158 research outputs found

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    Adaptive Magnetorheological Sliding Seat System for Ground Vehicles

    Get PDF
    Magnetorheological (MR) fluids (MRFs) are smart fluids that have reversible field dependent rheological properties that can change rapidly (typically 5 - 10 ms time constant). Such an MRF can be changed from a free flowing fluid into a semi-solid when exposed to a magnetic field. The rapid, reversible, and continuous field dependent variation in rheological properties can be exploited in an MRF-based damper or energy absorber to provide adaptive vibration and shock mitigation capabilities to varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. Electronically controlled electromagnetic coils are typically used to activate the MR effect and tune the damping force so that feedback control implementation is practical and realizable. MR devices have been demonstrated as successful solutions in semi-active systems combining advantages of both passive and active systems for applications where piston velocities are relatively low (typically < 1 m/s), such as seismic mitigation, or vibration isolation. Recently strong interests have focused on employing magnetorheological energy absorbers (MREAs) for high speed impact loads, such as in helicopter cockpit seats for occupant protection in a vertical crash landing. This work presents another novel application of MREAs in this new trend - an adaptive magnetorheological sliding seat (AMSS) system utilizing controllable MREAs to mitigate impact load imparted to the occupant for a ground vehicle in the event of a low speed frontal impact (up to 15 mph). To accomplish this, a non-linear analytical MREA model based on the Bingham-plastic model and including minor loss effects (denoted as the BPM model) is developed. A design strategy is proposed for MREAs under impact conditions. Using the BPM model, an MREA is designed, fabricated and drop tested up to piston velocities of 5 m/s. The measured data is used to validate the BPM model and the design strategy. The MREA design is then modified for use in the AMSS system and a prototype is built. The prototype MREA is drop tested and its performance, as well as the dynamic behavior in the time domain, is described by the BPM model. Next, theoretical analysis of the AMSS system with two proposed control algorithms is carried out using two modeling approaches: (1) a single-degree-of-freedom (SDOF) rigid occupant (RO) model treating the seat and the occupant as a single rigid mass, and (2) a multi-degree-of-freedom (MDOF) compliant occupant (CO) model interpreting the occupant as three lumped parts - head, torso and pelvis. A general MREA is assumed and characterized by the Bingham-plastic model in the system model. The two control algorithms, named the constant Bingham number or Bic control and the constant stroking force or Fc control, are constructed in such a way that the control objective - to bring the payload to rest while fully utilizing the available stroke - is achieved. Numerical simulations for both rigid and compliant occupant models with assumed system parameter values and a 20 g rectangular crash pulse for initial impact speeds of up to 7 m/s (15.7 mph) show that overall decelerations of the payload are significantly reduced using the AMSS compared to the case of a traditional fixed seat. To experimentally verify the theoretical analysis, a prototype AMSS system is built. The prototype seat system is sled tested in the passive mode (i.e. without control) for initial impact speeds of up to 5.6 m/s and for the 5th percentile female and the 95th percentile male. Using the test data, the CO model is shown to be able to adequately describe the dynamic behavior of the prototype seat system. Utilizing the CO model, the control algorithms for the prototype seat system are developed and a prototype controller is formulated using the DSPACE and SIMULINK real time control environments. The prototype seat system with controller integrated is sled tested for initial impact speeds of up to 5.6 m/s for the 5th female and 95th male (only the 95th male is tested for the Bic control). The results show that the controllers of both control algorithms successfully bring the seat to rest while fully utilizing the available stroke and the decelerations measured at the seat are substantially mitigated. The CO model is shown to be effective and a useful tool to predict the control inputs of the control algorithms. Thus, the feasibility and effectiveness of the proposed adaptive sliding seat system is theoretically and experimentally verified

    Modeling of Magnetorheological Dampers under Various Impact Loads

    Get PDF

    Limited Bandwidth Wireless Communication Strategies for Structural Control of Seismically Excited Shear Structures

