, recommended cutting parameters, previous 

manufacturability evaluations [7,11,69,71-72] and feature analysis [60]. The 

following rating convention for any output measure (e. g. MIPF, MIRa, MIUEM, 

MIDIM, MITOL and MISFA) has been implemented throughout the entire PFA 

technique (single and coupled features as well as overall analysed part): 

9 Medium level of manufacturability; 

" Harder level of manufacturability; 

" Easier level of manufacturability; 

for 0.5<MIS1.0 

for MI S0.5 (Equation 4.2) 

for MI >1.0 

The calculations of indexes for all the output measures are described 

throughout this chapter and simulated in section 4.5. 

4.4. PFA framework and mechanism 

The PFA technique is developed based on primitive features concept, 

machining experiences/observations and also results from micro-machining 

experiments and/or from related literature. Figure 4.1 shows a flowchart with 

additional graphical representations of analysis done at each phase of the PFA 

137 



technique: Phase 1- PF identification, Phase 2- Single Feature Analysis (SFA) 

and Phase 3- Coupled Feature Analysis (CFA). 

The objective of SFA is to assess the level of manufacturability for each 

defined PF based on their orientation, shape and end-corner specification while 

the aim of CFA is to analyse the relationships between the PFs based on their 

relative distances and type of interaction (e. g. attached PF). The results from 

the SFA determine the MISFA for each identified PF and while the results from 

the CFA level conclude the MICFA and MIOVERALL for the micro-part. 
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I Phase 1- PF identification 

Identify the number of 
PF 

ý-F' ý `! 

Phase 2- Single Feature Analysis (SFA) 

Identify the type of I 

each PF 

Assign the 

orientation of PF 

Identify the shape 
of PF 

Specify end-corner 
of PF 

MIN 

aU 

1: 

'D 7T ýý 

'I 

Determine MIFF, MITOL, MIS, MIUEM, MIDII�I 

Calculate MIsFA and Stiffness Ratio (Rs1) 

L LL, L- J 

Phase 3- Coupled Feature Analysis (CFA) 

Interaction Determine Calculate 
between PF MICFA 

1--ý 

MIovEx jj. 

Figure 4.1 Flowchart and illustration of PFA technique 
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4.4.1. PF identification 

In the first phase, each of the PF contained in the proposed CAD model is 

identified and a number is assigned to each of them that act as the unique 

reference for future analysis in the PFA process. In this phase, the user has to 

recognize all the PF contained in the proposed design and to identify their 

geometrical characteristics. If there are features that cannot be considered, in a 

simplified way, as PFs, the user will "decompose" them to fit the requirements 

of the system. 

Table 4.1 presents the essential geometrical data required from each PF to 

assist the analysis process. The data collected are then used for the 

manufacturability analysis based on the mechanisms discussed in the following 

part. 

4.4.2. Single feature analysis (SFA) 

For the second phase, the evaluation of MISFA is the key elements of SFA that 

stem from the analysis of PF as follows (Figure 4.2): 

(i) Assign the orientation for type of each PF 

(ii) Assign the shape of PF 

(iii) Specify the type of end-corner 

(iv) Analyse tolerance, dimension, UEM impact and surface roughness 

(v) Evaluate the stiffness ratio (Rst) of related PFs 

Referring on the flowchart and illustrations in Figure 4.1 and 4.2, SFA 

approach for identifying and analysing PFs can be describes as follows: 
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i. Type of PF orientation. 

For each PF, their orientation is assigned whether it is a boss or a cavity as 

described in Figure 4.2(a). Boss is a feature that is generated by removing the 

material outside of it while a cavity is generated by removing the material 

inside of it. If the feature is assigned as a cavity, its type is determined based 

on whether it is a blind or through cavity as illustrated in Figure 4.2(b). 

ii. Shape of PF. 

This is determined based on the side angle value provided by the user during 

the input data session. The category assigned to each PF is whether a 

positive-tapered, negative-tapered or straight shape. Figure 4.2 (c) illustrates 

different types of the side angle (0). A positive-tapered is defined when 0> 

90° while when 0< 90° is considered as negative-tapered and a straight 

shape when 0= 90°. 

iii. End-corner specification. 

It is based on the type of end-corner's shape which is classified as sharp, 

radiused or fillet comer as presented in Figure 4.2(d). 

iv. Analyse quality measures of PF. 

To enable the evaluation of MISFA, the tolerances, surface roughness of the 

PF, the tooling dimensions have to be specified by user and also the impact 

of the UEM analysis. These values are associated with ratings indexes as 

specified in Equation 4.2, the way how each index is calculated for each of 

these output measures will be discussed in section 4.5. 

v. Evaluate the stiffness ratio (lit) of PF. 

As discussed in Chapter 2, one of the challenges in micro-milling is 

producing thin features/walls because it involved the stability of the 
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machining operation. For this reason, the stiffness ratio of the particular PF is 

evaluated by comparing the calculated ratio with pre-set values. The pre-set 

values are determined from various sources (e. g. machined micro-parts on 

the MMT, machining experiences, the MMT capability). Basically by 

making a feature thinner, their stiffness decreases which could result the 

occurrence of vibrations during machining and this leads to deteriorations of 

the process accuracy that affect the part quality. Figure 4.2(e) shows the 

example of R. st calculations for box and cylinder which is based on the 

Length (Width/Diameter)-to-Height ratio. 
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Aspect Graphical representation 

(a) Boss 

and 
Cavity 

(b) Type 

of cavity 

(c) 

Side 

Angle 

d) 
End- 

corner 

J. 

Boss: Feature generated by 

removing the material outside 

Type: Blind 

Cavity: Feature that is generated by 

removing the material inside 

Type: Through 

0 

A1,02 = side angle (defines the shape of the features) 

Lo 
Sharp 

(e) 
Stiffness 
Ratio 

(Rst) 
Rst_ 

D 

H 

Iý 

. "'ýýý". 

"ý 

Fillet 

LorW 
Il Rs, = 

H 

Figure 4.2 Single Feature Analysis terminologies 

Radiused 
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Finally, after these selections/specifications, MISFA values are made for each 

PF (Equation 4.1) and their ratings expressing the difficulty to manufacture are 

evaluated based on the convention specified in Equation 4.2. Examples of 

calculation of MISFA values are presented in section 4.5. 

4.4.3. Coupled feature analysis (CFA) 

In this phase, the determined MISFA is taken at the upper level of analysis, i. e. 

evaluation of MICFA. The CFA aims to determine the level of relationship 

among PFs by taking into consideration the relative distance (RD) and the type 

of interactions between them. RD is the distance between the considered PFs. 

Besides that, minimum acceptable distance (MD) used in determining the level 

of relationship between PFs are pre-defined earlier. The MD was determined 

based on various aspects, for example, the distance between two negative 

boxes (slots) can result in a thin wall that can preserve its geometrical 

characteristics only the features are at a minimum distance; this could be 

dependent on workpiece material (strength), tool run-out (inducing vibrations), 

cutting parameters (influencing cutting forces) and accuracy of the MMT. The 

types of interactions between PFs are illustrated in Figure 4.3. 
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Figure 4.3 Types of PFs interactions 

i. Attached PFs 

PFs that are joint or manufacture related when their relative distance (if 

any) might affect the machining operations and tool path/processing 

strategies. Figure 4.3 (a) shows an example of attached PF between a 

cylinder (PF_A) and a box (PF_B) where both share the same surface. 

ii. Adjacent Pis 

Pf 's that are not joint but positioned next to each other with the relative 

distance between them that is within the range of MD. Figure 4.3(b) shows 

the example of adjacent PF between a "negative" box (PF A) and a 

"positive" box (PF_B). 

iii. Independent PFs 

PFs that are not joint or next to each other in which case the relative 

distance between them are out of the MD range value. Figure 4.3(c) shows 

the example of independent PFs: "positive" box (PF_A) and "positive" 

cylinder (PF_B). 

The calculation of M1CFn is subjected to the specifications shown in Table 4.2; 

this is done by multiplying MISFA with pre-defined coefficients (K1zi)) that 
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depend on the comparison between RD and MD as well as the type of feature 

interactions. In this study, the suggested KRD values in Table 4.2 are 

determined based on machining experiences on the MMT and also related 

previous literature/practices in producing micro-components [34,60,128,134, 

182]. Furthermore. the listed values are not fixed and can be adjust accordingly 

to fit other machining process or machine tool. 

Table 4.2 Specification of KR D for calculating CFA index (Mlcl A) 

Feature 

Classification 

Distance between PFs (mm) MI(FA=MIsFA x Kit, ) 

Attached RD < MD MISFA x 0.65 
RD=MD MISI: A x 0.75 
RD > MD MISFA x 0.90 

No RD MISFA X 1.00 
Adjacent RD < MD MIsi: A x 0.55 

RD = MD MI5I: Ax0.70 
RD > MD MI51:, \ x 0.85 

Independent RD<_ MD MISFA X 1.00 

RD > MD MISI: A X1 . 
00 

Note: RI) - Relative Distance 
MD Minimum Acceptable Distance 

Example of calculating MIc'i: A is presented in the following section. Finally, the 

overall part manufacturability index, MIOVENAI, i,, is evaluated. This is done by 

taking into consideration MICI: A and the machinability index of the workpiece 

material (MIM AT) as referred in the literature [183-184]. Therefore, MIovlRAII 

of the proposed design is calculated as shown in the Equation 4.3 and the 

example of calculating MIovut1\i L is also shown in the following topic. 

n+l 

MI 
A/A,. + MI(/ 

MI =n1 
(Equation 4.3) 

Ol'EX. dLL 

n 

Where n=number of PFs 
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4.5. Example of PFA implementation 

A micro-component has been selected for the purpose to simulate the PFA 

mechanism discussed above which has been machined on the in-house 

developed MMT. Figure 4.4 shows a design of a generic micro-component that 

comprises singular and coupled features such as throughlblind cavities (holes), 

slots and bosses. Figure 4.5 shows the detailed dimensions of the selected 

micro-component. This CAD model is analysed based on the PFA mechanism 

and its results are shown in Tables 4.3,4.4,4.5 and 4.6. The complete result of 

this simulation is listed in Appendix 4.1. Figure 4.4 also presents the identified 

PFs which are labelled with PF 
_I 

to PF_8. 

147 

Figure 4.4 Proposed micro-component 



5±0.010 
0.25±0.004 

0.45±0. 

0.8± 0.8± 
1.8±0.006 0.006 0.005 1.8±0.005 

1.6±0.007 0.6± 004 

1.8±0.006 

1.4±0.002 

Ijý 
ý 

3±0.006 

0.15±0.006 

4. 

Front view 

micro-component 

0.20±0.004 

Referring to the phases in the flowchart (Figure 4.1), the above proposed 

design is firstly analysed based on SFA and the summarised results are listed in 

Table 4.3. The complete overall analysis of this micro-component is listed in 

Appendix 4.1. 

5±0.010 

102 

0.15±0.007 
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MIFF for each PF is based on the combination of results from each element 

discussed in the SFA phases: type, orientation and shape of PFs as well as end- 

corner specifications. Appendix 4.2 presented the complete list of MIFF 

analysis based on all possible combinations of the discussed elements for all 

selected PFs used in this technique. 

Table 4.3 Results from Single Feature Analysis 

PF Type PF Type of PF End- 

of PF Orientation Cavity Shape corner 

MIFF Stiffness 
Ratio Rs, 

PF 1 Box Boss N/A Straight Sharp 1.5 3.33 

... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... 

PF 6 Cylinder Cavity Blind Straight None 1.0 8.00 
PF 7 Box Cavity Blind Straight Radiused 1.0 12.00 

PF 8 Box Boss N/A Straight Sharp 1.0 1.33 

Note: N/A - not applicable 

The determination of MIFF started with the exploration of results as illustrated 

in Table 4.3 (refer to the arrows). The MIFF index range (refer to Appendix 

4.2) was generated based on all results of SFA elements which are combined 

and analysed based on pre-defined IF-THEN clauses (this concept will be 

presented in detail in Chapter 7). The index range was populated dependent on 

machining experiences, MMT specifications, geometrical effects, part quality 

measures, feature analysis, usual practice of machining specific features, 

material and process constraints and handbooks. Each PF has its set of SFA 

elements' combinations which determine the MIFF values based on the pre- 

defined conditions. Figure 4.6 magnified the determination of the MIPF for 

PF_5 and also the calculation of the stiffness ratio. 
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RgofPF_5 

=1.6/0.15=10.7 
Type of PF_5: 

BOX 

PF_5 Orientation: 
BOSS 

*%ha 

Type of Cavity PF_5 shape: 
N/A STRAIGHT 

MIpF 5 result: 
1.5 

End Corner: 
RADIUSED 

0*** 
Figure 4.6 Example of MIPF determinations (PF_5) 

Table 4.4 presents some of the conditions when a box is considered as 

primitive feature while the detail conditions for other primitive features are 

listed in Appendix 4.2. 

Table 4.4 An example of PF analysis: A box condition 
Type of 

PF 
PF 

orientation 

Type of Cavity PF 
Shape 

End- 

corner 

MIFF 

Box Boss N/A Straight Radiused 1.5 
N/A Negative-tapered Radiused 0.5 
N/A Positive-tapered Radiused 1.0 

Cavity Through hole Straight Radiused 1.5 

Blind Straight Radiused 1.0 
Through hole Negative-tapered Radiused 0.5 

Blind Ne ative-tapered Radiused 0.5 
Through hole Positive-tapered Radiused 1.0 

Blind Positive-tapered Radiused 1.0 
Note: N/A - not applicable 

As example, for PF_l, the combination result is as follow: PF type - "Box"; PF 

orientation - "Boss"; PF shape - "Straight"; End-corner specifications -"Sharp". 

This combination leads to an index of 1.0 for MIPF which means that PF 
_I 

has 
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the level of niedinnr to mantifacllire. As for PF 5, the outcome of MI1,1. is 1.5 

which defines that the level of manufacturing as easy. This resulted from the 

combination of each element in SFA which are: PF type - "Box"; PF 

orientation - "Boss"; PF cavity type- "N/A"; PF shape -"Straight" and End- 

corner specifications - "Radiused". 

Beside MIp1:, the other manufacturability indices that are taken into 

consideration in determining the MISFA (Equation 4.1) are MII)IM, Mli, oi_, MIR,, 

and In determining the index range for these MIs (e. g. easier, medium 

and harder to manufacture), the first step is to select the nominal value (N) for 

the particular MI that will be considered as medium to manufacture with MI = 

1.0 (results of dividing N by N). Then, based on Equation 4.4, this selected N is 

used to calculate the MI value for any other selected value (denoted as S) such 

as tolerance. surface roughness, UEM effect. 

MI, = (Equation 4.4) 

The calculated MIS will then determine the level of manufacturability based on 

the agreed convention stated in Equation 4.2. By utilizing this approach, the 

generation of index range for MIrIM, Ml, rol_, MIR,, and MItj! M are described as 

the io11mving: 

1. Dimension Index (Mli)iyI) 

MID ýý rates the size of cutter used to generate the PFs and is based on the 

lollowino considerations: 

" The availability of the cutting tool diameter that can be employed on the 

MMT on which MicroMAS is implemented. 
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" The minimum radius of curvature of PFs' should be larger than the 

diameter of the cutter, this is to allow the generation of the smallest milled 

features. 

Figure 4.7 (a) shows the variation interval of MIDIM based on the cutting tool 

diameters. In this study, the value of MIDIM is determined based on the cutting 

tool diameter with assumption that the minimum radius of curvature is based 

on the size of the cutter. The generation of MIDIM is straightforward, for 

example. if the users select a tool with 0=0.8µm, the MIl)! 4 will be 0.8. 

2. Tolerance Index (MI1-oi) 

This index is adapted from the International Tolerance Grades (ITG) based on 

the tolerance grade/class of precision [185-186]. In addition, the results from 

the experiment of analysing the geometrical accuracy of the machined micro- 

slots and thin walls using the MMT are also considered in here. These 

experiments are part of various set-ups in populating relevant data for the 

MicroMAS. From the analysis and the obtained results that will be discussed in 

Chapter 6. the MI-1-0l- index range was divided into series of different feature 

sizes and also adaptation from ITG with assumptions that micro-machining 

result in fine tolerance grades (e. g. 2- 6). Figure 4.7(b) shows the generated 

range of M I-I QL. 

The series of feature size intervals was generated according to the size of the 

proposed micro-slots and thin walls. Based on this, the nominal value(s) for 

MI1-01. for each interval is determined based on the calculated standard 
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deviation which is generated from the measurements on the thin walls and 

micro-slots. As an example, for feature size between 0.5 and 1.0 mm, the 

nominal value selected is 0.0046mm. Based on the discussed approach in 

determining the MIs (Equation 4.4), if the tolerance value selected by the user 

is 0.007mm. then the MI-roj. is equal to 1.52. This is derived from the 

calculations of 0.007 divided by 0.0046 and the level of manufacturability in 

this case is Easy to manufacture. However, the methodology of determining 

the index can accept other relevant tolerance values. 

3. Surface Roughness Index (MIRa) 

This index rates the difficulty of obtaining a minimum workpiece surface 

roughness as specified by the user when employing micro-milling in the 

specified conditions (part geometry, workpiece material). I lere, the 

determination of the MIRa range is based on the results of the surface quality 

analysis from the micro-machining experiments using the MMT (will be 

discussed in Chapter 6). The MIR,, index range was divided into categories that 

also have influence in the obtained surface quality, such as the type of the 

workpiece material and also the size of the cutter selected by the user. This 

range was generated based on the rating convention in Equation 4.2 and shown 

in Figure 4.7(c). The index range was generated based on the R,, measurements 

on the experiment of machining micro-slots and thin walls. The average values 

of R;, were considered as the nominal value for the particular index range 

according to the type of workpiece material and also cutter's size. As an 

example. for machining on 316L material using 0=0.5mm cutter, the nominal 

value that has been selected is 0.033µm. Based on the discussed approach in 
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determining the Mls (Equation 4.4), if the Ra value selected by the user is 

0.016µm. then the MI i 01_ is equal to 0.48. This is derived from the calculations 

of 0.016 divided by 0.033 and the level of manufacturability in this case is 

Hard to manufacture. 

4. Uncertainty effect in machining the primitive feature (MIt; H;, %, ) 

This index is implemented to partly reflect the real condition of the MMT 

which is the main domain of the MicroMAS implementation. It considers the 

uncertainty effects in machining the PF based on the Uncertainty Evaluation 

Model (UEM) analysis on the occurred errors stemming from the construction 

of the MMT which affects the accuracy of the forms/shapes of the machined 

micro-features (e. g. PF). From the analysis and the generated UEM results (that 

gives the expected uncertainties in form/shape machining), it can be concluded 

that the smaller the size or dimension of the PF, the bigger the impact of this 

uncertainty impact towards the machined forms/shapes. 

The foundation of MIuu i index range is similar to MI 'OL where it was divided 

into a series of different features size intervals according to the size of the 

proposed micro-slots and thin walls. The index range for the Miul Ni is 

generated based on the expanded uncertainty value obtained from the UEM 

analysis in machining the cylinder using the spiral milling tool path (will be 

discussed in Chapter 5). The nominal value(s) for MIuLM for each interval is 

determined based on the average value of the obtained expanded uncertainty. 

