336 research outputs found

    Hamiltonian statistical mechanics

    Full text link
    A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the reference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.Comment: 8 pages, 2 figures, references adde

    Random Hamiltonian in thermal equilibrium

    Get PDF
    A framework for the investigation of disordered quantum systems in thermal equilibrium is proposed. The approach is based on a dynamical model--which consists of a combination of a double-bracket gradient flow and a uniform Brownian fluctuation--that `equilibrates' the Hamiltonian into a canonical distribution. The resulting equilibrium state is used to calculate quenched and annealed averages of quantum observables.Comment: 8 pages, 4 figures. To appear in DICE 2008 conference proceeding

    Isospectral measures

    Full text link
    In recent papers a number of authors have considered Borel probability measures μ\mu in \br^d such that the Hilbert space L2(μ)L^2(\mu) has a Fourier basis (orthogonal) of complex exponentials. If μ\mu satisfies this property, the set of frequencies in this set are called a spectrum for μ\mu. Here we fix a spectrum, say Γ\Gamma, and we study the possibilities for measures μ\mu having Γ\Gamma as spectrum.Comment: v

    Spectral properties of a class of random walks on locally finite groups

    Full text link
    We study some spectral properties of random walks on infinite countable amenable groups with an emphasis on locally finite groups, e.g. the infinite symmetric group. On locally finite groups, the random walks under consideration are driven by infinite divisible distributions. This allows us to embed our random walks into continuous time L\'evy processes whose heat kernels have shapes similar to the ones of alpha-stable processes. We obtain examples of fast/slow decays of return probabilities, a recurrence criterion, exact values and estimates of isospectral profiles and spectral distributions, formulae and estimates for the escape rates and for heat kernels.Comment: 62 pages, 1 figure, 2 table

    Mode fluctuations as fingerprint of chaotic and non-chaotic systems

    Full text link
    The mode-fluctuation distribution P(W)P(W) is studied for chaotic as well as for non-chaotic quantum billiards. This statistic is discussed in the broader framework of the E(k,L)E(k,L) functions being the probability of finding kk energy levels in a randomly chosen interval of length LL, and the distribution of n(L)n(L), where n(L)n(L) is the number of levels in such an interval, and their cumulants ck(L)c_k(L). It is demonstrated that the cumulants provide a possible measure for the distinction between chaotic and non-chaotic systems. The vanishing of the normalized cumulants CkC_k, k≥3k\geq 3, implies a Gaussian behaviour of P(W)P(W), which is realized in the case of chaotic systems, whereas non-chaotic systems display non-vanishing values for these cumulants leading to a non-Gaussian behaviour of P(W)P(W). For some integrable systems there exist rigorous proofs of the non-Gaussian behaviour which are also discussed. Our numerical results and the rigorous results for integrable systems suggest that a clear fingerprint of chaotic systems is provided by a Gaussian distribution of the mode-fluctuation distribution P(W)P(W).Comment: 44 pages, Postscript. The figures are included in low resolution only. A full version is available at http://www.physik.uni-ulm.de/theo/qc/baecker.htm

    Intertwining, Excursion Theory and Krein Theory of Strings for Non-self-adjoint Markov Semigroups

    Full text link
    In this paper, we start by showing that the intertwining relationship between two minimal Markov semigroups acting on Hilbert spaces implies that any recurrent extensions, in the sense of It\^o, of these semigroups satisfy the same intertwining identity. Under mild additional assumptions on the intertwining operator, we prove that the converse also holds. This connection, which relies on the representation of excursion quantities as developed by Fitzsimmons and Getoor, enables us to give an interesting probabilistic interpretation of intertwining relationships between Markov semigroups via excursion theory: two such recurrent extensions that intertwine share, under an appropriate normalization, the same local time at the boundary point. Moreover, in the case when one of the (non-self-adjoint) semigroup intertwines with the one of a quasi-diffusion, we obtain an extension of Krein's theory of strings byshowing that its densely defined spectral measure is absolutely continuous with respect to the measure appearing in the Stieltjes representation of the Laplace exponent of the inverse local time. Finally, we illustrate our results with the class of positive self-similar Markov semigroups and also the reflected generalized Laguerre semigroups. For the latter, we obtain their spectral decomposition and provide, under some conditions, a perturbed spectral gap estimate for its convergence to equilibrium

    A comment on the relation between diffraction and entropy

    Get PDF
    Diffraction methods are used to detect atomic order in solids. While uniquely ergodic systems with pure point diffraction have zero entropy, the relation between diffraction and entropy is not as straightforward in general. In particular, there exist families of homometric systems, which are systems sharing the same diffraction, with varying entropy. We summarise the present state of understanding by several characteristic examples.Comment: 7 page
    • …
    corecore