    Get PDF
    Structural control is used to mitigate unwanted vibrations in structures when large excitations occur, such as high winds and earthquakes. To increase reliability and controllability in structural control applications, engineers are making use of semi-active control devices. Semi-active control gives engineers greater control authority over structural response versus passive controllers, but are less expensive and more reliable than active devices. However, the large numbers of actuators required for semi-active structural control networks introduce more cabling within control systems leading to increased cost. Researchers are exploring the use of wireless technology for structural control to cut down on the installation cost associated with cabling. However wireless communication latency (time delays in data transmissions) can be a barrier to full acceptance of wireless technology for structural control. As the number of sensors in a control network grows, it becomes increasingly difficult to transmit all sensor data during a single control step over the fixed wireless bandwidth. Because control force calculations rely on accurate state measurements or estimates, the use of strategic bandwidth allocation becomes more necessary to provide good control performance. The traditional method for speeding up the control step in larger wireless networks is to spatially decentralize the network into multiple subnetworks, sacrificing communication for speed. This dissertation seeks to provide an additional approach to address the issue of communication latency that may be an alternative, or even a supplement, to spatial decentralization of the control network. The proposed approach is to use temporal decentralization, or the decentralization of the control network over time, as opposed to space/location. Temporal decentralization is first presented with a means of selecting and evaluating different communication group sizes and wireless unit combinations for staggered temporal group communication that still provide highly accurate state estimates. It is found that, in staggered communication schemes, state estimation and control performance are affected by the network topology used at each time step with some sensor combinations providing more useful information than others. Sensor placement theory is used to form sensor groups that provide consistently high-quality output information to the network during each time step, but still utilize all sensors. If the demand for sensors to communicate data outweighs the available bandwidth, traditional temporal and spatial approaches are no longer feasible. This dissertation examines and validates a dynamic approach for bandwidth allocation relying on an extended, autonomous and controller-aware, carrier sense multiple access with collision detection (CSMA/CD) protocol. Stochastic parameters are derived to strategically alter back-off times in the CSMA/CD algorithm based on nodal observability and output estimation error. Inspired by data fusion approaches, this second study presents two different methods for neighborhood state estimation using a dynamic form of measurement-only fusion. To validate these wireless structural control approaches, a small-scale experimental semi-active structural control testbed is developed that captures the important attributes of a full-scale structure

    Advanced suspension system using magnetorheological technology for vehicle vibration control

    Get PDF
    In the past forty years, the concept of controllable vehicle suspension has attracted extensive attention. Since high price of an active suspension system and deficiencies on a passive suspension, researchers pay a lot attention to semi-active suspension. Magneto-rheological fluid (MRF) is always an ideal material of semi-active structure. Thanks to its outstanding features like large yield stress, fast response time, low energy consumption and significant rheological effect. MR damper gradually becomes a preferred component of semi-active suspension for improving the riding performance of vehicle. However, because of the inherent nonlinear nature of MR damper, one of the challenging aspects of utilizing MR dampers to achieve high levels of performance is the development of an appropriate control strategy that can take advantage of the unique characteristics of MR dampers. This is why this project has studied semi-active MR control technology of vehicle suspensions to improve their performance. Focusing on MR semi-active suspension, the aim of this thesis sought to develop system structure and semi-active control strategy to give a vehicle opportunity to have a better performance on riding comfort. The issues of vibration control of the vehicle suspension were systematically analysed in this project. As a part of this research, a quarter-car test rig was built; the models of suspension and MR damper were established; the optimization work of mechanical structure and controller parameters was conducted to further improve the system performance; an optimized MR damper (OMRD) for a vehicle suspension was designed, fabricated, and tested. To utilize OMRD to achieve higher level of performance, an appropriate semi-active control algorithm, state observer-based Takagi-Sugeno fuzzy controller (SOTSFC), was designed for the semi-active suspension system, and its feasibility was verified through an experiment. Several tests were conducted on the quarter-car suspension to investigate the real effect of this semiactive control by changing suspension damping. In order to further enhance the vibration reduction performance of the vehicle, a fullsize variable stiffness and variable damping (VSVD) suspension was further designed, fabricated, and tested in this project. The suspension can be easily installed into a vehicle suspension system without any change to the original configuration. A new 3- degree of freedom (DOF) phenomenological model to further accurately describe the dynamic characteristic of the VSVD suspension was also presented. Based on a simple on-off controller, the performance of the variable stiffness and damping suspension was verified numerically. In addition, an innovative TS fuzzy modelling based VSVD controller was designed. The TS fuzzy modelling controller includes a skyhook damping control module and a state observer based stiffness control module which considering road dominant frequency in real-time. The performance evaluation of the VSVD control algorithm was based on the quarter-car test rig which equipping the VSVD suspension. The experiment results showed that this strategy increases riding comfort effectively, especially under off-road working condition. The semi-active control system developed in this thesis can be adapted and used on a vehicle suspension in order to better control vibration

    Modelling and design of a dual channel magnetorheological damper

    Get PDF
    © Cranfield UniversityA limitation with the current analytical models for predicting the performance of a magnetorheological (MR) damper is that they fail to capture the hysteretic variation of force versus velocity variation correctly. This can significantly underestimate the damper force and overestimate the dynamic range of the device. In this work a transient analytical fluid dynamics model is developed by using a combination of Laplace and Weber transform and Duhamel’s superposition of velocity boundary condition, to overcome these limitations. The solution of the system of nonlinear simultaneous equations, obtained by applying mass flow balance, velocity compatibility conditions and force equilibrium of Bingham plastic plug flow, gives the damper force. This method is shown to generate direct and inverse model of an MR device. The proposed model has been validated against a commercially available MR damper at low speed, to a range of test signals. The mean error using the above model has been shown to be 5% for all the test signals. This compares well with three conventional models which give; transient constant velocity model 35%, quasi static model 35% and phenomenological model 35%. The phenomenological model gives 10% mean error for a sinusoidal input signal. The application of the proposed analytical model has been demonstrated by the design of a novel dual channel damper. The design of the electromechanical components has been shown to be np-hard problem and the optimisation using genetic algorithm has been applied to minimise the volume and electrical time constant. The performance of the dual channel damper has been simulated for various combinations of values of shear yield stress for two channels. Compared to the conventional single channel damper the novel design is shown to give 30% higher damper force, 50% improved dynamic range and limits the effect of transients to within 10% of the damper force. The dual channel damper is an effective solution to resist the onset of turbulent flow in the channels up to 20m/s piston velocity