As an example, for feature sizes between 0.5 and 1.0 mm, the nominal value 

selected is 0.0055µm. Based on the discussed approach in determining the MIs 
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(Equation 4.4), if the uncertainty effect selected by the user for the particular 

PF is 0.0085 µm, then the MIM is equal to 1.55. This is derived from the 

calculations of 0.0085 divided by 0.0055 and the level of manufacturability in 

this case is Easy to manufacture. Figure 4.7(d) presents the generated index 

that reflects the real condition of the MMT due to the error on constructing it. 
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a) Value of MIDIM 

<_o. s 1.0 >1.0 

Harder to manufacture Easier to manufacture 

Value of Cutter Diameter (mm) 
0.2 0.5 0.8 

(b) Value of MITOL 

Feature size (mm) 

5 0.5 

Harder to manufacture 

1.0 > 1.0 

Easier to manufacture 

Tolerance value (mm) 
0.0-0.5 0.0012 0.0030 0.0060 
0.5 -1.0 0.0020 0.0046 0.0070 
1.0-1.5 0.0024 0.0049 0.0078 
1.5-2.0 0.0030 0.0062 0.0086 

> 2.0 0.0034 0.0078 0.0092 
Tolerance class* 2 4 6 
*Standard from International Tolerance Grade 

(c)Value of MIRa 

S 0.5 1.0 >1.0 

Harder to manufacture Easier to manufacture 

If 0 
Material: 316-Stainless Steel 

Cutter's size Re value m 
0.5 0.016 0.033 0.043 
0.6 0.008 0.018 0.028 
0.8 0.009 0.019 0.029 

Material: Titanium Alloyed 
Cutter's size R. value (m 

0.5 0.019 0.039 0.049 
0.6 0.024 0.049 0.059 
0.8 0.020 0.040 0.050 

Material: Steel (A1SI 1040) 

Cutter's size R9 value 
0.5 0.022 0.045 0.055 
0.6 0.016 0.032 0.042 
0.8 0.018 0.039 0.049 
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d) Value of MIUEM 

Feature size (mm) 

< 0.5 

Harder to manufacture 

1.0 >1.0 

Easier to manufacture 

Uncertain effect ( gm 
0.0-0.5 0.0035 0.0065 0.0095 
0.5-1.0 0.0025 0.0055 0.0085 
1.0-1.5 0.0020 0.0045 0.0075 
1.5-2.0 0.0015 0.0035 0.0065 

> 2.0 0.0010 0.0030 0.0045 

Figure 4.7 Index ratings for MIDI, MITOL, MIRa and MIUEM 

Based on the Figure 4.7, Table 4.5 shows the summarised MIs for each PF 

which are utilized to calculate MIsFA (based on Equation 4.1) with the weight 

factor (K; ) for each MI is considered as 1. 

Table 4.5 Summary of MISFA results for each PF 

PF MIPF MITOL MIDuM MIRa MIuEM MISFA E 
. 
4.1 

PF 
-I 

1.0 1.28 1.0 1.54 1.3 1.20 

PF 6 1.0 0.76 1.0 1.03 0.9 0.94 
PF 7 1.0 0.97 1.0 1.28 1.1 1.04 

PF 8 1.0 0.67 1.0 0.52 0.8 0.80 

The results of MICFA (Table 4.6) are based on the conditions stated in Table 4.2 

and taking into consideration the relative distances between PFs shown in 

Figure 4.8. As an example, PF_2 is adjacent to PF_3 with the RD=O. I Omm and 

based on the condition in Table 4.2, the initial value of MISFA for PF_2 (1.02) 

is recalculated to 0.87 (MIsFA x 0.85), the pre-defined MD in this example is <_ 

0.08mm. 
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Table 4.6 N41CFA results 

I"' PF 2 PF Interactions 

analysis 

Distance (mm) PF MICEA 

PF 1 PF 4 Attached - PF 1 1.20 

PF 2 PF 3 Adjacent 0.10 PF 2 0.66 

... ... ... ... ... ... 
PF 5 PF 6 Attached 0.20 PF 6 0.85 
PF 5 PF_7 Adjacent 0.20 PF 7 0.62 
PF 7 PF 8 Attached - PF 8 0.60 

Based on the PFA technique's algorithm, Table 4.7 shows the overall result of 

manufacturability assessment for the considered examples indicating a 

medium level of manufacturability since M OVERAL I. is 0.84. Referring to the 

OVERALL result, for medium and hard level of manufacturability, 
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recommendation or suggestion can be given in order to increase the MI and on 

the same time to make the part easier to manufacture. Generally, the final 

generated outputs are in the form of feedbacks to user in terms of relevant 

redesign suggestions such as reviewing the Ki for each MI in SFA phase, 

redefine the quality measures aspect (e. g. surface roughness, tolerance and 

uncertainty effect) and selecting materials with higher MI that represent easier 

to machine. 

Table 4.7 MIov, t, results 

PF N[IcTA PF I PF 2 PF 3 PF 4 PF_5 PF_6 PF 7 PF 8 
1.20 0.85 0.62 0.60 

Material : Titanium Alloyed MIMAT : 1.05 
MIMAT+>MICFA 1.05+6.72 

MIocjpALC =-=0.84 
88 

Generally, the simulation of the PFA technique above is based on micro-parts 

to be machined in the MMT, there are possibilities for the coefficients and 

other rules can be adjusted to be fit to analyse other machining processes or 

machine tool. 

4.6. Implementation of PFA into MicroMAS 

MAS has been developed using different combination of approaches, 

technologies, software and tools. In this study, MicroMAS which is a 

manufacturability analysis system dedicated for micro-milling process is 

developed based on a three-step unidirectional flowchart methodology that 

includes data input mechanisms, inference engines for manufacturability 

analysis and outputs reporting. 
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The first is the development of the input mechanism where all the required 

design data and manufacturing information are fed into the system. The next 

step is to analyse the gathered input for performing part manufacturability 

assessment, here data are analysed according to the manufacturability 

constraints and rules to determine the difficulty level for manufacturing of the 

proposed design. The final component in MASs' methodology consists in 

generating the outputs to reflect the evaluation of manufacturability aspects 

of the proposed designs while interactively assisting the operators in 

(re)considering manufacturing aspects at the design stage. 

In developing MicroMAS, the PFA technique is introduced in this 

methodology for the purpose of gathering essential data from CAD models and 

also analysing its manufacturability aspects. The PFA technique is suggested to 

be integrated in between of the first (input mechanism) and second 

(manufacturability analysis) steps as highlighted in Figure 4.9. 

Input 

mechanism 

New approach: 
PFA 

Inference engines for 

manufacturability 
analysis 

Output 

generations 

Figure 4.9 Flowchart of MicroMAS developments 
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The stages of PFA for implementation in MicroMAS are transformed to four 

main sequentially stages: (i) Initial Assessment (IA), (ii) Single Feature 

Analysis (SFA), (iii) Coupled Feature Analysis (CFA), (iv) Output generated. 

The details of the PFA technique implementation in MicroMAS will be 

discussed thoroughly in Chapter 7. 

4.7. Summary 

This chapter described the PFA technique and simulated its implementation on 

a CAD model. The backbone of the PFA technique is the Primitive Feature 

(PF) concept which is combined with the positive (bosses) and negative 

(pockets) scheme to define the components and produced meaningful 

interpretations. PFA technique consists of two crucial phases which are SFA 

and CFA in defining the micro-parts and analysing its manufacturability. 

SFA was used for gathering essential data from the CAD model that are further 

"enriched" with part quality measures which is efficient in providing 

"necessary and sufficient" input data to MAS. Furthermore, SFA provided an 

efficient way (MISFA) to evaluate the manufacturability of each PF of the 

analysed part. Since the analysed part has many PFs, the PFA technique 

provides a systematic way to interact them and to assess the manufacturability 

(MICFA) of coupled features. This enables the manufacturability analysis of the 

part as a result of multi-feature interactions and not as an outcome of a single 

entity (rigid) assessment commonly used in the most reported work in 

previously developed MAS. 
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A new sequential Manufacturability Indexes scheme is introduced to indicate 

the level of manufacturability for each PF and also for the overall micro-part. 

Based on the generated indexes convention, the level of manufacturability for 

each PF (Equation 4.1) is determined based on several aspects such as PF (e. g. 

orientation, shape, type), dimensional tolerance, surface roughness, UEM 

analysis impact, tools diameters and selected workpiece material. MIOVERALL 

which indicates the overall manufacturability (Equation 4.3) of the micro- 

component is calculated based on the aspects analysed above and also the 

interactions occurred between PFs. These indexes are presented by a rating 

convention that is divided into three levels (as described in Equation 4.2): 

Harder to manufacture, Medium to manufacture and Easier to manufacture. 

In this study, the PFA technique is being executed in the domain of micro-parts 

through MicroMAS and its implementation will be simulated in Chapter 7 

where the development phases are expanded to four stages where each of them 

provides progression or outputs that can reflects the manufacturability 

assessment of the proposed CAD model. 

The execution of the PFA technique in MicroMAS is an opportunity to take 

into consideration the manufacturing aspects and analyse them at the early 

stage of product development life cycles in the micro-milling domain run in a 

custom-made 4-axis Miniature Machine Tool. 
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CHAPTER 5: UNCERTAINTY EVALUATION MODEL FOR A 

MINIATURE MACHINE TOOL FOR MICRO-MACHINING 

5.1. Introduction 

This chapter presents the development of Uncertainty Evaluation Model 

(UEM) in assessing the errors stemming from the construction of a Miniature 

Machine Tool (MMT) that might affect the geometrical accuracy of the 

machined micro-parts. Although the machining process (micro-milling) is, in 

general terms, similar to conventional milling, the great reduction in 

dimensions gives a big impact in its cutting conditions (e. g. minimum chip 

thickness, tool stiffness, ratio between depth of cut and material grain size). 

However, there is another aspect to consider when utilising an in-house 

developed machining system. In this line, the error budgeting through UEM is 

highly important for the MMT as there is a critical need to understand the 

origin of the errors (either from the machine itself or from the machining 

process) that affect the quality of the machined part. Furthermore, through this 

analysis, it provides a method or approach to understand the sources of errors 

that affect the produced quality of the final machined part from any similar 

custom-made MMT. 

This chapter begins with the explanation of the objectives and the approach 

taken in developing the uncertainty analysis model for the MMT. Then the 

generated uncertainty models from the identified sources of errors in 

constructing the MMT that influence the geometrical accuracy of the machined 

micro-parts were discussed. Furthermore, the analysis and results of the 
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generated uncertainty model that have been analysed in a Guide to the 

expression of uncertainty in Measurements (GUM) software are also provided. 

Finally, the results from the uncertainty analysis were discussed and its 

significant contribution to the developed MicroMAS is presented. 

5.2. Objectives and approach 

5.2.1. Objectives 

Uncertainty Evaluation Model (UEM) has been developed to understand the 

influence of the errors in constructing the MMT on the geometrical accuracy of 

the machined micro-parts. In any micro-machining domain, there are many 

aspects (e. g. machining parameters, machine tool characteristics, materials, 

tooling) to be taken into consideration, which might not be important in the 

macro-machining area. Therefore, it is important to analyse any errors related 

to the construction of the MMT; these errors might not be of high importance 

in the case of using a conventional macro-machine tool but in this case it can 

significantly affect the quality of the machined micro-parts. 

The main objective of the UEM development was to analyse the errors 

stemming from the construction of the MMT and to understand how they are 

transferred into kinematic (tool path generation) errors. However, the errors 

generated during machining (e. g. tool vibration/wear) are not considered into 

this model. 

164 



5.2.2. Approach 

The approach taken to develop UEM is divided into three main phases: (i) 

model development, (ii) model analysis, (iii) simulation and validation (Figure 

3.18). These phases have been discussed in Chapter 3. 

5.3. UEM development 

5.3.1. Sources of errors 

Figure 5.1 presents a summary of the sources of errors in the micro-part 

generation with an emphasis of the uncertainties stemming from the MMT 

construction which is the focus of this analysis. However, this summary of 

errors should be considered as an example originating from the analysis of a 

particular setup, i. e. MMT, that can be even further translated into 

recommendations for machine tool verifications. Anyway, the highlighted 

source of errors (Uncertainties of (micro) machining process) in Figure 5.1 was 

not being considered in this study. 

Errors due to 
construction of the MNTT 

Uncertainties related to Errors due to workpiece 
the behaviour of the MMT referencing 

Errors of micro- 
machined parts 

Errors due to 
temperature variations 

Errors of the movement 
tables 

........................... 
i...................... .............. .................... 

Uncertainties of (micro)- 
machining process 

Figure 5.1 Summary of the sources of uncertainties that affect the part accuracy 
machined on the MMT 
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Based on the Figure 5.1 and also the discussion that will be made in Chapter 6 

on the errors on constructing the MMT, the identified sources of errors are 

listed below and will be discussed thoroughly throughout this chapter. 

" Errors due to construction of the MMT 

o Geometrical deviations (e. g. flatness in X/Y/Z planes) of the gantry 

frame as well as additional errors when assembling it on the granite 

base plate. 

o Combined positioning errors of the z axis (tool/spindle axis) from the 

reference place due to the possible errors in assembling the z"motion. 

table and the spindle (through its holder) on the gantry frame. 

o Deviations on the top of the working table from the reference place due 

to the stack of the X, Y and U motion tables that were mounted on the 

granite base plate. 

9 Errors related to the evaluation of workpiece reference point 

" Errors related to the temperature variations 

" Errors originating from the positioning inaccuracies of each table 

5.3.2. Model development and analysis 

In developing the uncertainty model, two important aspects are taken into 

consideration: (i) static evaluation such as standard guidelines on uncertainty 

evaluation on machine tool (ISO 230 series - Test code for machine tool series) 

and (ii) dynamic evaluation such as tool path generation (e. g. linear/ circular/ 

spiral milling movement) and CMM assessment. 

166 



Moreover, in order to understand how these errors are transferred into flaws in 

tool path generations, the model is generated based on the x, y and z 

coordinates. The tool movement is represented by these coordinates so that the 

generated errors can be illustrated through them. For the model development, 

Equation 5.1 simulated the actual position (X, Y, Z) of the cutter that is 

calculated based on the theoretical position (x, y, z) that are affected by the 

errors listed above. 

X=x+dx, +&2 +&3 +Ax4 
Y=y+ ey, + Aye + ey3 + ey4 Equation 5.1; with 
Z=z+Az1 +& 

2 +&3 +ßz4 

X, Y, Z Actual position of the cutter 
x, Y, z Theoretical position of the cutter 
exi, Ayi, &1 Errors due to construction of the MMT 
AX2, Aye, A Z2 Errors related to workpiece reference point 
A X3* Ay3, Az3 Errors related to temperature variations 
AX4, Dy4, p4 Errors originating from table inaccuracies 

5.3.2.1 Errors due to construction of the MMT (Arl, 4y1, dzt) 

As stated before, the error sources originate from the MMT constructions such 

as geometrical deviations of the gantry frame, positioning errors of the Z axis 

from the reference plane and also deviations at the top of working table from 

the reference place. 

Based on the CMM evaluations that will be discussed in Chapter 6, Figure 

5.2(a) gives an exaggerated indication of the positioning errors of a dummy 

tool axis relative to XYZ space. It can be noted that the tool axis is not 

perpendicular to the XY plane, and it is tilted in space from both XZ and YZ 

planes as well as from theoretical Z axis; however, the average deviation 

angles from the perfect (orthogonal) position are very small in values. Figure 
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5.2(b) presents a schematic representation of the magnified errors of the 

spindle axis in 3D space where 11 AT 11 is the length of the spindle system 

(from its holding point on the Z-motion table) with its axis making angles a 

(LEA'G) and y (ZEA'H) with the XZ plane and Z axis respectively; the angle 

with YZ plane is dependent of the represented information. From the figure, it 

can be noted that not only the tool axis is spatially tilted but also does not 

intersect the Z axis, meaning that it is shifted with a distance of Dyo from the 

XZ plane. 

Z 

Y 

Figure 5.2 (a) An exaggerated defective orientation of the spindle in 3D space 
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(b) 

Figure 5.2 (b) Geometrical representations for calculating positioning errors 

Based on the information given in Figure 5.2(b), it can be said that the spatial 

tilt of the spindle results in overall positioning errors (ixl, Ay,, Azi) of the tip 

of the cutter relative to the upper surface of the XY-motion platform (i. e. where 

machining takes place). This states that the spindle system should ideally be 

AO II 
, with 0 as tool tip; instead, it is taken as 11 AT 11 (with 

ýýAOjý=ýýA'O' 11 = 11A'E11). 

As the length of the spindle-tool system, 11 AT 11 =L is a known distance, the 

angular (a, y) and linear (Ayo) deviations are also known as average values 

obtained by repeated CMM evaluations (will be presented in Chapter 6). 

Therefore, the positioning errors of the tip of the cutter relative to the upper 

surface of the XY-motion platform can be calculated as shown in Table 5.1, 

while Equation 5.2 summarizes the positioning errors occurred for each axis. 
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1ý1 : 

Table 5.1 Calculation of positioning errors for each axis 

Z axis X axis Y axis 
Az, = O'H = O'A'- A'H Ax, = EF or GH ; where Ay, = Ayo + HF or GE 

A'H=A'Ecosy ' GH=ýGAý2-TH2 GE=A'Esina 

Az, = A'E-A'Ecosy GA' = A'Ecosa ; 
AYE = AYo +Lsina 

=L-L cos y A'H = A'Ecos y 
Az, = L(1- cosy) 

GH= 
$CZEcosay 

-(A'Ecosyy 

Ax, = A'E cos2 a -cost y 

Ax1 =L costa-cos2Y 

Ayl Dy0 + Lsina Equation 5.2 

Azl = L(1- cosy) 

Based on extensive measurements, the averaged values of the quantities 

specified in Equation 5.2 have been obtained as follows: 

"a=0.0286° 

y=0.0653° 

. eyo= 7. Ox144mm, and thus; 

" Axl=5.12x10'3mm; Ayi=3.19x10'3mm; Az1=3.15x10'6mm. 

From the aspect of dynamic evaluation, it is interesting to point out that with a 

3D tool path, the errors Axt, Eyl, Az, combine themselves into a generation 

error of the machined components; of course, the generation error depends on 

the parametric equations of the 3D tool path. Taking for example the 

generation of a cylinder (radius, r=1.5mm) generated through spiral milling 

(Figure 5.3), the tool path can be parametrically described by Equation 5.3: 
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x=r cos wt =r cos(V ft)=r cos(f,. 
z. n t) 

rr 
Vtfz. n 

Equation 5.3; 
y=rsinwt=rsin(-)=rsin(z t) 

rr 

z=V: t 

With: 

9 VZ - feed speed of the tool along z axis 

" Vf- tangential speed of the cutter in xy plane to follow a circle of radius r 

" w- angular speed of the cutter 

" fZ - feed per tooth 

"z- number of teeth of the milling cutter 

"n- spindle speed 

0t- cutting time 

Figure 5.3 Spiral path of the milling cutter 
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It should be noted that x, y, z represent the theoretical positions of the tool 

reference point along its path which is necessary for spiral milling the required 

cylinder. However, these successive positions (at different cutting times, t) are 

affected by the generation error originating from 0x1, Ayl, Azl errors due to the 

spatial tilt of the cutter as described in Equation 5.2. Therefore, when the cutter 

follows the tool path characterised by Equation 5.3, the errors presented in 

Equation 5.2 lead to geometrical deviations from the theoretical cylinder of 

radius r and height h (which is equal to distance in z). 

However, apart from the generation error, the MMT system can also be 

affected by other sources of uncertainties as discussed below. 

5.3.2.2. Errors related to the evaluation of workpiece reference point (dr2, 

AY2P AZ2) 

Apart from the tool path generation errors, the MMT system can also be 

affected by other source of uncertainties such as errors stemming from the 

workpiece reference point. These are mainly related to the resolution of the 

sensing/probing system that detects the moment of contact between the 

workpiece and the tool. In this study, an innovative probing system based on 

electrical contact between the tool tip and the workpiece has been employed 

that led to satisfactory part referencing (will be discussed in Chapter 6). Based 

on this, and for the purpose of UEM analysis, twelve repeated measurements 

were taken for the uncertainty observation of this type of error. Table 5.2 listed 

the measurements made on referencing a part for each axis (X, Y and Z). 
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Table 5.2 Measurements for each axis (in mm) 

¢"No; XY rT Z 
0.00010 ýl0.00009 r 0.00009 

2- 0.00009 0.000100.00005 
[-3 0.00008 0.00012 0.00007 

4 0.00007 0.00011 F0.00010 

5 0.00011 0.00008 F 0.00008 

6 F- 0.00012 0.00007 0.00009 
F-7 0.00010 0.00006 0.00006 

sr0.000080.00009 1 0.00012 

9 0.00011 0.00008 0.00010 

10 0.00007 0.00013 10.00007 

11 0.00006 0.00009 0.00008 

12 1 0.00008 0.00007 -10.00011 

5.3.2.3 Errors related to the temperature variations (Ax3, dy3, dz3) 

These errors are mainly related to the uncertainties introduced by the 

expansion/contraction of the motion tables with the varying temperature while 

those that might originate from the MMT frame/table have been neglected (as 

they are made of low thermal expansion materials). Such errors have been 

evaluated for a temperature variation interval of 5°C. The assumption made 

here for the uncertainty due to temperature effect is based on the proposed 

value in ISO 230-3: 2001 - Test code for machine tools - Part 3: Determination 

of thermal effects during CMM measurement [187]. It is suggested that based 

on a typical room temperature, it resulted with the uncertainty value of 2.0x10-3 

Trim. 
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5.3.2.4 Errors originating from the positioning inaccuracies of each table 

(Ax4, dv4, 
AdZ4) 

Such errors are indications of the positioning repeatabilities of the motion 

tables given in the manufacturer's data sheet. Following the specification of 

linear and swivel stages provided by Aerotech, the standard uncertainty value 

suggested for the positioning accuracy of the worktable was 3.0 x 10 -4 mm. 

Thus, in the case of spiral milling a cylinder (Figure 5.4), the actual position 

(X, Y, Z) of the cutter is based on the theoretical position (x, y, z) that is 

affected by errors as described through Equation 5.4, where the quantities from 

Equations 5.2 and 5.3 have been substituted. 

f 
. Z. n 

X =x+dx1 +4x2 +dx3 +Ax4 =rcos( 
Z t)+L cost a-cost y+Ax2 +dx3 +Ax4 
r 

f z. n 
Y=y+dy1 +dy2 +dy3 +dy4 =rsin( zr t)+(Ay0 +Lsina)+Ay2 +dy3 +dy4 

Z=z+dz1 +dz2 +dz3 +Az4 =vzt+L(1-cosy)+dz2 +Az3 +Az4 

(Equation 5.4) 

As a cylinder is spiral milled, the quantities from Equation 5.4 should follow 

the conditions shown in Equation 5.5 where r and h are the radius and the 

height of the cylinder. 

r= X2+Y2 

h=Z (Equation 5.5) 
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5.4. Model analysis using GUM Workbench 

GUM Workbench which is a GUM-based software package has been selected 

to perform the uncertainty evaluation for the positioning errors of the cutting 

tool through spiral tool path at a series of time based on the generated 

Equations 5.1 to 5.5. Figure 5.4 shows the flow of the model analysis being 

done in the GUM Workbench. 

Data and formula input 

" Formula/ developed model 
o Equation 5.2 

o Equation 5.4 

o Equation 5.5 

" Data / parameter 
o r, co, t, L, a, y 

Model interpretation 

" Details on each parameter and equation 
" Determining the type of uncertainty (A/B) for each error 

Results analysis and evaluation 

" Calculating the uncertainty measurements based on 
equations (Equations 5.2,5.4,5.5) for: 

o Determining uncertainty main contributors 
or value and its expanded uncertainty 

Figure 5.4 The flow of the uncertainty evaluation model analysis phase 
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5.4.1. Data input and model interpretation 

Based on the generated equations (Equation 5.2,5.4,5.5), all the required and 

related data, parameters, definitions are being input into the GUM Workbench. 

In this study, the analysis of X and Y axis are merged in one model 

(r =XZ+ Y2 ) and based on Equation 5.4. While for Z axis it was analysed 

in another model which is also based on Equation 5.4. Table 5.3 summarized 

all the input into the GUM Workbench for X and Y axis while Table 5.4 listed 

the details for Z axis in order to allow its uncertainty analysis. 
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The type of uncertainty for each error is determined based on how the 

parameters/variables are being observed. In this analysis, it involved four types 

of parameters that represent the errors. For the errors due to the tool path 

generations that stem from the construction of the MMT (ixt, Ayl, Azl), it has 

been classified as Type A because values of this parameter were obtained 

through CMM evaluations as will be discussed in Chapter 6. While for the 

errors related to the evaluation of workpiece reference point (ßc2, Aye, &z2), it 

also falls under the same classification as the previous error (Type A) because 

it involved series of measurements on the innovated probing system as also 

will be mentioned in Chapter 6. 

Furthermore, for the errors related to temperature variation (ix3, ay3, Az3) and 

also errors originating from the positioning inaccuracies of each table (Aca, 

Ay4, Oza), they have been classified as Type B because the uncertainty values 

are known based on the data given by the manufacturer of the motion tables 

(Aerotech) and also referring to ISO standards on temperature variations. 

In GUM Workbench, there are two important steps that involved two different 

interfaces for data input and model interpretations: 

" Model Equation interface 

Figure 5.5 presents the example of the Model Equation interface where all 

the generated models (Equation 5.2,5.4,5.5) and descriptions for each of 

them are being stated in the Equation Area. While the parameters involved 

in each model are being listed and defined in the Quantity table as also 

pointed in Figure 5.5. Basically this interface holds the model equation and 
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also its definition, symbols and related units. 

" Quantities interface 

This interface as shown in Figure 5.6 provides the medium for all the 

parameter being supplied in the Model Equation to be interpreted in detail. 

Among the information required are the type of uncertainty, value (if it is 

constant), method of observation and type of distribution. Table 5.3 (for X 

and Y) and Table 5.4 (for Z) supplied some of the required information into 

this interface. Figure 5.6 provides the example of the input required for 

parameter a which is the angle between the tool holder (Z axis) and the side 

of XZ plane. 
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5.4.2. Results analysis and evaluation 

The main objective of this phase is to evaluate the uncertainties of the 

positioning errors of the cutting tool (UX, UY, UZ - expanded uncertainty) for 

three spiral rotations based on the inputted Equations 5.2,5.4 and 5.5 into the 

GUM Workbench. In order to evaluate the uncertainty above, the analysis is 

made for 30 times with the incremental values of the cutting time 

(tt=0.0377s). In this section, an example of the analysis at t=1.131s is 

simulated. 

Figure 5.7 shows the Uncertainty Budget interface where detailed results of the 

analysis are being presented once the Budget button (as pointed out in Figure 

5.7) is selected. The analyses were performed based on the GUM 

framework/method in calculating and defining the uncertainties measurements. 

Beside that, GUM Workbench provides facilities to print a structured report 

which follows the rules given by the EAL and also the ISO-guides (Appendix 

5.1). 
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Based on the uncertainty result interface in Figure 5.7, the important 

information obtained from the analysis are the values of the Standard 

Uncertainty, Uncertainty Contribution's and also its index, overall result, 

expanded uncertainty based on the selected coverage factor. The value of the 

Standard Uncertainty provides the result of the uncertainty measurement for 

each analysed parameter. The value of the Uncertainty Contribution (Figure 5.7 

(a)) is automatically evaluated by GUM Workbench, and all important 

contributions in the uncertainty measurement are highlighted with yellow 

background. In GUM Workbench, parameters are considered as important 

contributions when it is being part of the contributor those add up to 99% of 

the standard uncertainty. 

While for the Uncertainty Contribution's index (Figure 5.7(b)), it shows the 

percentage of the parameters contributions towards the overall standard 

uncertainty. From here, the parameters (variables) that contribute most to the 

uncertainty measurement is/are indicated. 

Finally, at the bottom of the interface (Figure 5.7 (c)), it provides the overall 

result of the measurement analysis together with the expanded uncertainty and 

the coverage factor that was used. In determining the coverage factor it is 

assumed that the distribution of the result can be described with a t-distribution 

while the value of the coverage factor is taken from a t-table with a coverage 

probability (in this example it is 95%). 
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Example of uncertainty analysis 

Based on the analysis made, Table 5.5 presents an example of a summary for 

uncertainty budgeting exercise considered for a particular position of the cutter, 

at a cutting time of t=1.131s (30xAt), when following a spiral path (with 

r=l. 5mm, (9=5.5554rad/sec, VZ 10mm/min radius). While Table 5.6 shows an 

example for Z-axis uncertainty analysis results. 

Table 5.5 An example of uncertainty evaluation of the errors of X and Y when 

the cutter follows a spiral path, implication on the uncertainty of the cylinder 

radius (r) 

Uncertaint evaluation for X and Y coordinates 

Parameters Value 
Standard 
Uncertain 

Uncertainty 
Contribution 

Index 

X -0.7443 mm 2.43x10 mm 
Y -1.2952 nun 94.4x10 mm 
R 1.5 mm 

(a 5.5554 rad/sec 115x10-6rad/sec 267x10" mm 0.000 
T t=1.1310 sec 

a 498.7x10 rad 13.4x10 rad -41.9x10 mm 0.133 
1.1402x10 rad 38.3x10 rad -106x10 mm 0.856 

Ax, 5.127x10 nun 215x10 mm 
0x2 89.17x10 mm 5.43x10 nun -2.71x10 mm 0.001 

__3 200.00x10 nun 5.77X10 mm -2.86x10 mm 0.001 
AX4 300.00x 10 nun 8.66x 10 mm -4.31 x10 mm 0.001 

An 3.1935x10' mm 67.0x10 mm 

A Y2 90.83x10 nun 6.09x10 nun -5.28x10 mm 0.002 

03 200.00x10 nun 5.77x10 mit -5.01x10 mm 0.002 
4 

300.00x10 mm 8.66x10 mm -7.51x10 mm 0.004 

eyo 700.00x10-6mm 1.15x10-6mm -1.00x10-6 mm 0.000 

Result r= X 2+ Y2 (Eq. 5.5) 

Value of r (nun) 
Expanded 

() 
Coverage Factor Coverage 

1.49387 250x10 mm 2.2 t-Table 95% 

From the table above, it can be concluded that at t=1.1310 sec, the generated 

value for r is 1.49387tO fXV25mm, while the expanded uncertainty is 0.00025 
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mm with the coverage factor of 2.2. From the point of coordinate position for X 

and Y and also its positioning error of the cutting tool (X±UX, Y±UY), the 

result are as follow: 

" X- axis = (-0.7443±0.00243) 

" Y-axis = (-1.2952±0.0000944) 

For this particular coordinates, the main parameters that mostly contribute to 

the positioning errors in this case are identified as the y and a angles which 

provide 98% of the overall uncertainty contribution. 

Table 5.6 An example of uncertainty evaluation of the errors of Z when the 

cutter follows a spiral path, implication on the uncertainty of the cylinder 

height (h) 

Uncertainty evaluation for Z coord inate 

Parameters Value 
Standard 
Uncertainty 

Uncertainty 
Contribution 

Index 

vZ 0.1768 mm/sec 34.6x10 mm 13.1x10 0.047 
T t=1.1310 sec 

1.1402x167r-ad 38.3x10 rad 86.6x10 0.921 

OZ, 3.15x10 mm 2.12x10 mm 

AZZ 85.00x10 mm 5.97x10 mm 5.77x10 0.010 

AZ3 200.00x10 mm 57.7x10 mm 5.97x10 0.020 

OZ, 300.00x10 nun 8.66x10 nun 2.12x10 0.001 

Value of Z (mm) 
Expanded 
Uncertain (mm) 

Coverage Factor Coverage 

0.06724 120x 10 2.2 t-Table 95% 

While the result for the Z axis is more straightforward, the value for the Z 

coordinate and its positioning error of the cutting tool (Z±UZ) is 

(0.06724±0.00012) with the coverage factor of 2.2. The main parameters that 

contributes most to the positioning errors for Z axis is the r angle which 

provide 92% of the overall uncertainty contribution. 
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The above generated results are based on one position of X, Y and Z at t 

cutting time. Repeating this procedure at different cutting times, a series of 

points with their errors (X±UX, Y±UY, Z±UZ) simulating the spiral tool path 

have been obtained. For this purpose, at incremental values of the cutting time 

(it=0.0377s), the positioning errors of the cutting tool UX, UY, UZ (expanded 

uncertainties, k=2.2 coverage factor) have been evaluated by repeating the 

analysis for 30 different cutting time. The result for each cutting time is 

presented in Appendix 5.2 with details on standard uncertainty and their 

contribution to the standard uncertainties' results. 

5.5. Simulation and validation 

For the final phase in evaluating the uncertainty of the positioning errors of the 

cutting tools, the generated models and the results obtained from GUM 

Workbench is being validated. In order to evaluate the validity of this 

uncertainly model, the spiral tool path, simulated for the evaluation of 

positioning uncertainties, has been performed on the MMT without cutting 

while stopping the tool at particular time intervals when the tool tip position 

(X, Y, Z) was evaluated using Coordinate Measuring Machine (CMM). 

In here, the results from the measurements (CMM) have been compared with 

those obtained from the uncertainty model (analysed in GUM Workbench) in 

terms of errors in roundness (from X and Y axis analysis) and height of the 

cylinder (from Z axis analysis) on which spiral milling was simulated, it was 

found that the predicted errors have been smaller by 32% for roundness and 

18% for height when compared with the real data. Though these comparative 
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results show that the proposed uncertainty model can be an effective tool to 

predict the sources of geometrical inaccuracies of milled surfaces, the 

differences between similar values can be accounted by factors that have been 

considered constant (e. g. error of the dummy tool, rounding errors in the MMT 

control system) as well as those that depend on the accuracy of the CMM. 

However, using the proposed uncertainty model, further errors can be 

accounted for the improvement of the overall prediction of the geometrical 

errors of machined micro-parts manufactured on the MMT. 

5.6. Discussion 

There are two major aspects that can be concluded from the uncertainty 

analysis above: 

" In developing a custom-made MMT, it is important to understand the 

sources of errors when generating the machines surfaces, this can be 

facilitated by the development of uncertainty models that allow the 

evaluation of the contribution of the MMT constructive errors on the 

accuracy of the tool path and ultimately on the generated surfaces. Through 

the UEM analysis, it provides the opportunity to implement a methodology 

to evaluate the uncertainties of any in-house developed machine tools in 

identifying the main sources of the overall errors of the machines 

performance that affect the quality (e. g. geometrical accuracy) of the final 

product. It is essential to investigate the sources of errors that affect the 

final product especially for custom-made machine tool because usually 

there is no standard or guidelines available for the machine. In this study, 
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the uncertainty evaluation has been made by analysing the errors stemming 

from the MMT construction and simulated through the spiral milling tool 

path in machining a cylinder. 

" The main sources of the uncertainties based on the evaluation of the errors 

stemming from the construction of the MMT have been indicated through 

the development of the UEM. This is made through the uncertainty 

evaluation for the positioning errors of the cutting tool for spiral milling 

tool path. From the series of results generated in GUM Workbench, it can 

be concluded that the main source of errors from the MMT construction are 

a=0.0286° and y=0.0653°. However, based on the obtained expanded 

uncertainty values, it shows that these errors do not contribute any 

significant effect towards the geometrical accuracy of the machined part. 

From the 30 repetition analysis, it shows clearly that y contributed 80% of 

the uncertainty while a takes the rest 20%. This is presented in Table 5.7 

that listed the uncertainty contribution index value for a and 7 based on the 

30 different cutting times (yellow highlighted columns show that y is the 

main contributor, while red highlighted columns represents a as the main 

contributor). 
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Table 5.7 Uncertainty contribution index for a and y 

Uncertainty Uncertainty Uncertainty Uncertainty 
No contribution contribution No contribution contribution 

Index ((x) Index (y) Index ((x) Index (y) 
1 0.007 0.993 16 0.007 0.993 
2 0.000 1.000 17 0.000 1.000 
3 0.005 0.995 18 0.005 0.995 
4 0.035 0.965 19 0.035 0.964 
5 0.126 0.873 20 0.129 0.871 
6 0 384 0.616 21 0.394 0.606 

7 0.878 0.121 22 0.892 0.107 
8 0.911 0.089 23 0.899 0.101 
9 0.554 0.446 24 0.542 0.458 

10 0.324 0.676 25 0.317 0.683 
11 0.198 0.802 26 0.195 0.805 
12 0.125 0.875 27 0.123 0.877 
13 0.078 0.922 28 0.076 0.923 
14 0.046 0.954 29 0.045 0.955 
15 0.0230 0.977 30 0.022 0.978 

5.7. Contribution to MicroMAS 

This analysis provides the opportunity to partly portray the real condition of the 

MMT in the developed MicroMAS. For this purpose, it is proposed to 

integrate the results from the UEM analysis in the MicroMAS by taking into 

consideration the uncertainty effect in machining the particular form/shape of 

PF in calculating the manufacturability indexes (MT) in MicroMAS. As the 

analysed micro-part in MicroMAS is being decomposed to primitive features 

(e. g. box, cylinder, sphere), in order for its manufacturability aspect to be 

assessed, the uncertainty effect is suggested to be integrated in the Single 

Feature Analysis (SFA) phase. 

In calculating the Manufacturability Index for Single Feature Analysis (MIsFA), 

another MI is added which is the Manufacturability Index for Uncertainty 

Evaluation Model (MIUEM), where the uncertainty effect in machining the 
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shape/form of the particular PF is incorporated for each identified primitive 

feature (PF) as presented in the formula below (Equation 4.1). 

EK1. MI1 
MI 

SFA =5' (Equation 4.1) 

where i= PF, Ra, TOL, DIM, UEM 

In this study, the UEM development was analysed based on the machining of a 

cylinder in the MMT using a spiral milling tool path. Even though the impact 

of the generated error can be considered small and insignificant towards the 

geometrical accuracy of the machined micro-part, it is a value added approach 

to take this effect into consideration as it provides a better judgement towards 

the determination of the MIs. 

As an example of considering the uncertainty effect in MicroMAS, the MIUEM 

index range is generated from the expanded uncertainty values obtained from 

the UEM analysis of evaluating the spiral milling tool path of a cylinder. 

Assumption has been made that the smaller the size or dimensions of the PF, 

the bigger the impact of the uncertainty. Furthermore, the average of the 

expanded uncertainty from the 30 repetitions of cutting time is considered as 

the nominal value for the MIuEM. 

Therefore, as a conclusion, the calculation of MISFA has taken into 

consideration the uncertainty effect by introducing it into the formula 
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(Equation 4.1) and the details of the MIUEM range value was presented in 

Chapter 4. 

5.8. Summary 

This chapter has involved a discussion on the development of the UEM and its 

analysis involved in determining the sources of errors stemming from the 

construction of an in-house developed MMT that might affect the geometrical 

accuracy of the machined micro-part. Four sources of main errors have been 

identified which are: errors due to the MMT construction; errors related to 

evaluation of workpiece reference point; errors related to temperature 

variations and errors originating from positioning inaccuracies of each table. In 

order to evaluate the uncertainties stemming from the identified errors, the 

uncertainty model/equations are generated based on the spiral milling tool path 

in machining a cylinder. From the analysis made in the GUM Workbench, it 

shows that these errors do not contribute any significant impact towards the 

dimensional accuracy of the machine micro-parts. 

The model and methodology developed in analysing the errors above provide a 

proof that uncertainty analysis is able to understand the sources of errors from 

a custom-made machine tool that affect the quality of the final machined part. 

Moreover, once this model/methodology is developed, the geometrical errors 

can be evaluated in any situation when other (more) complex surfaces are 

generated. However, one should note that the existing model does not account 

for the errors associated with machining process (e. g. tool/part deflection, tool 
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wear, etc. ) as it mainly focuses to highlight a method to account for the errors 

when constructing similar MMT systems. 

From here, it can be concluded that the crucial contribution of this study is a 

model/methodology was successfully designed which can assist in predicting 

the sources of errors when generating a machined surfaces for a custom-made 

machine tool and also can provide a fundamental guidance for developing a 

MMT. 

Furthermore, in order for the developed MicroMAS to mirror the real condition 

of the MMT in the system, the impact of UEM analysis is taken into 

consideration for calculating the Manufacturability Index for Single Feature 

Analysis (MISFA). The Manufacturability Index for Uncertainty Evaluation 

Model (MIUEM) is introduced and being considered in the MISFA formula for 

each identified primitive feature (PF). With this scheme, the manufacturability 

analysis in MicroMAS is more significant as it consider the uncertainty effect 

in machining the shape/form of the PF. 
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CHAPTER 6: MINIATURE MACHINE TOOL: AN EXAMPLE OF 

MICRO-MACHINING ENVIRONMENT FOR MICROMAS 

6.1. Introduction 

In order to clearly visualise the micro-machining environment in the developed 

MicroMAS, a miniature machine tool was devoted for this task. This chapter 

describes the main domain of the MicroMAS application which is an in-house 

developed 4 axis Miniature Machine Tool (MMT). Given that the MMT is a 

custom-built machine, it has been put through a series of machining 

experiments and observations in order to identify its limitations and capability. 

The discovered limitations are discussed thoroughly together with its solutions. 

Beside that, the advantages of the MMT and its contribution on the micro- 

machining domain are also commented later in this chapter. 

For the purpose of envisaging the MicroMAS implementation in a micro- 

machining setting, this chapter also discusses in details all the proposed 

experimental procedures and set-ups. The main objectives of these experiments 

are to assess the capability of the MMT and at the same time to populate 

relevant data for the developed MicroMAS. Among the proposed experiments 

are: 

" Machining the "adapted standard" micro-testpiece 

" Producing thin walls and micro-slots 

" Generating a micro-component demonstrator 

Furthermore, from these experiments the surface quality and geometrical 

accuracy of the surfaces that can be machined via the MMT are evaluated. The 
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machining procedures, parameters and results are comprehensively discussed 

in this chapter. Finally, the integration of these results and their significant 

contribution to the developed MicroMAS are also presented. 