    DEVELOPING NEW ANALYTICAL AND NUMERICAL MODELS FOR MR FLUID DAMPERS AND THEIR APPLICATION TO SEISMIC DESIGN OF BUILDINGS

    Get PDF
    Magnetorheological (MR) and Electrorheological (ER) fluid dampers provide a fail-safe semi-active control mechanism for suppressing vibration response of structures as these smart fluids can change their apparent viscosity immediately under the influence of magnetic and electrical fields, respectively. MR based damping devices have recently received appropriate attention as they have less power demand, provide better dynamic range and are less sensitive to the temperature and external contaminants as compared to their ER counterparts. This thesis studies physics-based modeling of MR fluid dampers and their application in seismic design of buildings. In the first part of thesis, MR damper modeling and its related subject are studied, while in the second part of the thesis, application of MR dampers in tuned mass damper and bracing system is investigated. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This research presents a formulation for dynamics analysis of ER and MR fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behaviour of ER/MR fluid in general motion. Using the developed approach, the damping force of ER/MR damper can be evaluated under any type of excitations. While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating them with semi-active MR based control system enables them to perform more efficiently under varying external excitations. To study the application of MR damper in tuned mass damper, a forty-storey tall steel-frame building assumed to be located in the Pacific Coast region of Canada (Vancouver), designed according to the relevant Canadian code and standard, has been studied with and without semi-active and passive tuned mass dampers. The response of the structure has been studied under a variety of ground motions with low, medium and high frequency contents to investigate the performance of the optimally designed semi-active MR based tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active MR based system modifies structural response more effectively than the conventional passive tuned mass damper in both mitigation of the maximum displacement and reduction of the settling time of the building. Finally, the effectiveness of MR damper in structural bracing has been examined. Two steel building structures, five and twenty-storey building designed according to Canadian national building code, have been modeled using the finite element method. These building structures have been equipped with MR dampers in different floors appropriately based on the seismic floor-shear distribution. The governing equations of motion of the structures integrated with MR dampers have been cast into the state space representation for the implementation of the full state LQR combined with clipped optimal control strategies. The response of building structures under passive on and active controlled modes have been obtained for low, medium and high frequency content seismic records and compared

    Nonlinear identification and control of building structures equipped with magnetorheological dampers

    Get PDF
    A new system identification algorithm, multiple autoregressive exogenous (ARX) inputs-based Takagi-Sugeno (TS) fuzzy model, is developed to identify nonlinear behavior of structure-magnetorheological (MR) damper systems. It integrates a set of ARX models, clustering algorithms, and weighted least squares algorithm with a TS fuzzy model. Based on a set of input-output data that is generated from building structures equipped with MR dampers, premise parameters of the ARX-TS fuzzy model are determined by clustering algorithms. Once the premise part is constructed, consequent parameters of the ARX-TS fuzzy model are optimized by the weighted least squares algorithm. To demonstrate the effectiveness of the proposed ARX-TS fuzzy model, it is applied to a three-, an eight-, a twenty-story building structures. It is demonstrated from the numerical simulation that the proposed ARX-TS fuzzy algorithm is effective to identify nonlinear behavior of seismically excited building structures equipped with MR dampers. A new semiactive nonlinear fuzzy control (SNFC) algorithm is developed through integration of multiple Lyapunov-based state feedback gains, a Kalman filter, and a converting algorithm with TS fuzzy interpolation method. First, the nonlinear ARX-TS fuzzy model is decomposed into a set of linear dynamic models that are operated in only a local linear operating region. Based on the decomposed models, multiple Lyapunov-based state feedback controllers are formulated in terms of linear matrix inequalities (LMIs) such that the structure-MR damper system is globally asymptotically stable and the performance on transient responses is guaranteed. Then, the state feedback controllers are integrated with a Kalman filter and a converting algorithm using a TS fuzzy interpolation method to construct semiactive output feedback controllers. To demonstrate the effectiveness of the proposed SNFC algorithm, it is applied to a three-, an eight-, and a twenty-story building structures. It is demonstrated from the numerical simulation that the proposed SNFC algorithm is effective to control responses of seismically excited building structures equipped with MR dampers. In addition, it is shown that the proposed SNFC system is better than a traditional optimal algorithm, H2/linear quadratic Gaussian-based semiactive control strategy
    corecore