6.2. The custom-made 4-axis Miniature Machine Tool (MMT) 

The custom-made 4 axis miniature machine tool (see Figure 3.4) has been 

used for all the micro-milling trials performed within this study; the detailed 

descriptions of the MMT have been discussed in Chapter 3. 

6.2.1. Problems and limitations 

In developing a custom-built miniature machine tool for the generation of 

complex micro-features via chip removal processing there are concerns in 

ensuring that the machine can be operated as precisely as possible. Since there 

are no standards, guidelines or user manual to refer to in operating the MMT, a 

series of machining experiments and observations in order to discover its 

limitations have been conducted. Furthermore, as the MMT is assembled from 

various "off-the-shelf' components their integration should be taken with 

serious consideration as it can limit the performance of the MMT. In the 

following are the revealed problems and limitation of the MMT: 

6.2.1.1. Errors in constructing the MMT 

As mentioned before, the construction of the MMT is based on the integration 

of various components. Thus, this gives potential for operational error to occur 

in the MMT. The analysis of the errors in constructing the MMT is based on 

the following practical facts: 
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" The machine (gantry) frame can have its geometrical deviations (e. g. 

flatness in X/Y/Z planes) as well as encountering additional errors when 

assembled on the granite base plate. Thus, the gantry frame can have 

compounded errors relative to the reference system of the MMT. 

" Assembling the Z-motion table and the spindle (through its holder) on the 

gantry frame can result in combined positioning errors of the Z axis 

(tool/spindle axis) of the MMT from the reference plane. 

9 The X, Y and U motion tables that are stuck on top of each other and 

mounted on the granite base plate can result in deviations at the top of the 

MMT (top) working table from the reference plane. 

Due to the reduced dimensions of the system, an error minimisation procedure 

has been performed by placing the MMT on the table of a CMM (Figure 6.1) to 

assemble its modules while intermediately performing the metrological checks 

through the following steps: 

" The gantry frame has been ground, in a single hit fixture, on the critical 

surfaces: those by which the frame is fixed on the machine platform and the 

surface against which the spindle holder is mounted. 

" The frame was mounted on the granite base, and then the subassembly has 

been assessed by CMM in relation to the reference plane followed by error 

compensation through adding liners and controlling the torque when 

fastening the bolts. 

9 The Z-motion table was mounted on the gantry frame, and its positioning 

errors relative to the reference plane were evaluated through CMM by 
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moving the table in different locations (e. g. max., min. and middle z 

positions with 5 repetitions) followed by errors compensation [188]. 

" The spindle, through its holder, was mounted on the Z-motion table 

followed by CMM evaluation and errors minimisation as previously 

described. 

" The X-motion table was mounted on the machine platform and its 

positioning errors relative to the reference plane were evaluated through 

CMM for different positions of the table (max., min., and middle X 

positions with 5 repetitions) followed by errors compensation. After this, 

the same procedure was employed when mounting the stacking of Y and U 

motion tables. 
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Figure 6.1 Metrological evaluation of the MMT 



Once this error minimisation procedures were completed, further CMM 

measurements were carried out to evaluate the resulting positioning errors of 

the axis of a dummy tool mounted on the spindle relative to the XYZ plane, 

these positioning errors lead to the generation of part geometrical inaccuracies 

when the tool follows a 3D cutting path (this error was considered further in 

Chapter S during development of the Uncertainty Evaluation Model (UEM)). 

From the CMM evaluation procedure discussed above, the errors that were 

identified are listed below, together with the corrections being made: 

" The gantry frame was found out to be deviated from the reference plane; as 

the spindle unit that holds the cutting tool was attached to the frame, this 

deviation can possible cause errors to the generated tool path. In the 

domain of micro-machining, a small error in the construction of the 

machine tool can contribute to big errors when machining the micro-parts. 

Based on this, the correction for the problems were made by shimming the 

slideways attached to the frames and clocked it again (via CMM) to ensure 

the accuracy of the frame position, 

" There are combined positioning errors of the Z axis (tool/spindle axis) from 

the reference place due to the assembled Z-motion table and the spindle 

(through its holder) on the gantry frame. 

" It was found out that the top of the U-motion table was not parallel with the 

X and Y motion tables. From the CMM evaluation, it shows that the 

position of the U-motion table is tilted and this can contribute flaws in 

machining the micro-parts. The correction was made by setting the new 
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home position for the U-axis which is parallel with the rest of the motion 

tables. 

6.2.1.2. Determining the new machine working space 

The machine work space has been defined in the previous work as reported in 

[38], and Figure 6.2 illustrates the determined travel and original home 

position. The working space (i. e. reached by the maximum allowable travel of 

the tables) is defined in accordance with the "machine zero point", which refers 

to the point when all the axes are at their home position. The "safe travel" 

which is the maximum allowable space that each table can travel was also 

defined based on their minimum and maximum movements (denoted as Xi. 

and X, x, Y.. and Y.., Z. and Z., and Um;,, and U,,, ) as shown in Table 

6.1. 
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Figure 6.2 The travel and home position for each axis (Source: [38]) 

Table 6.1 Previous home position and safe travel for the tables (Source: [38]) 

Axis Min. Max. Safe Travel Home Position 

X -2.66 27.71 30.37 12.525 

Y -2.32 27.33 29.65 12.505 

z -2.15 27.14 29.29 12.495 

U -10.70 8.68 19.38 -1.010 

The values for X, Y and Z axes are in mm whereas those for U axis are in degrees. 

Safe Travel = 
IV 11+I MinII and Home Zero =10.5 * 

(IMaxl 
-I Miýj 

The point where the home position of each axis coincides is the "machine zero" point. 

201 



Based on the current setting as stated in Table 6.1, it was discovered that there 

were limitation in the allowable space for Z-axis movement as illustrated in 

Figure 6.3(a). The current home position (in the middle of the safe travel area) 

has restrained the travel space for the Z-axis and also limits the reach of the 

tools towards the workpieces placed on top of U-motion tables. In order to 

solve this limitation, the setting of the home position for the Z-axis has been 

changed. The new home position for the Z-axis is shown in Figure 6.3(b) and 

also presented in Table 6.2. This resulted for the Z-axis to be able to reach the 

top of the U-axis in its safe travel space, which means more allowable space 

for Z-axis movement. 

Z-Axis 

Z home 

position 

-Safe travel 

table 
X-Axis 

Y-Axis ýaý 

Z-Axis 

Figure 6.3 Previous and current travel space for Z-Axis 

Moreover, the correction made (by setting the new home position) to ensure 

that the U-motion table is parallel with the X and Y motion tables was also 

presented in Table 6.2. 
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Table 6.2 New working space for the MMT 

Axis 
ý-- 

Min Max Safe Travel 
Home 

position 

X -2.66 27.71 30.37 12.525 

Y -2.32 27.33 29.65 12.505 

Z -29.28 0.01 29.29 0.00 

U -9.21 10.17 19.38 1.5455 

*The values for X, Y and Z axes are in mm whereas those for U axis are in degrees 

6.2.1.3. Integration between machine controller software (Nview) and CNC 

software (MasterCAM) 

MasterCAM is a CAD/CAM application that can be use to design parts and 

create complete machining operations. In this study, MasterCAM has been 

chosen to generate machining tool paths and further to produce the CNC code 

for the MMT based on the specific post-processor. The developed post- 

processor has taken into consideration all aspects of the MMT (machining 

space, safe travel distance) and also the Nview requirement. In developing the 

specific post-processor, a problem has been discovered involving the Z-axis 

virtual pivot point to be perfectly in line with the MasterCAM zero (Y=0) 

when the datum is set. This problem occurred whenever U-axis is involved in 

the machining, but for 3-axis machining (X, Y and Z) this is not relevant. 

In order to solve this problem, the distance between the Z virtual pivot and the 

MasterCAM zero (top of the workpiece) needs to be measured every time the 

U-axis is involved in the machining. The distance to be measured is between 

the machine virtual pivot (tip of tool) and the MasterCAM workpiece zero 
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datum (which is fixed 13.36 mm from the top of U-axis table when U=0) as 

presented in Figure 6.4. The measured distance which can be varied depends 

on the positioning of the tool is being fed manually on the MasterCAM 

interface before generating the tool path. The problem is believed to be sourced 

from the swivel movement of U-axis to meet the position of the X=O, Y=O and 

Z=0 at the same point, however further work is needed to address this issue. 

Z-Axis 

be measure 

MasterCAM 

workpiece Z zero 
36 datum 

.............................. 
U-Motion Table 

Figure 6.4 Distance to be measure 

6. Z. 1.4. Workpiece home positioning 

Another limitation that has been observed is in setting the position of the 

workpiece on the MIMT to coincide precisely with the tool position at its zero 

point. This problem is solved by using a multimetre as the sensor/probe that 

detects the moment of contact between the workpiece and the tool. In this 

study, the probing system is based on the electrical contact between the tool tip 
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and the workpiece. Appendix äl shows the set-up of the multimetre for 

detecting the home positioning of the workpiece. 

6.2.1.5. The cooling system and the suction/pumping system 

The MMT is constructed from motion tables that employ a non-cogging linear 

motor as the driving element. This means the produced chips tend to get 

stuck/trapped between the slides of the table. Besides that, the stacking of the 

motion tables could possibly caused the machined chips to be trapped between 

the tables. This can result in failure of the MMT operation. Initially the MMT 

was designed to operate under the dry condition but, through one of the 

machining observation, running on a wet-environment machining helps to 

maintain a longer tool life and produce a better part quality. In order to solve 

this limitation and to allow wet condition machining, the design of the MMT 

had to be reconsidered. 

As proposed by Limvachirakom [189], a cooling system that is able to retain 

the fluid in a container without deteriorating the stacked X, Y and U motion 

tables (which are not water proof) has been designed. A plastic container to 

protect the motion tables and the suction/pumping system has been fabricated 

for this purpose. The function of the suction/pumping system is basically to 

deliver the cooling liquid to the machining area and also to filter the coolant. In 

addition, it is also used to ensure that the machining area is clear from the 

chips. The plastic container (consists of two parts: the tray cover and the 

working tray) was designed to allow wet machining condition to be run on the 
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MMT. Figure 6.5 shows the new suction/pumping mechanism implemented on 

the MMT. 

Figure 6.5 Plastic container and suction/pumping system 

6.3. Micro-machining experimental details 

Based on the current MMT set-ups and also considering all discussed 

limitations, the custom-built MIMT is believed to be able to perform micro- 

milling process at an acceptable degree of accuracy. In order to demonstrate 

the capability of the MMT and at the same time to provide relevant information 

into the developed MicroMAS, various experiments for generating micro-parts 

of different shapes and dimensions have been conducted. As discussed in 

Chapter 4, there were five important aspects being considered in determining 

the Manufacturability Indexes (N Is). These are: the Primitive Feature Index 

(HUPF), Surface Roughness Index (NIIRa), Tolerance Index (NIITOL), UEM 
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impact Index (MIS), and Dimension Index (MIDIM). The experiments can be 

utilized to determine the range for MIR. and MITOL indexes based on the 

obtained results of R. and geometrical accuracy. 

As presented in Chapter 3, there are three important types of experiments that 

were being considered in this study. Among the proposed experiments were 

machining the `adapted-standard' micro-testpiece, generating micro-slot and 

thin walls and finally producing micro-component demonstrator. These 

experiments have been carried out in different materials (e. g. Stainless steel 

(316L), Steel (AISI 1040), Titanium Alloyed (TiA16V4)), using various 

machining parameters and micro-cutting tools (end-mill with 0=0.5 -- 0.8mm 

from Sandvik Coromant). 

6.3.1. Machining the `adapted-standard' micro-testpiece 

The objective of machining the `adapted-standard' micro-testpiece (Figure 3.7) 

was to assess the capability of the MMT in term of surface quality and 

geometrical accuracy. The surface quality was assessed using surface profile 

analysis (e. g. R. and Re), while the geometrical accuracy was obtained via a 

Coordinate Measuring Machine (CMM) and also a Keyence VHX-Optical 

Digital Microscope. 

6.3. l. 1. Machining procedures and parameters 

In machining the micro-testpiece, each of the main features (cylinder, diamond 

shape and also the outer square) were generated by implementing the 
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contouring function from MasterCAM at respective depths for each layer. The 

steps taken in machining the micro-testpiece are described below: 

" First, the cylinder was generated and Figure 6.6 shows the layout of the 

milling operation using the machining parameters shown in Table 6.3 in a 

wet condition (coolant=Hocut 3380). 

" After completing the machining of the cylinder, a diamond shape was then 

milled based on the layout shown in Figure 6.7. 
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Figure 6.6 Layout of the cylinder machining operation 



Figure 6.7 Layout of the diamond shape feature machining operation 

" Finally, the outer square of the micro-testpiece was then machined via the 

layout illustrated in Figure 6.8. 

Figure 6.8 Layout of the outer square machining operation 
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In this study, the `adapted-standard' micro-testpiece was generated in two 

different materials which were the AISI 1040 and TiA16V4. The milling 

process of the micro-testpiece was based on the recommended machining 

parameters from the tools manufacturers and also as suggested in previous 

study related to micro-milling [39,131,134,149,179]. The cutting tool used 

was 0=0.6mm end mill (8216.32-00630-AE06G 1620 Coromill Plura) from 

Sandvik Coromant. 

Table 6.3 Machining parameters in generating micro-testpiece 

Parameters Material 

AISI1040 TiAl6V4 

n(min) 50000 48000 

fZ (mm) 0.011 0.010 
Fap (mm) 0.03 0.03 
I ae (mm) 0.03 0.03 

Vf(mm/min) 1100 960 

V, (m/min) 94 90 

6.3.1.2. Results and discussion 

In Figure 6.9, optical images of the machined micro-testpieces ((a) - AISI 1040 

and (b) - TiA16V4) at x50 magnification from a Keyence VHX-Optical Digital 

Microscope are shown. From here, by observing the "as-machined" surfaces, it 

shows that no major defects (e. g. scratches) were found while the geometry 

looked clearly defined. In-depth analysis to investigate the significant features 

stated in Chapter 3 such as circularity with the inner circle, linearity or 

straightness of the outer square, perpendicularity at the corners, angular 

accuracy and parallelism with the opposite sides of a square the machined 
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micro-testpieces were further evaluated under a CMM - The Zeiss F25 and 

Keyence VHX-Optical Digital Microscope. 

Surface quality analysis was carried out using a Taylor Hobson Talysurf CLI 

1000. The mechanism of analysing geometrical accuracy and surface 

roughness has been outlined in Chapter 3 and results will be discussed in the 

following paragraphs. 

'ý . 

i 
ý, , -. - . ý. -.. _ 

(a) AISI 1040 (b) TiAI6V4 
Figure 6.9 Machined micro-testpieces 

Surface quality results 

The surface roughness of the machined micro-testpieces was measured over a 

sampling length of 0.8mm and a cut-off length of 0.04mm. The parameters 

used to evaluate the surface roughness were the arithmetic average roughness 

(Ra) and also the average maximum height of the analysed profile (RZ). Figure 

6.10 illustrates the obtained Re and RZ from the measurements made on both 

samples (AISI 1040 and TiAI6V4). 
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Figure 6.10 Roughness measurements (R8 and RZ) for TiA16V4 and AISI 1040 

Although it was not the scope of this work to obtain optimised cutting 

parameters for surface roughness, the measured R8 values varied between 0.04- 

0.07µm with higher values related to the surfaces generated towards the end of 

tool path (length cut of 129mm, machining time: approximately 42 min). By 

comparing the results above with the previous study in producing micro-parts, 

it can be concluded that the MMT is capable to produce an acceptable value of 

Ra and RZ based on the recommended machining parameters from the tool 

manufacturers on a micro-level machining. This observation is referring to 

work by Wuele [149] that has achieved 0.5µm for R. while Dimov et. al. [34] 

has managed to produce R. between 0.13 and 0.44 µm and Vogler [36] with R. 

between 0.10 and 0.25µm. These comparable results show that the use of the 

custom-made MMT does not hinder the micro-milling process to produce a 

good and satisfactory surface quality. 
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Geometrical accuracy results 

For the verification of the geometrical criteria mentioned in Chapter 3, a 

Coordinate Measuring Machine (CMM) - Zeiss F25 with a 0.3mm probe was 

used to analyse the AISI 1040 sample. The results (expressed at 95% 

confidence interval) obtained from the subsequent highly accurate CMM 

evaluation can be summarised as in Table 6.4. 

Table 6.4 CMM results for AISI 1040 micro-testpiece 

Geometrical criteria Result 

Roundness of the cylinder centred in 0 0.0052 mm 
Straightness deviation of the sides of the squares (ABCD and 
EFGH) 

<0.0001mm F 
Deviations from perpendicularity of the two adjacent sides of 
the squares (ABCD and EFGH) 

<0.0040 
degree 

Angular deviations of the angles (45deg. ) between the sides 
of squares ABCD and EFGH 

<0.0010 
degree 

Flatness of the top of the cylinder centred in 0 0.0012 mm 

From these results, it can be noted that satisfactory geometrical accuracies of 

micro-components can be achieved using the particular MMT. Based on this, it 

was considered adequate to analyse the geometrical accuracy of the TiA16V4 

micro-testpiece using a Keyence VHX-Optical Digital Microscope. Table 6.5 

shows the result of the measurement made based on the aspects discussed in 

Chapter 3 such as Ocyi;, wa; LA, LB, LC and LD ; LFEC ; 11 AB 11,11 AC 11 
, 

11 CD 11 and 11 BD 11 
. For each measurement, the average value was presented 

together with the calculated standard deviation (3a - 99% of confidence 

interval). 
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Table 6.5 Results from the microscope analysis on TiA16V4 

Aspect I Result 

(cylinder (mm) r 3.1047 ± 0.0062 

LFEC (degree) 45.0225 ± 0.5314 

LA (degree) 90.4433 ± 0.7677 

LB (degree) 89.9833 ± 0.6169 
LC (degree) 89.6267 ± 0.1644 
LD (degree) 90.0100 t 0.3119 

AB (mm) 4.5068 ± 0.0095 
CD (mm) 4.4894± 0.0030 
AC (mm) 4.5221 ± 0.0064 
BD (mm) 4.5154±0.0217 

Based on these results, it can be noted that the achieved dimensions deviated 

from their original by less than 5% which was likely caused by the tool wear. 

From here, once again, it can be concluded that acceptable geometrical 

accuracies of micro-parts can be achieved using the in-house developed MMT. 

6.3.2. Machining micro-slots and thin wall 

The main objective of this experiment was to study the capability of the MMT 

in producing micro-slots and thin walls in various materials using different size 

of cutting tools (0 = 0.5mm, 0.6mm and 0.8mm). Furthermore, it also aimed to 

populate important information for the developed MicroMAS in terms of 

surface quality (MI1) and tolerance (MITOL). Figure 3.13 shows the illustration 

of the proposed micro-slots, thin walls and surface profiling area (A1), while 

Table 3.4 presents their dimensions. 
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6.3.2.1. Machining procedures and parameters 

The experimental procedures in producing the thin walls and micro-slots are 

described as the following: 

" In order to ensure that the top surface of the workpiece is flat, the 

workpiece was machined based on the layout of the facing operation shown 

in Figure 6.11(a). While Figure 6.11(b) presented the layout of the 

machining operation in ensuring that the surface of both sides where the 

micro-slots are being milled is perpendicular and flat. 

Figure 6.11(b) Side-flatness machining 
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Figure 6.11(a) Top-flatness machining 



" Next, the first slot was machined and followed by the second slot as 

presented in Figure 6.12(a) and Figure 6.12(b) respectively. The machining 

parameters used for generating micro-slots and thin walls are presented in 

Table 6.6. The cutting approach implemented in machining both slots is up- 

milling. The slots are being cut layer by layer based on the selected axial 

depth of cut value (ap). For each layer, the number of cuts varied based on 

the size of the tool, the selected radial depth of cut value (at) and also the 

width of the slots. As an example, for tool with 0=0.5mm and the slot's 

width=0.6mm, the generated number of cut is 5. Figure 6.13 shows the 

toolpath generated for the first slot based on the cutting approach discussed. 

Additionally, the suggested strategies in machining thin features made by 

Popov et al. [128] which proposed to machine from the least supported area 

towards the best supported thin features in a component. 

" Finally, for the purpose of surface profiling analysis, the end part of the 

workpiece was surface-machined (Figure 6.12(c)). For this particular area 

(ARS, the radial and axial depths of cut (ae and ap) were halved from the 

suggested machining parameters (as mentioned below) that have been used 

to machine the micro-slots. 
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Figure 6.12 Experimental procedures in producing thin wall, slots and surface 

profile area (ARa) 
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Figure 6.13 Cutting approach for 0=0.5mm cutter 

The above workpieces were machined in two different materials (316L and 

TiA16V4) based on the recommended machining parameters from the tools 

manufacturers and also as suggested in previous related literature [128, 

134,158,161,178-180]. Table 6.6 shows the machining parameters 

employed in a wet condition environment (coolant: Hocut 3380) for both 

materials using micro-end mill cutters from Sandvik Coromant with 

0=0.5mm (8216.32-00530-AE05G 1620 Coromill Plura), 0=0.6mm 

(8216.32-00630-AE06G 1620 Coromill Plura) and 0=0.8mm (R216.32- 

00830-AE08G 1620 Coromill Plura). 
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Table 6.6 Machining parameters implemented in machining micro-slots and 

thin wall 

Type of Too10 n fZ ap aý Vr Vc 

material (min 1) (mm) (mm) (mm) (mm/ (m/ 

min) min) 
0.5 45000 0.006 0.025 0.025 540 

0 
316L 

,6 
38000 0.006 0.030 0.030 456 

7 

0.8 28000 0.007 0.040 0.040 392 

0.5 38000 0.006 0.025 0.025 456 
60 

TiAI6V4 06 32000 0.006 0.030 0.030 384 
Ö8 24 0 0.007 0.040 0.040 336 

6.3.2.2. Results and discussion 

Figure 6.14 shows the completed machined micro-slots and thin wall 

magnified under the optical microscope at magnification of x100 - x175 for 

316L and TiA16V4 in using different cutter size (0= 0.5 - 0.8 mm). 

219 



E 

e 

1 mm/div 
Figure 6.14 Micro-slots and thin walls g 

0=0.5,0.6 and 0.8 mm. 

From the examination of the "as-machined" surfaces, it can be noted that the 

generated micro-slots and thin wall are flat and straight, the corners of the thin 

wall are sharp and there are no major defects at the surface profile area. This 
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indicates that the MMT basically can machine the proposed thin wall and 

micro-slots. 

The surface roughness of the surface profiling area (A1) was measured using a 

Talysurf CLI 1000 over a sampling length of 0.8mm and a cut-off length of 

0.025mm. In order to assess the machined workpieces in details (e. g. width of 

the thin walls, perpendicularity at the comer for both sides of the thin wall's 

base), a Keyence VHX-Optical Digital Microscope was employed to analyse 

the geometrical accuracy. 

Surface quality result 

From the surface analysis being done, the results of the averaged surface 

roughness Ra and RZ are as shown in Table 6.7. Beside that, it also presents the 

maximum and minimum value of R. and RZ based on the 10 measurements 

taken during the analysis. 

Table 6.7 Surface quality result (R$ and R2) 

Type of 
material 

0 tool 
(mm) 

R. (pm) R. (pm) 

Min Max Avg Min Mag Avg 

0.5 0.029 0.038 F0.033 0.150 0.195 0.171 

316L 0.6 0.014 0.022 F 0.018 0.087 0.136 0.110 

8 
0.017 0.020 0.019 0.103 F 0.12 0.110 

0.5 ( 0.035 0.042 F 
0.039 0.191 0.243 0.222 

TiA16V4 0 0.040 0.057 0.049 0.227 [0.317 0.280 

0.8 0.031 0.051 FO. 039 FO. 192 0.305 0.232 

Legend: Max=Maximum, Min=Minimum, Avg=Average 
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Figure 6.15 presents the graph showing the Ra and RZ values for all the 

machined samples in this study. Each sample was given a unique identity to 

differentiate the material and its cutters size (e. g. Ti64-08 means the material is 

TiA16V4 and the tool is 0=0.8mm). The standard deviation values (3Q - 99% 

of confidence interval) are also included (as illustrated by the error bars in the 

graph). 

0.3500 
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0.2500 

E 
- 0.2000 

0.1500 

Cf. 
0.1000 

0.0500 

0.0000 
Ti64-08 Ti64-06 
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Legend: 

Sample Material Tool 0 Sample 
(mm) 

Ti64-08 0.8 316-08 

Ti64-06 TiA16V4 0.6 316-06 

Ti64-05 0.5 316-05 

Material Tool 0 
(mm) 

0.8 

316L 0.6 

0.5 

Figure 6.15 Graph of the average value of Ra and RZ 

The overall results of this study show that the achieved Ra in this experiment 

were between 0.02 and 0.06 µm with higher values associated to the surfaces 
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generated towards the end of the tool path (length cut: varied between 5.3 - 

6.7m), while the obtained RZ were between 0.1 and 0.3 pm (machining time: 

approximately between 14 and 17 minutes varied for each workpiece). From 

Figure 6.15, it can be noted that the measured la for TiA16V4 are higher than 

316L, this is the direct consequences of the development of tool wear. For 

TiA16V4, the obtained R1 was measured between 31% - 42% of its tool life 

while for 316L was between 14% and 19%. As an example, for tool 0=0.5mm, 

the length of cut to machine the micro-slots, thin wall and surface profiling are 

was 6.7m, while the total length of cut of the tool for TiA16V4 was 16m and 35 

m for 316L. This means, the calculated tool life for machining the TiA16V4 

was 42% and for 316L, 19%. This explains the significant differences which 

were found in the obtained Ra between both materials. 

Furthermore, by comparing these results (R8 and Rz) with those from the 

published literature in relation to the machining of micro-parts (e. g. thin 

feature) [34,36,149], the obtained R8 and & in this study can be considered as 

good and in an acceptable range. These comparable results show that the use of 

the custom-made MMT does not prevent the micro-milling process from 

generating a satisfactory surface quality after machining micro-slots and thin 

wall. 

From this analysis, the obtained values of R. were exploited in generating an 

index range for the MIS. For this purpose, the average values of R. were 

considered as the nominal values for the particular index range according to the 

type of workpiece material and also cutter size. As described in section 4.5, the 
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selected nominal value will be considered as medium to manufacture level in 

the MicroMAS analysis with MI1 = 1.0. As an example, based on the above 

experimental results, Figure 6.16 presents the generated MIS for 316L with 

the nominal value for tool with O=O. Smm being 0.033µm, 0 0.6mm is 

0.018µm and 0=0.8mm, 0.019µm (as highlighted). The details of the generated 

index range for MIR. were discussed in Chapter 4. 

S 0.5 1.0 >1.0 

Harder to manufacture Easier to manufacture 

Too10 mm 14 in m 
0.5 0.016 0.033 0.043 
0.6 0.008 0.018 0.028 
0.8 0.009 0.019 0.029 

Figure 6.16 Example of the generated MIS range for 316L 

Geometrical accuracy results 

In order to further analyse the geometrical accuracy of the generated micro- 

slots and thin walls, the samples were being measured under an optical 

microscope for the width of slot 1, slot 2 and thin wall (W1, W2, WTW), height 

of the thin wall (Hiw) and the angles at the base of thin walls (al, a2). The 

standard deviation values (3a - 99% of confidence interval) were also included. 

The analysis of the measurement results are divided into 3 sections: Table 6.8 

for Wl and W2, Table 6.9 for Wiw and HTw and finally Table 6.10 for al and 

a2. 
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Table 6.8 Measurements result for Wl and W2 

Material 316 TIAI6V4 

Tool 0 (mm) 0.5 0.6 0.8 0.5 0.6 0.8 

W1 

Nominal dimension 
0.600 

(mm) 
0.720 F 0.960 F 0.600 0.720 0.660 

Average 0.619 
- 

(mm) 

F 
0.736 
-- F 0.970 

[ 
0.616 0.728 0.969 

Std. Dev. 
0.004 

(mm) 
0.003 0.005 0.003 0.004 0.002 

Deviation from 

nominal (mm) 
0.019 0.016 0.010 0.016 0.008 0.009 

deviation relative 
to nominal 

3.13 2.17 0.99 2.0 
01.10 F 

0.92 

w2 

Nominal dimension 
0.600 FO. 720 0.960 0.600 0.720 F 0.960 

(mm) 

Average I 
0.612 0.735 0.964 0.615 0.722 0.968 

(mm) 

Std. Dev. 
0.005 0.003 0.005 0.004 0.005 0.034 

(mm) 

from D 
leviation i 

0.012 0.015 F 0.004 0.015 0.002 0.008 
(mm) na nom 

1 deviation relative 
to nominal 

1.97 2.66 0.43 2.45 0.26 0.80 

Based on the analysis from the tables, it can be concluded that the accuracies of 

the generated micro-slots were basically satisfactory in terms of their 

geometrical accuracy. From the results, the width attribute for both slots (Wi 

and W2) deviated less than 3.2% from the nominal value with the width of W1 

being slightly higher than W2. This is the effect of the development of tool 

wear as the Wi is machined first followed by W2. The machining time for each 

slot is approximately between 2 and 4 min depending on the size of the slot 

(e. g. 0.60,0.72,0.96mm). 

225 



Table 6.9 Measurements results for W and HTW 

Material 316 TiAI6V4 

Tool 0 (mm) 0.5 0.6 0.8 0.5 0.6 0.8 

WTW 
Nominal dimension 0.1000 0.120 0.160 0.100 FO. 120 0.160 (mm) 

Average 0.1003 0.1218 0.1604 0.1089 0.1285 0.1676 

Std. De v. 0. 0.0039 0.0020 0.0029 0.0030 0.0036 

Deviation from r 
0.0003 0.0018 0.0004 0 0089 0 0085 0 0076 

nominal (mm) . . . 

% deviation 
03 

relative to nominal I 1.5 0.25 
F- 

8.9 F 7.08 4.75 F 
HIM 

Nominal dimension 
0.500 0.600 0.800 0.500 0.000 0.800 (mm) 

Average 0.495 0.592 
F 

0.793 0.498 0.593 
F 

0.796 (mm) 

Std. Dev. 
0.004 4 0.003 F 0.005 0.003 0.003 0.003 

i (mm) 

Deviation from 
_0.005 i l 

F 
-0.009 -0.007 -0.006 -0.008 -0.004 (mm) na nom 

deviation 

relative to nominal _1.08 -1.71 -1.35 -1.26 -1.51 -0.87 

From the analysis of Table 6.9 it could be noted that all Wiw are larger than 

the nominal dimension and there are considerable differences between the 

materials. The obtained WTW for 316L are considered to be in a better 

conformity with the nominal value compared to TiA16V4. This can be noted 

from the deviation stated in Table 6.10 where for 316L the percentage is less 

than 2% while it is between 4% and 9% for TiA16V4. This result is attributed 

due to tool wear as it caused the sharp edge of the tool to become blunt. This 

leads to an increase of the cutting forces which create tool deflections and the 

geometric accuracy of the part deteriorates. Another possibility is the deviation 

of the tool diameter from the nominal value where the tolerance range for the 
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tool according to the manufacturer is 0; -0.04mm. However, there are no 

significant differences between the materials in the height aspect where Hy 

for the thin wall are smaller than the nominal dimension by less than 2%. 

Table 6.10 Measurement results for a, and a2 

Material 316 

Tool 0 (mm) 0.5 0.6 0.8 

Angles CE, a= al A2 al a2 
Nominal 19 00 

i ° i 
90.00 90.00 90.00 90.00 90.00 

on ( ) mens d 

Average 90.48 90.75 90.16 90.77 90.70 90.83 (mm) 
r-- I 

Std. Dev. 0.346 0.141 
FO. 

156 0.163 
FO. 

085 0.071 
(mm) 

Deviation from 
0.48 

i l 
0.75 0.16 

F 
0.77 0.70 

F 
0.83 

na nom 
% deviation 

relative to 0.52 0.83 0.18 0.85 0.78 0.92 

nominal 
TiA16V4 

Angles 1 a2 al A= at a2 
Nominal 90.00 

i ° 
90.00 90.00 90.00 90.00 90.00 

on ( ) dimens 
Average 90.28 90.73 89.99 90.56 90.10 90.62 

mm 
S d. Dev. 

i 0.099 0.078 0.021 0.332 0.078 0.113 

Deviation from 
l i 

0.28 F 0.73 F 0.01 0.56 0.10 0.62 
na nom 

% deviation 

relative to 0.31 0.81 0.01 0.62 0.11 0.69 
1 

nominal 

Based on results' analysis of a, and a2 as shown in Table 6.10, it can be noted 

that the deviation from the perpendicularity for both angles are more than the 

nominal value by below I%. It can be concluded that the generated thin wall 

did not show any sign of bending and has a satisfactory level of straightness. 

Finally, from the exploration on the geometrical accuracy of the machined 
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micro-slots and thin walls, it can be concluded that the MMT is capable to 

produce a high quality of such features (e. g. straight and geometrically accurate 

thin wall and micro-slots). 

The results from the geometrical accuracy analysis above were extracted to 

generate the index for MITOL in MicroMAS. The values of the generated 

standard deviations were selected as the nominal values for MITOL which were 

divided according to the different feature size range. The determination of the 

feature size range was established on the variety of dimensions of the generated 

micro-slots and thin walls (e. g. W1, W2, Wem). As an example, Figure 6.17 

presents the generated MITOL for the MicroMAS which also consider the 

tolerance class between 2 and 6 from the International Tolerance Grade (ITG). 

The detail of the generated MITOL range was presented in Chapter 4. 

Feature size (mm) 

5 0.5 1-1-0-ý I >1.0 

Harder to manufacture Easier to manufacture 

Tolerance value (mm) 

0.0 - 0.5 0.0012 0.0030 (0.0060 

0.5 -1.0 0.0020 0.0046 0.0070 

1.0 - 1.5 0.0024 0.0049 0.0078 

1.5-2.0 0.0030 0.0062 1 0.0086 

>20 0.0034 0.0078 0.0092 

Tolerance class 246 

Figure 6.17 Example of the generated MITOL 
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6.3.3. Machining the `micro-component demonstrator' 

In order to further assess the capability of the MMT, a micro-component that 

comprised of various features/shapes such as through/blind cavities, slots and 

bosses was also machined (Figure 6.18). Besides assessing the capability of the 

MMT, this micro-component demonstrator was also employed as the example 

of a micro-part in illustrating the function of the Primitive Feature Analysis 

(PFA) technique (discussed in Chapter 4) and also to simulate the flow of the 

developed MicroMAS (Chapter 7). In this study, TiAl6V4 was selected as the 

workpiece material to generate the micro-component demonstrator. 

of F6 
F2 F3 0.45 

oä18 RO. 2 
. 1.8 

Fl RO. 6 

1.6 F 
F4 

5 
3 

FS 
F7 

IB 
I L02 
hý Id -o- 

ýýJ 

Figure 6.18 Micro-component demonstrator 

0.25 
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6.3.3.1. Machining procedures and parameters 

In order to generate this micro-component, the contouring and pocketing 

approaches provided in MasterCAM were selected. The procedure is described 

below: 

" Prior to machining this micro-component, the top-flatness machining as 

mentioned in Figure 6.11(a) was implemented on the workpiece using the 

same machining strategy. 

" Following this, the first feature (F 1 in Figure 6.18) was machined using the 

machining layout as illustrated in Figure 6.19. 

Figure 6.19 Machining F1 

" Finally, by using the pocketing approach, Feature 2 to 6 (F2 - F6) were 

then machined using the approaches shown in Figure 6.20. 
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The workpiece shown in Figure 6.18 was machined based on the recommended 

machining parameters from the tool manufacturer and also as suggested in 

previous related literature [34,128]. The cutter used was a micro-end mill from 

Sandvik Coromant 0 0.5nun (8216.32-00530-AE05G 1620 Coromill Plura) 

using the cutting conditions: n=38000min'', ap=0.025mm, k=0.025mm, 

Vc=60m/min, f =0.006mm/tooth, Vf=456mm/min, Hocut 3380 flood coolant 

supply. 
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Figure 6.20 Machining strategies for Feature 2-6 (F2 - F6) 



6.3.3.2. Results and discussion 

Figure 6.21 shows the machined micro-component magnified under an optical 

microscope at magnification of x50. 

Referring to Figure 6.21, an inspection made of the "as-machined" surfaces 

indicated that the geometrical features of the micro-component were clearly 

defined and there were no obvious evidence of scratches or problems on its 

surfaces. The machining time for this micro-component was approximately 28 

min. Analysis on its surface quality and geometrical accuracy will be discussed 

in the next paragraphs. 

Surface quality results 

The surface roughness of four different areas of the machined micro-part (F2, 

F3, F5, outer part of F1 - as highlighted in Figure 3.17) were measured over a 
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Figure 6.21 Machined micro-component 



sampling length between 0.5 and 0.8 mm and a cut-off length of 0.025 mm. 

Again the parameters used to evaluate the surface roughness were Ra and RZ, 

standard deviation values were included to `verify' the obtained results. The 

average results of all measurements are presented in Table 6.11 for Ra and 

Table 6.12 for R. 

Table 6.11 Roughness (Ra) result for micro-part 

Area : . _. R12 ... ., _.. _,, R'--' kF5-- 
. 

No. (Nm) 

1 0.046 0.049 0.062 0.064 
2 0.048 0.050 0.043 0.057 

3 0.051 0.052 0.059 0.059 
Ä era e O. 04ß 0.0,0 Q. 054- 0.060 

Std:. dev 0.043 0.002 0 . 
0.10 0.004 

Table 6.12 Roughness (RZ) result for micro-part 

uutFl IF 
Area ' Rz RZ Rz RZ 

;.,. öNo. (µm) 
:... 

(µm) (µm) (µmIF5 ) 

ý- 1 0.222 0.207 0.287 0.323 

2 0.241 0.361 1 0.307 0.274 

3 0.251 0.297 [ 0.285 0.269 

; Average 0.237 10.288 0.293 ; 0.303 

Std. dev. . 
0,016 [ 0.077 r 0.012 0.009 

The measured Ra values varied between 0.04µm and 0.06µm with higher 

values related to the surfaces generated towards the end of the toolpath due to 

the development of tool wear. It can be noted that the outer part of F1 produced 

the lowest R. compared to other features as it has been machined first. The Ra 

value has increased gradually from feature to feature based on its machining 

sequences. While the lengths of cut for each feature are as follows: Fl: 10.9m, 

F2: 0.23m, F3: 0.23m and F5: 1.18m with total length of cut to machine the 

micro-component is 12.87m. The length of cut suggested by the tool 
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manufacturer based on the proposed machining parameters was 16m. Based on 

this, the measured Ra for Fl was at 68% of the tool life, F2 at 70%, F3 at 71% 

and F5 at 80%. This also explains the gradually increase of Ra from the first 

machined feature to the end of the last feature. 

Furthermore, by comparing this result (Ra and RZ) with previous literature in 

producing micro-component [36,128,149,158], the obtained R. and RZ in this 

study can be considered as good and in an adequate range. These comparable 

results show that the use of the custom-made MMT does not stop the micro- 

milling process in generating a satisfactory surface quality of a micro- 

component. 

Geometrical accuracy results 

In order to assess the geometrical accuracy of the machined micro-part, the 

dimensions of all features (as illustrated in Figure 3.16) were measured using a 

Keyence VHX-Optical Digital Microscope. Table 6.13 presents the dimensions 

for all the features in the machined micro-part and again standard deviation 

values (a - 99% of confidence interval) are included. 
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Table 6.13 Measurement results for micro-part 
Feature Nominal 

dimension 
(mm) 

Average 

(mm) 

Std. 
dev. 

(mm) 

Deviation 
from 

nominal 
(mm) 

% deviation 

relative to 

nominal 

Fl WF1 3.00 3.092 0.004 0.092 3.07 

LFl 1.60 1.649 0.009 0.049 3.08 

F2 W 1.80 J. 
-_ 
8O8 0.002 0.008 0.45 

LF2 0.80 0.810 0.001 0.010 1.19 
F3 WF3 1.80 1.810 0. -7 0.010 0.53 

LF3 0.80 0.811 0.001 0.011 , 1.36 
-F4-1 RR 0.60 0.605 0.002 0.005 0.77 

F5 WFS 3.00 3.078 0.010 I 0.078 2.60 

LFS 1.80 1.804 i 0.002 0.004 0.20 

F6 WF6 0.25 0.254 0.001 0.004 1.68 
LF6 0.45 0.452 0.002 0.002 0.42 

F7 WF7 0.20 0.205 0.003 0.005 2.70 

LF, 1.40 1.435 0.007 I 0.035 2.49 
WnV 0.10 0.104 0.004 0.004 03.80 

From the analysis of the Table 6.13, it can be seen that all measured features 

are in good agreement with the nominal values, with the percentage of the 

deviation relative to nominal being less than 4%. In this particular condition, 

the deviations of the dimensions are believed to be attributed to the 

development of tool wear towards the end of the machining activity. 

From the investigation on the geometrical accuracy of the machined micro- 

part, it can be concluded that the level of accurateness that can be achieved by 

the MMT is at a satisfactory level, where it can reach up to 96%. 

6.4. Advantages of the MMT 

Despite the problems and limitations that were discussed before, the custom- 

made MMT still offers several advantages as described below: 
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" Ability to machine micro products in full 3D features 

One of the advantages of the MMT is the possibility to machine 3D micro- 

features; this has been demonstrated through experiments in machining the 

"adapted-standard" micro-testpieces, micro-slots and thin walls and also 

micro-component. Even though the machining parameters were not fully 

optimised, the MMT was shown to be capable to machine 3D features with 

a high level of surface quality and geometrical accuracy. This is based on 

the surface quality analysis and geometrical accuracy assessment towards 

the machined micro-features discussed above. 

" Facility ofportable desktop machining 

Referring to the descriptions in sections 6.2 and 6 
. 
3, the developed MMT 

can be categorized as a portable desktop machine based on its size and 

components. This allows the MMT to be easy to move around and have 

more flexibility in factory/workshop layout because of its size. 

Furthermore, it gives the MMT the capability to be used in any locations 

(e. g. not necessarily in factory/workshop). 

" Customised set-ups at affordable costs using off-the-shelf components. 

The MMT was constructed at a reasonable cost with commercially 

available parts such as positioning tables, motor and spindle units, machine 

base and machine frame. This can be done by choosing the "off-the-shelf" 

parts so there was no need for extra cost in customising or uniquely to 

design any of the machine components. The advantage of the custom-made 

machine tool was that the selected components consist of those that are 

really needed or essential to run the machine. As example, the overall cost 
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to developed this MMT is £15 000, while the cost for a precision machine 

tool can reached up to £500 000. 

" Save energy, weight, volume and manufacturing related cost 

The size of the MMT which takes up less space than a big precision 

machine tool can contribute to economical space utilization, energy and 

also manufacturing cost saving (e. g. rental space for a factory) [146,163]. 

6.5. Integration with MicroMAS 

Emphasis was given towards the MMT as it is the domain implementation of 

the developed MicroMAS which was the main subject of this study. 

Additionally to make this study more appealing, the discussed MMT is a 

custom-made machine tool that have a variety of challenges (e. g. the 

workpiece and tool set-up, consequences of integrating several "off-the-shelf" 

components) and also it does not have any standard or guidelines to run it. In 

this chapter, detailed explanations on the condition and capability of the MMT 

including the related experiments were discussed thoroughly. 

The experiments were carried out to emulate the real condition of the MMT in 

the MicroMAS. Figure 6.22 presents the integration between the micro- 

machining experiments in the MMT and the developed MicroMAS. 
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Micro-slots and thin 

wall experiment 

Micro-testpiece 

experiment 

" Ra value for MIS index range " Verification of the UEM 

" Std. dev. value from analysis (detail in Chapter 5) 

geometrical accuracy analysis 
for MITOL index range 

[MicroMAS 

" To compare the results of 
MicroMAS assessment towards 
the same micro component 

Micro-component 

experiment 

Figure 6.22 Integration between micro-machining experiments and MicroMAS 

Based on Figure 6.22, each of the experimental results contributed directly or 

indirectly towards the developed MicroMAS as follows: 

" The generation of index ranges for MIp. and MITOL were taken from the 

results of surface quality and geometrical accuracy of the micro-slots and 

thin walls experiment. For MIS, the range was developed according to the 

type of material associated to the cutter size with the average values of R.. 

regarded as the nominal value for that particular index range. While for 

MITOL, the calculated standard deviations from the geometrical accuracy 

analysis were employed in generating the index range which was divided 

according to various feature sizes. This was discussed in Chapter 4. 
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" The results from the micro-testpiece experiment (AISI 1040) were used to 

verify the UEM analysis and implemented the MIs analysis (MIUEM). The 

CMM results from the geometrical accuracy analysis of the AISI 1040 

were then partially compared with those obtained from the uncertainty 

model (analysed in GUM Workbench). This was discussed in Chapter 5. 

" Furthermore, the machined micro-component was also exploited as an 

example in simulating the flow of the MicroMAS. Thus the results from 

this work can be used to partly verify the function of MicroMAS (e. g. 

'generated surface quality, part accuracy with the level of 

manufacturability). 

6.6. Summary 

This chapter has introduced and discussed the machining experiments carried 

out using the MMT. The development of the MMT has contributed 

significantly towards this study as it is the main domain or scope of the 

developed MicroMAS for micro-milling application. It presented problems and 

limitations faced when developing and exploiting MMT which has been 

observed through various machining testing and trials. The chapter also 

considered the solutions provided for those limitations in order to ensure the 

successful performance of the MMT. It also took into account the machining 

experiments done to assess the capability of the MMT which provided results 

and inputs to be included into the MicroMAS database and which also assisting 

in validating the result of the uncertainty model analysis. 
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Based on the results from the machining experiments, it has been proved that 

the MMT is capable in generating micro-components at acceptable 

accuracies/repeatabilities. Although it was not the scope of this study to seek 

optimised cutting parameters that result in fine surface roughness, the 

measured Ra and RZ and also the geometrical values achieved were acceptable 

giving a respectable range of precision. This provides an indication that the 

custom-built MMT has been developed to a satisfactory level of precision to 

enable micro-machining of surfaces with acceptable accuracies. 

Additionally, the results from these experiments were successfully included 

into MicroMAS. This was completed by the generation of index ranges for 

MITOL and MIRa, verification of UEM results through the machined micro- 

testpiece (where UEM is also implemented in MicroMAS). Finally the results 

from the generated micro-component demonstrator can be partly compared 

with the simulation in analysing the sequence of the MicroMAS. 
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CHAPTER 7: IMPLEMENTATION OF MICRO- 

MANUFACTURABILITY ANALYSIS SYSTEM (MICROMAS) 

7.1. Introduction 

The development of the MicroMAS was the main objective of this study, to 

develop a manufacturability analysis system for micro-machining environment. 

This system, for the time being, has been explicitly developed to address a 

custom-made 4-axis Miniature Machine Tool (MMT) which requires a system 

that can support a robust and efficient generation of micro-part. In this chapter, 

an in-depth description of the developed system is presented. Firstly, an 

overview of the system development is briefly explained, following this, the 

execution of the MicroMAS is presented. Based on the Primitive Feature 

Analysis (PFA) phases (as discussed in Chapter 4), the implementation of the 

MicroMAS was divided into four stages as follows: 

i. Initial Assessment (IA) 

ii. Single Feature Analysis (SFA) 

iii. Coupled Feature Analysis (CFA) 

iv. Outputs generation 

Furthermore, in order to understand the algorithm of the system, a flowchart 

was employed to describe the execution of the data and the related inferences 

involved in the stages above. Additionally to observe the performance of the 

system in gathering important data from CAD model and also assessing its 

manufacturability aspects, a micro-component demonstrator was used to 

simulate the implementation of the MicroMAS (e. g. interfaces, pop-up form, 

user-system interaction, outputs window). Finally, this chapter considers the 
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advantages and possible limitations of this developed manufacturability 

analysis system. 

7.2. MicroMAS development - an overview 

As discussed in Chapter 3 (Figure 3.1), the development of the system is 

based on the three-step, unidirectional flowchart methodology that includes 3 

modules: data input, manufacturability assessment, output reporting. The 

MicroMAS, developed in the Visual Basic. NET (VB) environment has 

employed the Primitive Feature Analysis (PFA) technique in gathering data 

from CAD model and assessing its manufacturability. 

Figure 7.1 illustrates the overall relationships between various aspects (e. g. 

input, manufacturability assessment, output, database) in the MicroMAS. The 

data input into the system is done through the combination of two methods: 

user-system interaction and a priori database. In the user-system interaction, 

users are prompted to provide the requested data through the interfaces such as 

the characteristics of the primitive features (e. g. length, width, height, 

diameter), quality measures (e. g. tolerance and surface roughness value) and 

weight factor that reflects the importance of the manufacturability indexes 

(MI). While for the priori database, users are asked to select the data listed by 

the system such as the type of PF and its orientation, material and tool 

diameter. 

Basically, MicroMAS is proposed to be utilized at the early design stage where 

user can assess the possibility of machining the CAD model using the MMT 
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through the manufacturability aspects incorporated in the system. The 

manufacturability aspects involved are dimensions, surface roughness, 

tolerance, primitive features and their interactions, material, uncertainty impact 

on machining the PF and also the condition of the MMT. The 

manufacturability assessment is made based on the Ruled-based System (RBS) 

through IF-THEN clauses that controls the analysis of MicroMAS and 

represents the system knowledge base via logical combinations. In this study, 

the related rules and conditions associated to micro-milling and all primitive 

features elements are saved in the form of IF-THEN clauses. All the rules and 

conditions stored in the database are interactively searched based on IF-THEN 

clauses in order to determine which rules satisfy the requirements expressed 

via inputs. 

Related manufacturing information (e. g. materials, range of valid part 

dimension, geometrical interactions) and rules are embedded in the database to 

be used as a guide for assessing the manufacturability of the proposed design. 

The database was developed using Microsoft Access and linked to the VB. In 

order to reflect the actual condition of the MMT, results from micro-machining 

experiments and UEM analysis were input into the MicroMAS through the 

database (as discussed in Chapter 5 and Chapter 6). 

The results from the manufacturability assessment are reported to users in 

various types such as result form and pop-up window. The results provided are 

the generated MIs and also redesign suggestions. 
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7.3. MicroMAS data flow description 

In order to understand the execution of MicroMAS, Figure 7.2 describes the 

overall implementation of the system. Based on the three phases on the PFA 

technique development, the system expanded the phases to four sequential 

stages: (i) Initial Assessment (IA), (ii) Single Feature Analysis (SFA) (iii) 

Coupled Feature Analysis (CFA), (iv) Output generation. Table 7.1 

summarises the objectives and expected outputs of the stages in MicroMAS. 
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Table 7.1 Summary of MicroMAS's stages 

Stage Objective Expected Output 

Initial - Identify numbers of PFs Progress to the next 
Assessment 

- Verify dimensions of the part/features phase. 
(IA) Possible of error 

notification. 

SFA - Assess each PF MISM 

- Verify stiffness ratio (RsT) Stiffness ratio (RsT). 

- Calculate MIsFA: 

EK, MI 

i= PF, Ra, TOL, DIM, UEM 
(Equation 4.1) 

CFA - Assess the relationships between the PFs M1cFA. 

and calculate MIcFA 

Output - Calculate Mlov : M1ov>L, u� 
n+1 Redesign suggestions. 

MIM. 
4T 

+ZjMICF4 

n=1 MIOVERALL 
-9 

n 

n=number of PFs 
(Equation 4.3) 

Legend: 
SFA Single Feature Analysis 

CFA Coupled Feature Analysis 
MISFA Manufacturability Index for single feature analysis phase 
MITOL Manufacturability Index for tolerance 
MIR, Manufacturability Index for surface roughness 
MIDIM Manufacturability Index for tool dimension 
MIS Manufacturability Index for uncertainty effect in machining the PF 

MIPF Manufacturability Index for primitive feature 
MICFA Manufacturability Index for coupled feature analysis phase 
MIOVERALL Manufacturability Index for overall micro-part 
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7.3.1. Initial assessment (IA) 

As discussed in Chapter 4, the main objective of this stage was to gather data 

from the proposed CAD model (micro-component) and furthermore to validate 

the collected data with the acceptable ranges stored in the database. Figure 7.3 

(a) and (b) illustrate the flowchart of this stage where it starts with the users 

uniquely label the micro-component, then identifies the number of Primitive 

Features (PFs) contained in the proposed CAD model and selects the suitable 

type of workpiece material. Next, the users uniquely label each identified PF. 

The type of PF is then selected by the users (e. g. Box, Cylinder, Cone or 

Sphere) and the PF dimensions can be selected. 

Following the data validation, the orientation of the PF is selected and if it is a 

cavity, the type of it (e. g. through or blind holes) is determined. Subsequently, 

the shape of the PF is decided based on the side angle value supplied by the 

users. Finally, the users choose the type of end comer, tool diameter, related 

tolerance and surface roughness value and also the uncertainty effect in 

machining the PF. All the data are saved in the database and once this 

inference is completed, the next stage is the SFA phase. This inference is 

repeated until the details of all PFs have been provided into the system. 
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7.3.2. Single feature analysis (SFA) 

The main goals of this stage are to assess the MIs for each PF and to calculate 

the MIsFA. Figure 7.4 (a) presents the flow of the data and inferences involved 

in assessing the PF in the aspect of tolerance, surface roughness, uncertainty 

effect in machining it and selected tool dimension. While Figure 7.4 (b) shows 

the execution of determining the MIsFA. The loop in calculating the MIsFA is 

controlled by the number of PF determined by the users in JA phase. 

First, the users have to determine the weight factor (K; ) for each related MIs 

(MIPF, MITOL, MIRa, MIDIM, MIUEM). Next, the justification for each MI is being 

done, the mechanism of determining the MIs have been discussed in Chapter 

4. Following this, the MIsFA is calculated based on Equation 4.1 mentioned in 

Table 7.1. This procedure is repeated until the MIs and MISFA for all PFs have 

been determined. The results of MIs and MISFA are then saved in the database 

for future analysis. 
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O 
1Calculate 

MISFA 
(Equation 4.1) 

MI s 0.5 

NO 

0.5<MI<_1.0 

NO 

MI> 1.0 

YES 

Figure 7.4 (b) Single Feature Analysis stage 

7.3.3. Coupled feature analysis (CFA) 

As mentioned in Chapter 4, the objective of this stage is to determine the level 

of relationship among PFs by taking into consideration the distance and the 

type of interaction between them. Figure 7.5 shows the succession of the 

related inferences and data in CFA stage. In order to control the loop of CFA 

analysis, users provide the number of CFA relationship which represents the 

quantity of coupled primitive features in the analysed micro-component. 
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The calculation of MICFA is subjected to: (i) comparison between the relative 

distance (RD) and the minimum acceptable distance (MD) of the PFs and (ii) 

the type of the interactions (e. g. adjacent, attached or independent) between 

them; this is done by multiplying the related MIsFA with the pre-defined 

coefficients (Kiw) as presented in Table 4.2 (Chapter 4). Then, the level of 

manufacturability for each PF is justified based on the calculated MICFA. The 

results from CFA stage are stored in the database for analysis in the next step. 
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7.3.4. Output generation 

In the final stage of the MicroMAS (Figure 7.6), the overall MI is evaluated 

based on the Equation 4.3 declared in Table 7.1. This is done by taking into 

consideration the calculated MICFA and also the machinability index of the 

workpiece material (MIM AT) as referred to in the literature [183-184]. 

4 

MIuAr 
Calculate 

value 
MIOVERALL 

(Equation 4.3) 

MI <_0.5 NO 0.5ýM1<_1.0 NO MI>1.0 

YES 

Is 
MIOVERALL 

YES . Redesign YES 
Suggestion 

Mlvnr 
Calculate 

value 
MIOVERALL 

(Equation 4.3) 

Figure 7.6 Output generations stage 

Then, the level of manufacturability for the calculated MIOVERALL is justified. 

In order to upgrade the manufacturability level of the proposed design, the 

system gives suggestions about changing manufacturability aspects of the 

part/PFs as follows: 

0 Modify the PFs with low MISFA by redefining the value of surface 

roughness, tolerance and uncertainty effect in machining the feature. 

0 Suggestion on PF with low MICFA to reconsider (if possible) the relative 

distance between the PFs. 
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" Recommendations on changing the selected material to one with lower 

hardness that allows easier machining. 

0 Redefine the importance of the weight factors (Ki) of each MI involved 

in calculating the MISFA. 

7.4. System implementation and simulation 

In order to visualise the MicroMAS execution, the system is demonstrated in 

the next paragraphs by employing the machined micro-component 

demonstrator (Figure 7.7) as the example of the proposed CAD model. This 

section also described the flow of the activities that involved the user in using 

the MicroMAS. Figure 7.7 also presents the identified PFs which are 

numerically labelled (1 to 8). 
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5 

7 

.ý 

H 

Figure 7.7 Top view of the proposed micro-component (in mm) 

6 

Figure 7.8 shows the introduction interface of the system, where to start the 

system the Single Feature Analysis item menu is selected. As a guideline for 

using the overall system, the Guidelines item menu can be chosen, nevertheless 

a brief instruction is provided in each stage/interface. 
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Guidelines 

Ext 

ýýIicrcýMAý 
Figure 7.8 Introduction interface for MicroMAS 

7.4.1. Input and single feature analysis interfaces 

Figure 7.9 demonstrates the main interface where the input from the users is 

collected. A guideline for entering and using this interface is provided by 

selecting the button `TO DO'. A pop-up window (Figure 7.10) showing the 

guidance to fill in the form and assess the preliminary result of the input is also 

presented. Figure 7.9 shows the data input for PF_8 of the micro-component. 

Fundamentally, there are five important steps involved in the input mechanism 

and SFA analysis as pictured in Figure 7.9. 
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Idergify the number of primitive features in the component, Fill up the details required Back 
in STEP 1 BOX 

=, rýp 
INext, fill up the data for single features orientation and shape in STEP 2 BOX 

Please tilt in the geometrical data for the single feature in STEP 3 BOX 

4 fig in the manufacturing related details for the single feature in STEP 4 BOX tpp 
Fa 

5 CYck the SFA button for single rating located in STEP 5 BOX 

Click the Overall SFA button for overall SFA index for the single feature also located 
I--J in STFP ri R IlX 

Figure 7.10 Pop-up window for guideline in using the input mechanism and 

SFA analysis interface 

Step]. In the first step, the users input the unique identifier of the micro- 

component, followed by the number of the PFs contained in the proposed 

design. Then, the suitable material is selected from the list of available 

materials stored such as AISI 1040 - Mild Steel, 316L - Stainless Steel, and 

TiA16V4 - Titanium Alloy. Figure 7.11 shows Step] interface that is being 

extracted from the main window form of the system. 

Figure 7.11 Step I 
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Steps 2 to Step 5 are repeated until details of all PFs have been input into the 

system and the result of MISFA of each PF can be reviewed in Step 5. 

Step2. Figure 7.12 shows the interface for Step 2, where the users uniquely 

label each identified PF (e. g. 1,2,3). Here the data needed are the type of the 

PF (e. g. box, cylinder, cone), orientation (cavity or boss) and side angle. The 

shape of the PF (e. g. straight, tapered negative, tapered positive) is 

automatically determined by the system based on the provided value of the side 

angle. This second step reflects the required data for the SFA phase as 

discussed in Table 4.1 and Figure 4.2, Chapter 4. 

TWO 

HI 
ýW 

ids Ie 

PF Type IBox 0 

Orientation 1 Boss 

Side Angle 110 
Shape Straight 

4--* 
L 

0 =o° 

Figure 7.12 Step 2 
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Step3. Geometrical data of each identified PF are required in this step. The data 

depends on the type of PFs classified in Step 2 as each PF requires different 

geometrical data. Figure 7.13 presents the extracted interface for users to input 

the required geometrical data. In order to help the users to input the relevant 

data according to the type of PF, the necessary geometrical characteristics are 

suggested by the system. This is also shows in Figure 7.13 where two different 

set of geometrical characteristics are being required from the users, where (a) is 

for Box while (b) is for Cylinder. 

Step THREE 

HeigH 0.15 

Length 110.2 

Width 11Fl -4 

Step THREE 

H 10.15 

Diameter 11.2 

Angle 11 
End Sharp 

Comer 

(a) 
Figure 7.13 Step 3 

(b) 

In validating the provided data for the PF's dimension, a highlighted warning 

scheme as shown in Figure 7.14 is being imposed by the system to notify the 

users if any of the input is out of the determined acceptable range stored in the 

database. 
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Step THREE 

Height 25 $ 

Length 35 Q 

Width 35 

End Sharp " 
Comer 

Figure 7.14 Warning scheme for data validation 

Step 4. Manufacturing related details such as the process involved (micro- 

milling), diameter of the tools and part quality measures (tolerance, surface 

finish and uncertainty in generating the PF) are required at this step as pictured 

in Figure 7.15. 

Step FOUR 

Process 

Tool Diameter 10 5 

MITOL 167 

MIý 1 2R 

P'AIUEM ý0 fi6 - 

Figure 7.15 Step 4 

For the part quality measures, in order to assist the users in determining the 

suitable and appropriate MIS, MITOL and MIUEM, each button provides a 

related guideline. As example, Figure 7.16 presents the pop-up guideline for 

Warning scheme: to alert the user 
that the dimension is out of the 

acceptable range of the MMT 
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MITOL, where the track bars or sliders (as pointed in the figure) guides the users 

with tolerance value for harder, medium and easy to manufacture. Among the 

information provided in this pop-up window are the values of the tolerances for 

each level of manufacturability based on the feature size and its references to 

the International Tolerance Grade (ITG). Next, users input the tolerance value 

according to the feature size and by selecting the Calculate MITOL button, the 

MITOL value is generated. This value is passed back to the main interface 

window in Figure 7.15. The above discussed mechanism is again repeated for 

determining MIRa and MIuEM. The MIR,, MITOL and MIUEM are determined 

based on the related input in each guideline window and the indices scheme 

described in Chapter 4. 

Featwe Size Width of Enter tolerance emulate 
(mm) Tolerance (mm) vahae (mm) MIS 

0.0.0.5 0.003 10 0050 11.67 

0.5.1.0 0.0046 F- 

1.0.15 0.0049 
BACK 

1.5.2.0 0.0062 F- 

Maethan20 

Tolerance 
Grade TC 4 

MITOL 1 

t St Medium To 
a us M anu(acture 

Trackbar/slider to indicate 

the range of MITOL 

Figure 7.16 Determining the MITOL 

Step 5. This step provides the generated final results of MIFF, MIRa, MITOL, 

MIDIM, MIUEM and Stiffness Ratio (Rst). Firstly, weight factor (0 < K; 
_<1) 

is 
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assigned to each index based on the users decision in determining which key 

characteristic are more important when considering the manufacturability of 

the PF. As example in Figure 7.17, the users choose the impact for tolerance 

and PF analysis is at 10% (K; = 0.9) respectively, while the uncertainty in form 

manufacturing contributes 20% (K; =0.8) impact in the manufacturability for 

the particular PF. Meanwhile, the users decided that surface roughness and tool 

dimension did not have any weightage of influence in the manufacturability of 

the PF, so value 1.0 is allocated. 

Step FIVE: ANALYSIS 

Ki (Weight 
Factor) 

10 9 
MITOL 15 

10 
MIRa F 1.3 

10 MIDIM "05 

09 MIPF 
',: ' 1091 

F6-8 MI 

L oý 

Single Feature 
Analysis 

Calculate 
0 98 

MISFA 

Shtfness Ratio 0.14 

Figure 7.17 Step 5 

Next. the Single Feature Analysis button is chosen to generate the new MIs 

after the K; is being considered for each determined MIs from Step 4. Then, the 

Calculate MISFA button is selected to generate the MIsFA subjected to Equation 
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4.1 and also the Rst value and analysis. A pop-up (Figure 7.18) provides the 

result of MISFA and its level of manufacturability and also the result of Rs and 

determines whether it is within the preset acceptable ranges. 

Id Feature 4 Click lot Status 

Stiffness Ratio 1.8 ACCEPTED EXIT 

I MISFA 0.82 MEDIUM to manufacture 

Figure 7.18 Pop-up for MIsFA result and Rst analysis 

7.4.2. Coupled feature analysis interfaces 

Once the data input form reaches the maximum number of PFs contained in the 

analysed component, a CFA button appears in the main interface (as shown in 

Figure 7.9) confirming the completion of the Input and Single Feature 

Analysis stage. A new interface referring to CFA phase appears (see Figure 

7.19), where the users have to input the number of the coupled features 

occurred in the component (Figure 7.19 (a)). Then, based on this number, the 

related input textboxes are generated by the system as shown in Figure 7.19 

(b). Following this, for each coupled PFs, the users have to input the relative 

distance (RD) and the type of interactions between them. In assisting the users 

to determine the type of interactions, a graphical guideline is provided as 

illustrated in Figure 7.20. 
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Legend for type of 
interaction 

Aý [ Attached 

ADJ Adjacent EXI T 

rND 
Independent 

%NO 

ca) Attached (b) Adjacent (c) LtdcpeIidcnt 

Figure 7.20 Guideline for determining the type of interaction between PFs 

Once all the related information (PFs number, type of interaction and RDs) 

have been supplied, the ANALYSIS button is selected and the MICFA for each 

PF is calculated based on the scheme discussed in Chapter 4. The result of 

MICFA is displayed in the dedicated list box as highlighted in Figure 7.19 (c). 

Following this, the OVERALL RESULT button is chosen to proceed to the final 

stage which is the outputs generation of the system. 

7.4.3. Outputs generation interface 

The overall output of MicroMAS is shown in Figure 7.21 containing: MISFA 

and MICFA for each PF and MIOVEL of the analysed component. 
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Principally there are four steps involved in generating the final results of this 

system which are: 

0 Listing all the PFs contained in the analysed component (Figure 7.21(a)). 

0 Generating the calculated results of MIsFA and MICFA from previous 

interfaces (Figure 7.21(b)). 

0 Based on the MICFA result, the system determines the level of 

manufacturability for each PF and moreover, suggestions are provided to 

increase the MICFA or MISFA such as redefining the importance of K; in 

NIISFA, checking and revising the PF's dimensions, quality measures 

inputs (e. g. selected surface roughness, tolerance value) and related 

relative distances between PFs (Figure 7.21(c)). 

0 The MIxMAT is determined based on the selected material and finally, the 

Nilovrx, &u, is calculated employing Equation 4.3 which is stated in Table 

7.1. Then, the system determines the level of manufacturability of the 

overall component. The system also highlights the PFs with least value 

of MISFA and MICFA. If a higher value of MIOVERALL is needed, then the 

system gives suggestions about changing manufacturability aspects of 

the component e. g. workpiece material of the component, modification 

of PFs with low hMls (Figure 7.22). 
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Selection of MI for OVERALL 
materials 

..................... '- MIST 1.05 MATERIAL Soft Steel (AISI 1040) 

............. ............ ................................. . 

CALCULATE 0.83 : Component is categorized as 
MIoVI: Ru. L " MEDIUM to manufacture. From : 

' SFA, PF=3 has the least ' 
Manufacturability Index (MI) for 

MIOVER%LL SFA: 0.96. Modification of the 

calculation quality measures aspects and 
Ki(weight factor for each MI) for 
this PF is suggested to 
achieve a higher value of MI. 

Figure 7.22 MIoVE L result and suggestions 

Suggestions 

Based on the analysis towards the proposed components, the system indicates 

the level of manufacturability for the whole component, e. g. Medium with 

MIovEºL = 0.83 for the analysed micro-part demonstrator. PF_3 is identified 

as the PF with the least value of MISFA (0.96), the suggestion provided for this 

condition is to revise the weight factor (K; ) and also to redefine the selected 

tolerance, surface roughness and uncertainty effect in machining the PF_3. 

While PF_7 is recognised as the PF with the least value of MICFA (0.60), this is 

believed due to its interactions with other PFs. For this situation, in order to 

increase the MICFA value, the system suggested to redefine (if possible) the 

related relative distances involving PF_7. 

Additionally, for the overall suggestion, the system proposed to select material 

with higher value of MW AT and also to modify various aspects (e. g. tolerance, 
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surface roughness) of any PF with low value of MISFA and/or MICFA that 

decrease the value of MIOVERA L" 

7.5. Advantages and limitations 

The implementation of PFA technique in MicroMAS has its own advantages 

and limitations. The main advantages of MicroMAS are listed below: 

0 Owing to the overall PF approach and innovative methods of combining 

data input mechanisms, MicroMAS offers high flexibility for users to 

extract essential data from the analysed design. Furthermore, the users 

have full control in defining the analysed design in such a way that is 

independent on the CAD systems. 

0 MicroMAS takes into consideration some quality measures (e. g. 

tolerance, roughness) that can affect the functionality of the analysed 

micro-component. Most of the current MAS focused solely in analysing 

manufacturability aspects while neglecting other important aspects such 

as part functionality. 

0 The level of manufacturability of the analysed micro-component is 

presented via a set of comprehensive and sequential aggregate indexes 

(MIs) which provide clear and meaningful result for the users. This 

enables the breakdown of the overall manufacturability index into its 

sub-components to allow the identification of changes needed in the 

design and/or the specifications of part quality measures; this will allow 

efficient manufacture of the analysed component. 

" MicroMAS was developed using VB which provides a robust and 

dynamic window-based application where any changes in the 
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programming code can be easily done. MicroMAS also offers an open- 

environment system that is dynamic and adaptable to any changes in the 

future. 

0 The implementation of RBS and IF-THEN clauses in assessing 

manufacturability provide a thorough analysis through all the determined 

rules and conditions. 

0 As proposed, MicroMAS was suggested to be implemented at the early 

design stage in order to assist a user of the MMT in machining a CAD 

model of a micro-product. Based on the generated MIs and the proposed 

redesign suggestions, it provides ideas to the user on the relative ease of 

machining the component and also provides information to allow 

changing the design to meet the requirement of the MMT. 

Although MicroMAS has achieved its objectives, it still has limitations as 

highlighted below: 

0 Even though it offers flexibility in defining the proposed design, the 

inference depends on users "translation" towards the design and thus 

some level of fuzziness might be introduced at the input stage. However, 

this gives an option for users to decide the most suitable ways to machine 

the proposed design on the MMT as various MI results can be generated 

owing to different interpretation of the design. 

0 Currently, the `decomposing' of the micro-part in the Initial Assessment 

phase is based on a limited number of primitive features. Even though it 

was believed that at this stage, most of the micro-features machined 

through the micro-milling in the MMT can be interpreted using this 
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approach, more PF can be easily added as the MicroMAS is an open- 

system that allows flexibility in inserting any new changes. 

0 The assessment is based on information structured in a database that 

needs to be updated from time to time. However, this is a common 

limitation for all developed system. 

" MicroMAS offers manufacturability assessment based only on micro- 

milling process. However, as the MicroMAS is an open system, other 

micro-manufacturing process can implement the foundation of this 

system development to fabricate its own MAS. 

0 The applicability of MicroMAS can be extended to other micro- 

machining process owned by the MMT such as micro-drilling/grinding. 

In order to implement MicroMAS for micro-drilling/grinding, among the 

aspects that are required to be analysed are: 

o PF interactions due to drilling/grinding process 

o Quality measures (e. g. tolerance, surface roughness, tool 

impact) 

o The MMT capabilities (e. g. drilling holes) in running both 

process 

o Modification and adjustment towards the MIs and KRD scheme 

according to the process requirement 

o Consideration of features sequences related to the specification 

of the process (micro-milling/drilling/grinding) 

0 The outputs produced in MicroMAS are limited only to aggregate 

indexes (MIs) and redesign suggestions. However, the MicroMAS's 
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framework provides an easy-approach in further adding more relevant 

outputs. 

7.6. Conclusions 

From the discussion, it was shown that MicroMAS is capable of: (i) executing 

the PFA technique in data input mechanism and manufacturability assessment; 

(ii) analysing the micro-component design based on PFs contained in it; (iii) 

analysing the manufacturability aspects of the micro-component. Moreover, 

the calculated MI is also able to indicate the level of manufacturability for each 

PF (e. g. MIFF, MISFA, MICFA) and its overall component (MIOVERALL). The 

conclusions from the development of MicroMAS can be summarized as 

follows: 

0 The backbone for Primitive Feature Analysis (PFA) technique is the 

Primitive Feature (PF) concept (discussed in detail in Chapter 4) which 

is combined with the positive (bosses) and negative (pockets) convention 

to define the component in details and produced meaningful 

interpretations. 

0 PFA technique consists of two crucial phases which are SFA and CFA in 

defining the micro-components and analysing its manufacturability. SFA 

was used for collecting essential data from the CAD model that are 

further populated with part quality measures, proved to be efficient in 

providing "necessary and sufficient" input data to MicroMAS. 

Furthermore, SFA provides an efficient way (MISFA) to evaluate the 

manufacturability of each PF of the analysed part. Since the analysed 

part has many PFs, MicroMAS provides a systematic way to check 
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interactions between them and to assess the manufacturability (MICFA) of 

coupled features. This enables the manufacturability analysis of the part 

as a result of multi-feature interactions and not as an outcome of a single 

entity (rigid) assessment commonly used in the most reported work. 

0A new sequential MI scheme was demonstrated to indicate the level of 

manufacturability for each PF and also for the overall micro-component. 

Based on the generated indexes convention, the level of 

manufacturability for each PF (Equation 4.1) is determined based on 

several aspects such as PF (e. g. orientation, shape, type), quality 

measures (e. g. dimensional tolerance, surface roughness), tools diameter 

and process. MIOVERALL which indicates the overall manufacturability 

(Equation 4.3) of the component is calculated based on the aspects 

analysed above, the interactions occurred between PFs and also the 

selected workpiece material. Besides the MI scheme provided to the 

users, the system feedback takes the form of. suggestions to change 

manufacturability aspects of the part/PFs, e. g. dimensions, surface 

roughness, tolerances, workpiece material of PFs/part. 

0 Rule-based System (RBS) approach proved an efficient method in 

determining the output measures on the assessments of the 

manufacturability aspects based on the IF-THEN clauses. 

Even though, the execution of PFA technique in MicroMAS that addressed the 

needs of the MMT is gradually reaching its maturity, the system is capable to 

analyse manufacturing aspects at an early stage of product development life 

cycles. 

277 



CHAPTER 8: DISCUSSION, CONCLUSIONS AND FUTURE 

WORK 

8.1. Introduction 

Manufacturability Analysis Systems (MASs) have been developed to enable 

the evaluation of easy to manufacture parts during the design stage. The main 

objective of this study was to develop a MAS for micro-milling domain. Also, 

to provide a system for a 4-axis Miniature Machine Tool which could assist 

user in generating micro-components. 

The main focus of Chapter 8 is to provide a summary of the research and 

analysis conducted in the previous chapters. This chapter includes discussion 

on system development, experimental, numerical and analytical studies carried 

out. The main conclusions arising from this study combining the findings and 

contributions related to the aims and objectives for this research are also 

presented. Finally, recommendations on possible future work and further 

develop of the knowledge and understanding gained from this study is 

provided. 

8.2. Discussion 

The study carried out in this thesis is based on developing a MAS for micro- 

machining domain. Even though micro-machining is becoming more popular 

for generating small and high accuracy parts [25,34-35], there is no clear 

indication that systems to assist with manufacturability assessment of these 

parts have been developed. MASs have been proved to work for various 

278 



manufacturing processes and it can be noted that such systems mainly 

addressed macro-manufacturing processes such as milling and drilling [5], 

turning [9], grinding [12] and injection moulding [16], while very little was 

found in the literature that addressed the MAS applicability in micro- 

manufacturing processes as discussed in Chapter 2. 

In line with the intention to develop a MAS for micro-machining environment, 

the custom-made 4-axis Miniature Machine Tool (MMT), was chosen to be the 

scope of the system development as at the same time the MMT require a 

system to support a robust and efficient generation of micro-part. As described 

in Chapter 3 and Chapter 6, the MMT is a custom-made machine tool so there 

are no standards, guidelines or any manual to refer to in operating the MMT. 

This demonstrated the requirement of the MMT that a system was needed to 

assist the user in producing micro-part via the MMT. 

MicroMAS was developed to support the MMT in terms of assessing the 

micro-manufacturability aspects (e. g. materials used, dimensions of micro- 

component, surface roughness and tolerance) of a proposed CAD model. A 

Primitive Feature Analysis technique (PFA) has been introduced and 

developed in this study for the purpose of gathering essential data from the 

proposed CAD models and to further analyse their manufacturability. The 

framework and mechanism were described and discussed in section: 4.4, while 

the simulation of a PFA algorithm on a CAD model was presented in section 

4.5. This has demonstrated the ability of the technique to gather data and to 
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further analyse its manufacturability. In section 4.6 and Chapter 7, the 

implementation of PFA technique in MicroMAS has been described. 

In order to embed real conditions of the MMT in the system, details from the 

various micro-machining experiments done on the MMT as discussed in 

Chapter 6 and also the results from the Uncertainty Evaluation Model for the 

MMT (presented in Chapter 5) were written into the system. The integration of 

information from the results of machining experiments as well as the UEM 

analysis into the MicroMAS made the system rich with knowledge offering 

users more representative information which generated more significant 

manufacturability indexes. Table 8.1 lists the summary of objectives and 

contributions of each key attribute involved in this study. 
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8.3. Conclusions 

The development of MicroMAS displayed a novel approach in terms of 

implementing manufacturability assessment for Micro-Engineering 

Technologies (MET) process (micro-milling). There has been very little work 

in looking at the MAS development for this type of machining process. The 

results from the manufacturability assessment in MicroMAS has been 

successfully achieved through a manufacturability index which indicates the 

relative ease of machining a CAD model and provides a list of related 

suggestions (e. g. changes of quality measures, recommendation of material 

with lower hardness). In the following, the key findings and concluding 

remarks of this study are presented: 

" PFA technique is introduced and employed to gather data from a CAD 

model and to analyse their manufacturability aspects 

Primitive Feature Analysis technique has been introduced to be the method 

in gathering data from the analysed micro-component CAD model while 

enabling the assessment of their manufacturability aspects. The technique 

enables method of gathering data from a CAD model using a simplify 

primitive feature concept. In order to define the analysed micro- 

components and produce meaningful interpretations, the PFA technique 

relies on algebraic (boss - positive, cavity - negative) PFs such as box, 

cylinder and cones contained in the proposed CAD model and the 

interactions between them. The PFA technique consists of three crucial 

phases which are: primitive feature identification, Single Feature Analysis 

(SFA) and Coupled Feature Analysis (CFA). 
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In the first phase, all the PFs contained in the analysed micro-components 

can be recognised together with their essential geometrical characteristics 

and data which are required as illustrated in Chapter 4. For the SFA phase, 

it was discovered that the level of manufacturability of each defined PF can 

be determined based on its orientation, shape, end-corner specification and 

part quality measures (e. g. tolerance, surface roughness). Furthermore, SFA 

has also demonstrated an efficient way to evaluate the manufacturability of 

each PF of the analysed part through the determination of the MIsFA. 

Next, the Coupled Feature Analysis (CFA) can determine the level of 

relationship among PFs by taking into consideration the relative distance 

and the type of interactions (e. g. attached, adjacent and independent) 

between them. This enables the manufacturability analysis of the part as a 

result of multi-feature interactions and not as an outcome of a single entity 

(rigid) assessment commonly used in the most reported work in previously 

developed MAS. CFA also allows MicroMAS to provide a systematic way 

to check interactions between the PFs and to assess the manufacturability 

of coupled features through the calculation of MICFA. 

As a conclusion, the PFA technique has demonstrated a simple approach in 

collecting relevant data from a CAD model of a micro-component and for 

analysis of manufacturability aspects (e. g. workpiece material, tolerance, 

surface roughness, machine tool capability, the contained PFs). 
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o Manufacturability index(s) are used to express the level of 

manufacturability of the analysed CAD model 

A sequential aggregate indexes scheme that was based on a rating 

convention has been effectively implemented in indicating the level of 

manufacturability of the analysed CAD model based on the PFA technique 

phases. Manufacturability Indexes (MIs) reflect the relative ease of 

machining the analysed micro-component based on various aspects such as 

the characteristics of the PF and their interactions, tolerance, surface 

roughness, machinability of the workpiece materials and tool dimensions. 

The implementation of MIs has demonstrated the ability to provide a 

fundamental indication to a user on the level of manufacturability in 

generating the micro-component by using the MMT. In-depth studies of the 

generated Manufacturability Indexes (MIs) which were used to indicate the 

level of manufacturability were discussed in section 4.3 and 4.5. Moreover, 

a rating convention has been established to represent all the MIs (Equation 

4.2) in determining their level of manufacturability. Furthermore, based on 

the determined level of manufacturability, suggestions have been proposed 

to a user to help enhance this level. 

. The combination of user-system interaction and a priori database as a 

new approach in input mechanism for MicroMAS 

In order for the PFA technique to gather the related CAD data, user-system 

interaction and a priori database methods were combined and utilized as 

the input mechanism for the MicroMAS. This combination was discovered 

to provide more interactive, direct and flexible input session compared to 
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the feature extraction system. It was also proved that this combination is 

able to support the data gathering method that has been introduced in PFA 

technique. Furthermore, accurate and relevant data were also effectively 

supplied to the system. 

" Uncertainty Evaluation Model can be utilized to identify the variables 

that affect the geometrical accuracy of the machined micro-part 

The developed UEM has proven to be a satisfactory method to identify the 

errors stemming from the construction of the MMT that affect the 

geometrical accuracy of the machined micro-part. The evaluation of these 

errors allows key understanding on the origin of the errors on the machined 

micro-part have been discussed in sections 5.3 and 5.4. However, the 

developed model does not include any error associated with machining 

process (e. g. tool deflection, tool wear, vibration, burr formation) as it 

exclusively focuses on errors originating from the construction of the 

MMT. 

In this study, four sources of main errors have been identified which are: 

errors due to tool path generation stemming from the MMT construction, 

errors related to evaluation of workpiece reference point, errors related to 

temperature variations and errors originating from positioning inaccuracies 

of each table. These identified errors that were formulated based on the 

spiral milling movement, ISO guidelines and results from CMM 

evaluations have been successfully analysed through GUM Workbench. 
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From the analysis made, it was discovered that the errors stemming from 

the a (angle between tool and side of xz plane) and y (angle between tool 

and z axis) indicated the main sources of errors of the MMT construction. 

Even though from the analysis, it shows that the positioning errors of the 

tools stemming from the inaccuracies in constructing the X, Y and Z planes 

were identified as the main uncertainty from the MMT construction but the 

calculated uncertainty value are of low values so still keeps the accuracies 

of the micro-parts at an acceptable level. 

Moreover, in order for the MicroMAS to mirror the real condition of the 

MMT, the impact of UEM analysis is taken into consideration in 

calculating the Manufacturability Index for Single Feature Analysis 

(MIsFA). The Manufacturability Index for Uncertainty Evaluation Model 

(MIUEM) was being considered in the MISFA formula for each identified 

primitive feature (PF). With this scheme, it was found out that the 

manufacturability analysis in MicroMAS was more significant as it 

portrayed the current condition of the MMT. Furthermore, the development 

of UEM has also demonstrated a systematic method/procedure allowing 

errors stemming from its construction for any similar in-house developed 

MMT to be analysed. 

" The impact of integrating the results from UEM and micro-machining 

experiments within MicroMAS 

Taking into consideration the main scope/domain for the MicroMAS 

implementation, it was necessary for the system to be integrated with 
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information related to the MMT such as machine capability, surface 

roughness and tolerance. Moreover, the study provided the opportunity for 

the system to mirror the real condition of the MMT so that realistic analysis 

of manufacturability could be made. The integration of results from the 

UEM analysis and also micro-machining experiments have been disclosed 

in section 5.7 and 6.5 respectively. 

By integrating results from the UEM analysis and also the machining 

experiments completed within the MMT into the MicroMAS, it has 

successfully provided the system with the real condition of the MMT. This 

integration was found to enhance the ability in the decision making process 

(e. g. determining the manufacturability indexes). As stated previously, 

from the UEM analysis the uncertainty effect in machining each primitive 

feature which could influence the accuracy of the form/shapes of the 

machined micro-features has also been taken into consideration. 

From the machining experiments, the obtained results of surface roughness 

and geometrical accuracy have been successfully utilized to generate the 

Manufacturability Index for Surface Roughness (MIRa) and 

Manufacturability Index for Tolerance (MITOL). Besides providing the 

relevant information for the MicroMAS, the machining experiments were 

also employed for assessing the capability of the MMT in generating 

micro-parts. It can be concluded that despite being an in-house developed 

machine tool, it was found that the MMT was able to generate critical 

micro-structures such as thin walls and also micro-component with 
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acceptable surface quality and high satisfactory level of geometrical 

accuracy. 

" Although it was not within the scope of this study to seek to optimise 

cutting parameters that result in fine surface roughness, the measured Ra 

and RZ values achieved were found to be acceptable and the geometrical 

accuracy values were also in a respectable range of precision. 

Measurements made on surface roughness of the machined micro-part 

discussed in sections 6.3.1.2,6.3.2.2 and 6.3.3.2 have confirmed the 

capability of the MMT in producing good and satisfactory surface quality 

(Ra= 0.02 - 0.07 µm). Furthermore, from the same sections, the analysis 

made on the geometrical accuracy of the machined micro-part also shows 

that acceptable geometrical accuracy of micro-part can be accomplished by 

using the MMT. The surface quality and geometrical accuracy were 

analysed and correlated with a variety of suggested machining parameters 

in generating micro-component in various materials. 

This gives an indication that the custom-built MMT has been developed to 

a satisfactory level of precision to enable micro-machining of surfaces with 

acceptable accuracies. 

8.4. Contributions of this research study 

This study brings a new dimension in the MAS field as apparently for the first 

time it is being developed for a micro-processing method, i. e. micro-milling, as 

its scope of implementation. As detailed in Chapter 7, by combining various 
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approaches/tools in developing the MicroMAS (e. g. VB, RBS, IF-THEN, 

database, UEM and micro-machining results), it has been proven that the 

manufacturability aspects of the micro-parts can be analysed in an interactive 

way between a user and the system. Furthermore, this system also assists a user 

in generating micro-components that will be machined using the MMT through 

manufacturability evaluation of a proposed CAD model. Among the key 

contributions of this study are as the following: 

9 This study introduces a new technique (Primitive Feature Analysis) in 

collecting important information from a CAD model of the analysed micro- 

component and further to asses their manufacturability. The technique that 

was based on primitive feature concept has been successfully employed in 

the developed system (MicroMAS). The novelty of the approach has been 

presented to the academic community [190]. 

" In developing the MicroMAS, a new framework has been presented which 

consists of the implementation of the PFA technique, the combination of 

user-system interaction and collecting of manufacturing information for 

input mechanism and also the integration between the system, UEM 

analysis and micro-machining experiments. Apparently, for the first time, 

the results from the UEM analysis have been integrated into a MAS 

development which allowed the real condition of the MMT to be emulated 

into the system. This new framework has also been presented to the 

academic community [190]. 

"A new sequential Manufacturability Indices scheme has been established 

to indicate the level of manufacturability for each PF and also for the 

analysis of micro-component. Based on the generated indexes convention 
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as discussed in Chapter 4, the level of manufacturability for each PF 

(MISFA) was determined based on several aspects such as PF (e. g. 

orientation, shape, type); dimensional tolerance, surface roughness, 

uncertainty analysis on machining the PF, tools diameters and selected 

workpiece material. MICFA was determined on the relative distance and also 

the interactions which occurred between the PFs. MIOVERnLL which 

indicates the overall manufacturability of the micro-component was 

calculated based on the aspects analysed above and also the selected 

workpiece materials. These indexes were presented by a rating convention 

that is divided into three levels: Harder to manufacture, Medium to 

manufacture and Easier to manufacture. This new rating convention has 

also been discussed and presented to the academic community [190]. 

" Apparently, for the first time, uncertainty evaluation analysis has been 

developed for identifying and analysing the variables that affect the 

geometrical accuracy of the machined micro-part originating from the 

construction of the MMT. More importantly, this study provides the 

opportunity to understand the source of errors on a machined micro-part via 

an MMT, either from the machining process or from the machine itself. 

The results from the uncertainty analysis that found the source of errors 

from the MMT construction have been presented to the academic 

community [ 191 ]. 

. The crucial contribution of this study is it proposed a methodology to 

evaluate the uncertainties of any similar in-house developed machine tools 

through the model which can identify the main sources of errors that affect 

the quality of the machined part. Once the model has been developed, the 
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geometrical errors in any situation can be evaluated when other (more) 

complex surfaces are generated. This methodology or approach in 

analysing uncertainties of a custom-made MMT has been presented to the 

academic community [ 191 ]. 

" In assessing the capability of the MMT, various micro-machining 

experiments based on machining parameters suggested by tool 

manufactures have been executed. Such as machining the "adapted 

standard testpiece", generating micro-slots and thin walls and also 

producing micro-components that consist of various features. These 

experiments can be distinguished as an initial effort into developing a new 

verification procedure for the performance of the machine tools when 

performing micro-machining. The results from these experiments have 

been presented to the academic community [191]. 

8.5. Future Work 

Even though the aims and objectives of the current study have been achieved, 

the thesis has raised some gaps which can be further explored. Possible future 

works can be grouped into different categories, as follows: 

" Based on critical analysis towards MicroMAS, the following areas of 

interest are identified for further research: 

o MicroMAS is proposed to produce more combinations of outputs 

which is believed will increase its effectiveness, such as estimations 

of production cost and time as well as process sequencing. Various 

combinations of output can increase the effectiveness of MAS as it 

provides `enriched' knowledge/ recommendations that can assist the 
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end-user system in making more comprehensive technical decisions 

regarding the machining of proposed designs. Apart from this, the 

capability of assessing more robust manufacturability 

indices/ratings should be pursued. It is believed that more 

combinations of related elements would lead to a greater degree of 

accuracy on the generated manufacturability indices. It is also 

recommended to consider other manufacturing-related aspects such 

as ease of fixturing and process capability. 

o At the moment, the system comprises only a limited number of 

primitive features. This is because it was believed that at this stage; 

the micro-features generated via micro-milling can be decomposed 

using this options of PFs. However, more PFs can be added in the 

future to build the capability of the MicroMAS. 

o For its data input mechanism, it is interesting to explore the 

possibility of adapting the existing automatic data extraction tool 

into the MicroMAS. This approach can be combined with the PFA 

technique in assessing the manufacturability aspects. 

o It is suggested to implement the PFA technique for developing 

MAS for other micro-machining processes. 

0 Further investigation based on the uncertainty evaluation is required to 

understand other possible errors that affect the geometrical accuracy of 

the machined micro-part generated through the MMT. This may provide 

further understanding on how other errors besides stemming from the 

construction of an MMT can affect the final quality of machined micro- 

part. 
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0 Further work is required to define the methods to evaluate the uncertainty 

of more complex features and to translate them into uncertainty models. 

This will provide a better understanding on the capabilities of a MMT in 

generating various micro-parts. The related information can be injected 

into the MicroMAS and should provide better results in determining the 

level of manufacturability of a particular micro-part. 

0 As the Nottingham MMT is also claimed to be capable to perform micro- 

drilling and micro-grinding, these processes should be considered to be 

applicable for the MicroMAS so that it enhances the flexibility of the 

system. Moreover, it also provides an opportunity for the 

manufacturability aspects to be analysed based on a variety of 

manufacturing processes that allows considering the successions or 

interactions of the process. 
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APPENDIX 3.1 
Specifications of flat end mill cutter with 0.5 and 0.8mm from Sandvik 
Coromant. 

1.0.5mm Flat end mill cutter 

8216.32-00530-AEO5G 

Z� 2 

Dc (mm) 0.5 

12 (mm) 54 

ap (mm) 0.5 

D4 (mm) 0.46 

dm, � (mm) 6 
o3' 

Tr 00 
k 

1030' 

/ý- --ýe° .\ 

2.0.8mm Flat end mill cutter 

8216.32-00830-AEO8G 

Z. 2 

D, (mm) 0.8 

12 (mm) 54 

b- 00 

A-A 

fý 

ý 9° 

ap (mm) 0.8 

D4 (mm) 0.76 

dm, 
� (mm) 6 

0301 

1030, 
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APPENDIX 4.2: MIPF ANALYSIS 

Type of PF PF orientation Type of Cavity PF shape End-corner MIFF 

Box Boss N/A Straight Radiuscd 1.5 
N/A Negative-tapered Radiused 0.5 
N/A Positive red Radiused 1.0 

Cavity Throu hole Straight Radiuscd 1.5 
Blind Straight Radiuscd 1.0 

Through hole Ne ive rcd Radiuscd 0.5 
Blind Negative-tapered Radiuscd 0.5 

Through hole Positive- red Radiuscd 1.0 

Blind Positive- red Radiused 1.0 

Boss N/A Straight Sharp 1.0 
N/A Ne ve red Sharp 0.5 
N/A Positive- red Sharp 0.5 

Cavity Through hole Straight Sh 1.0 
Blind Straight Sharp 0.5 

Through hole Negative-tapered Sharp 03 
Blind Ne tivc rcd Sharp 0.5 

Through hole Positive red Sharp 03 
Blind Positive- red Sharp 03 

Boss N/A Straight Fillet 1.5 
N/A Negative-tapered Fillet 0.5 
N/A Positive- red Fillet 1.0 

Cavity Throu hole Straight Fillet 1.5 
Blind Straight Fillet 1.0 

Through hole Negative-tapered Fillet 0.5 

Blind Ne ve red Fillet 03 
Through hole Positive and Fillet 1.0 

Blind Positiv red Fillet 1.0 
Cylinder Boss N/A Straight N/A 1.5 

N/A Negative-tapered N/A 0.5 
N/A Positive red N/A 1.0 

Cavity Through hole Straight N/A 1.5 
Blind Straight N/A 1.0 

Through hole Ne vc red N/A 0.5 
Blind Ne red N/A 0.5 

Through hole Positive-ta red N/A 1.0 
Blind Positive-ta and N/A 1.0 

Cone Boss N/A Straight N/A 1.0 
Cavity N/A Straight N/A 0.5 

Sphere Boss N/A Straight N/A 0.5 
Cavity N/A Straight N/A 1.0 



File: XY/1 APPENDIX 5.1: lJnceAainfp evaluation modol 
T[KNOLOGISK 

APPENDIX 5.1: Uncertainty evaluation model 

Model equation: 
R=sgrt(XA2+Y"2); 

X=a'(cos ((o"(Y0.0377)))+AX, +GX2+AX3+AX.; 

AXl =L*(sgrt(cos((x)^2-cos(T)"2)); 

Y=a*(sin((o"(t*0.0377)))+AY, +AY2+eY3+zY4; 

AY1=AY0+L'sin(a); 

List of quantities: 
Quantity Unit Definition 

R mm the radius of a circle 
X mm the x value 
Y mm they value 

a mm radius 

w rad/sec angular velocity 

t sec time 
AXI mm Uncertainty due to X, Y. U planes deviation for X 

AX2 mm Uncertainty due to original position deviation of table movement 
for X 

AX3 mm Uncertainty due to temperature deviation for X 

AX4 mm Uncertainty due to worktable accuracy for X 

L mm Tool length 

a rad Angle between Tool (Z) and side of U table 

q rad Angle between Tool (Z) and top of U table 

DYE mm Uncertainty due to X. Y and U planes deviation for Y 

AY2 mm Uncertainty due to original position deviation for Y 

AYs mm Uncertainty due to temperature deviation for Y 

eY4 mm Uncertainty due to worktable accuracy for Y 

AYo mm value of shifted planes 

R: Result 

X: Interim result 

Y: Interim result 

Jan 4,2010 Papi 1 o15 

Quantity Unit Definition 

R mm the radius of a circle 
X mm the x value 
Y mm they value 

a mm radius 

w rad/sec angular velocity 

t sec time 
AXE mm Uncertainty due to X, Y. U planes deviation for X 

AXz mm Uncertainty due to original position deviation of table movement 
for X 

AX3 mm Uncertainty due to temperature deviation for X 

AX4 mm Uncertainty due to worktable accuracy for X 

L mm Tool length 

a rad Angle between Tool (Z) and side of U table 

y red Angle between Tool (Z) and top of U table 

DYE mm Uncertainty due to X. Y and U planes deviation for Y 

AY2 mm Uncertainty due to original position deviation for Y 

AYs mm Uncertainty due to temperature deviation for Y 

AY4 mm Uncertainty due to worktable accuracy for Y 

AYo mm value of shifted planes 

-. 90 



File- XY11 APPENDIX 5.1: Uncertainty evaluation rtwdN 
I T[KNOLOGISK I 

a: Constant 
Value: 1.5 mm 

co: Type B rectangular distribution 
Value: 5.5554 radsec 
Hatf-width of distribution: 0.0002 rad/sec 

t: Constant 
Value: 11 sec 

AXI: Interim result 

AXZ: Type A 
Method of observation: Direct 
Number of observation: 12 

No. Observation 

1 0.0001 

2 0.00009 

3 0.00008 

4 0.00007 

5 0.00011 

6 0.00012 

7 0.0001 

8 0.00008 

9 0.00011 

10 0.00007 

11 0.00006 

12 0.00008 

Arithmetic mean: 89.17.10'6 mm 
Standard deviation: 18.8.10 mm 
Standard uncertainty: 5.43.10$ mm 
Degrees of freedom: 11 

AX3: Type B rectangular distribution 
Value: 0.0002 mm 
Half-width of distribution: 1.10 s mm 

AX4: Type B rectangular distribution 
Value: 0.0003 mm 
Half-width of distribution: 1.5.10'5 mm 

L: Type B rectangular distribution 
Value: 4.85 mm 
Half-width of distribution: 0.0002 mm 

Jan 4.2010 Pp. 2of5 
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File: XY1 II APPENDIX 51: Uncertainty evaluation model 

I TIKNOLOCISK I 

a: Type A summarized 
Value: 0.000498690433909952 rad 
Standard uncertainty: 0.000134055507139245 rad 
Degrees of freedom: 7 

7: Type A summarized 
Value: 0.00114017597792151 rad 
Standard uncertainty: 0.00038267974203836 rad 
Degrees of freedom: 7 

AYI: Interim result 

AY2: Type A 
Method of observation: Direct 
Number of observation: 12 

No. Observation 

1 0.00009 

2 0.0001 

3 0.00012 

4 0.00011 

5 0.00008 

6 0.00007 

7 0.00006 

8 0.00009 

9 0.00008 

10 0.00013 

11 0.00009 

12 0.00007 

Arithmetic mean: 90.83.10'6 mm 
Standard deviation: 21.1.10 mm 
Standard uncertainty: 6.09.10$ mm 
Degrees of freedom: 11 

AV3: Type B rectangular distribution 
Value: 0.0002 mm 
Half-width of distribution: 1.10'5 mm 

AY4: Type B rectangular distribution 
Value: 0.0003 mm 
Half-width of distribution: 1.5.10'5 mm 

AYo: Type B rectangular distribution 
Value: 0.0007 mm 
Half-width of distribution: 0.000002 mm 

Jan 4,2010 11 Pa" 3 of 51 



File XY11 APPENDIX 5.1 Uncertainty evaluation model 
T[KNOLOGISK 

Uncertainty budget: 

Quantity Value Standard Degrees Sensitivity Uncertainty Corr. - Index 
uncertaint of coefficient contributio coeff. 

y freedom n 
X -0.99812 mm 2.13 10"3 

mm 

Y 1 118437 mm 652.10`6 

mm 

a 1.5 mm 

(! ) 5555400 115.10' ar, -2 75 10,3 -317 10'9 000 0 000 
rad/sec rad/sec mm 

t 11.0 sec 

'%X1 4.97 10,3 mm 2.13 10-3 
mm 

. \X2 89.17.10 -45 mm 5 43.10$ 11 -0.666 -3.62.10 0.00 0000 
mm mm 

aX3 200.00.10-6 mm 5.77.10'6 go -0.666 -384-10 -6 000 0 000 
mm mm 

tX4 300.00.10$ mm 8.66-10a m -0.666 -5.77.10-6 000 0 000 
mm mm 

L 4.850000 mm 115.10$ 00 -311 10$ -35.9 10 9 0.00 0.000 

mm mm 

a 499,10-6 rad 134.10$ 7 not valid 698 10 0.45 0.198 
rad mm 

y 1.140 10-3 rad 383.10'6 7 -367 -1 40.10' -0 90 0 802 
rad mm 

NY1 3.119 10-3 mm 650-10-8 
mm 

AY2 90.83.10"6 mm 6.09 10*6 11 0 746 454 10 6 0.00 0.000 
mm mm 

1Y3 20000-10 -6 mm 5.77.10$ on 0.746 4 31 10 0.00 0.000 
mm mm 

. \Y4 300.00.10-6mm 8.66.10$ CO 0 746 6 46 10$ 000 0.000 

mm mm 

. 
\Y0 700.00.10 mm 1.15.10-6 00 0.746 862 10" 000 0.000 

mm mm 
R 1.49905 mm 1.57.10-3 10 

mm 

Jan 4,2010 Page4of5 



File: XY11 APPENDIX 5.1: Uncertainty evaluation model Tt K NOLOGI SK 

Result: Quantity: R 
Value: 1.4990 mm 
Expanded Uncertainty: 13.6.10'3 mm 
Coverage Factor: 2.3 
Coverage probability: 95.45% 

Jan 4,2010 Page 5 of 5 
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Appendix 6.1 Multimetre set-up 


