246 research outputs found

    CAPTλ₯Ό μœ„ν•œ 발음 변이 뢄석 및 CycleGAN 기반 ν”Όλ“œλ°± 생성

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μΈλ¬ΈλŒ€ν•™ ν˜‘λ™κ³Όμ • 인지과학전곡,2020. 2. μ •λ―Όν™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.μ™Έκ΅­μ–΄λ‘œμ„œμ˜ ν•œκ΅­μ–΄ κ΅μœ‘μ— λŒ€ν•œ 관심이 κ³ μ‘°λ˜μ–΄ ν•œκ΅­μ–΄ ν•™μŠ΅μžμ˜ μˆ˜κ°€ 크게 μ¦κ°€ν•˜κ³  있으며, μŒμ„±μ–Έμ–΄μ²˜λ¦¬ κΈ°μˆ μ„ μ μš©ν•œ 컴퓨터 기반 발음 ꡐ윑(Computer-Assisted Pronunciation Training; CAPT) μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ— λŒ€ν•œ 연ꡬ λ˜ν•œ 적극적으둜 이루어지고 μžˆλ‹€. κ·ΈλŸΌμ—λ„ λΆˆκ΅¬ν•˜κ³  ν˜„μ‘΄ν•˜λŠ” ν•œκ΅­μ–΄ λ§ν•˜κΈ° ꡐ윑 μ‹œμŠ€ν…œμ€ μ™Έκ΅­μΈμ˜ ν•œκ΅­μ–΄μ— λŒ€ν•œ 언어학적 νŠΉμ§•μ„ μΆ©λΆ„νžˆ ν™œμš©ν•˜μ§€ μ•Šκ³  있으며, μ΅œμ‹  μ–Έμ–΄μ²˜λ¦¬ 기술 λ˜ν•œ μ μš©λ˜μ§€ μ•Šκ³  μžˆλŠ” 싀정이닀. κ°€λŠ₯ν•œ μ›μΈμœΌλ‘œμ¨λŠ” 외ꡭ인 λ°œν™” ν•œκ΅­μ–΄ ν˜„μƒμ— λŒ€ν•œ 뢄석이 μΆ©λΆ„ν•˜κ²Œ 이루어지지 μ•Šμ•˜λ‹€λŠ” 점, 그리고 κ΄€λ ¨ 연ꡬ가 μžˆμ–΄λ„ 이λ₯Ό μžλ™ν™”λœ μ‹œμŠ€ν…œμ— λ°˜μ˜ν•˜κΈ°μ—λŠ” κ³ λ„ν™”λœ 연ꡬ가 ν•„μš”ν•˜λ‹€λŠ” 점이 μžˆλ‹€. 뿐만 μ•„λ‹ˆλΌ CAPT 기술 μ „λ°˜μ μœΌλ‘œλŠ” μ‹ ν˜Έμ²˜λ¦¬, 운율 뢄석, μžμ—°μ–΄μ²˜λ¦¬ 기법과 같은 νŠΉμ§• μΆ”μΆœμ— μ˜μ‘΄ν•˜κ³  μžˆμ–΄μ„œ μ ν•©ν•œ νŠΉμ§•μ„ μ°Ύκ³  이λ₯Ό μ •ν™•ν•˜κ²Œ μΆ”μΆœν•˜λŠ” 데에 λ§Žμ€ μ‹œκ°„κ³Ό λ…Έλ ₯이 ν•„μš”ν•œ 싀정이닀. μ΄λŠ” μ΅œμ‹  λ”₯λŸ¬λ‹ 기반 μ–Έμ–΄μ²˜λ¦¬ κΈ°μˆ μ„ ν™œμš©ν•¨μœΌλ‘œμ¨ 이 κ³Όμ • λ˜ν•œ λ°œμ „μ˜ 여지가 λ§Žλ‹€λŠ” λ°”λ₯Ό μ‹œμ‚¬ν•œλ‹€. λ”°λΌμ„œ λ³Έ μ—°κ΅¬λŠ” λ¨Όμ € CAPT μ‹œμŠ€ν…œ κ°œλ°œμ— μžˆμ–΄ 발음 변이 양상과 언어학적 상관관계λ₯Ό λΆ„μ„ν•˜μ˜€λ‹€. 외ꡭ인 ν™”μžλ“€μ˜ 낭독체 변이 양상과 ν•œκ΅­μ–΄ 원어민 ν™”μžλ“€μ˜ 낭독체 변이 양상을 λŒ€μ‘°ν•˜κ³  μ£Όμš”ν•œ 변이λ₯Ό ν™•μΈν•œ ν›„, 상관관계 뢄석을 ν†΅ν•˜μ—¬ μ˜μ‚¬μ†Œν†΅μ— 영ν–₯을 λ―ΈμΉ˜λŠ” μ€‘μš”λ„λ₯Ό νŒŒμ•…ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ’…μ„± μ‚­μ œμ™€ 3쀑 λŒ€λ¦½μ˜ ν˜Όλ™, μ΄ˆλΆ„μ ˆ κ΄€λ ¨ 였λ₯˜κ°€ λ°œμƒν•  경우 ν”Όλ“œλ°± 생성에 μš°μ„ μ μœΌλ‘œ λ°˜μ˜ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€λŠ” 것이 ν™•μΈλ˜μ—ˆλ‹€. κ΅μ •λœ ν”Όλ“œλ°±μ„ μžλ™μœΌλ‘œ μƒμ„±ν•˜λŠ” 것은 CAPT μ‹œμŠ€ν…œμ˜ μ€‘μš”ν•œ 과제 쀑 ν•˜λ‚˜μ΄λ‹€. λ³Έ μ—°κ΅¬λŠ” 이 κ³Όμ œκ°€ λ°œν™”μ˜ μŠ€νƒ€μΌ λ³€ν™”μ˜ 문제둜 해석이 κ°€λŠ₯ν•˜λ‹€κ³  λ³΄μ•˜μœΌλ©°, 생성적 μ λŒ€ 신경망 (Cycle-consistent Generative Adversarial Network; CycleGAN) κ΅¬μ‘°μ—μ„œ λͺ¨λΈλ§ν•˜λŠ” 것을 μ œμ•ˆν•˜μ˜€λ‹€. GAN λ„€νŠΈμ›Œν¬μ˜ 생성λͺ¨λΈμ€ 비원어민 λ°œν™”μ˜ 뢄포와 원어민 λ°œν™” λΆ„ν¬μ˜ 맀핑을 ν•™μŠ΅ν•˜λ©°, Cycle consistency μ†μ‹€ν•¨μˆ˜λ₯Ό μ‚¬μš©ν•¨μœΌλ‘œμ¨ λ°œν™”κ°„ μ „λ°˜μ μΈ ꡬ쑰λ₯Ό μœ μ§€ν•¨κ³Ό λ™μ‹œμ— κ³Όλ„ν•œ ꡐ정을 λ°©μ§€ν•˜μ˜€λ‹€. λ³„λ„μ˜ νŠΉμ§• μΆ”μΆœ 과정이 없이 ν•„μš”ν•œ νŠΉμ§•λ“€μ΄ CycleGAN ν”„λ ˆμž„μ›Œν¬μ—μ„œ 무감독 λ°©λ²•μœΌλ‘œ 슀슀둜 ν•™μŠ΅λ˜λŠ” λ°©λ²•μœΌλ‘œ, μ–Έμ–΄ ν™•μž₯이 μš©μ΄ν•œ 방법이닀. 언어학적 λΆ„μ„μ—μ„œ λ“œλŸ¬λ‚œ μ£Όμš”ν•œ 변이듀 κ°„μ˜ μš°μ„ μˆœμœ„λŠ” Auxiliary Classifier CycleGAN κ΅¬μ‘°μ—μ„œ λͺ¨λΈλ§ν•˜λŠ” 것을 μ œμ•ˆν•˜μ˜€λ‹€. 이 방법은 기쑴의 CycleGAN에 지식을 μ ‘λͺ©μ‹œμΌœ ν”Όλ“œλ°± μŒμ„±μ„ 생성함과 λ™μ‹œμ— ν•΄λ‹Ή ν”Όλ“œλ°±μ΄ μ–΄λ–€ μœ ν˜•μ˜ 였λ₯˜μΈμ§€ λΆ„λ₯˜ν•˜λŠ” 문제λ₯Ό μˆ˜ν–‰ν•œλ‹€. μ΄λŠ” 도메인 지식이 ꡐ정 ν”Όλ“œλ°± 생성 λ‹¨κ³„κΉŒμ§€ μœ μ§€λ˜κ³  ν†΅μ œκ°€ κ°€λŠ₯ν•˜λ‹€λŠ” μž₯점이 μžˆλ‹€λŠ” 데에 κ·Έ μ˜μ˜κ°€ μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ 방법을 ν‰κ°€ν•˜κΈ° μœ„ν•΄μ„œ 27개의 λͺ¨κ΅­μ–΄λ₯Ό κ°–λŠ” 217λͺ…μ˜ 유의미 μ–΄νœ˜ λ°œν™” 65,100개둜 ν”Όλ“œλ°± μžλ™ 생성 λͺ¨λΈμ„ ν›ˆλ ¨ν•˜κ³ , κ°œμ„  μ—¬λΆ€ 및 정도에 λŒ€ν•œ 지각 평가λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μ œμ•ˆλœ 방법을 μ‚¬μš©ν•˜μ˜€μ„ λ•Œ ν•™μŠ΅μž 본인의 λͺ©μ†Œλ¦¬λ₯Ό μœ μ§€ν•œ 채 κ΅μ •λœ 발음으둜 λ³€ν™˜ν•˜λŠ” 것이 κ°€λŠ₯ν•˜λ©°, 전톡적인 방법인 μŒλ†’μ΄ 동기식 쀑첩가산 (Pitch-Synchronous Overlap-and-Add) μ•Œκ³ λ¦¬μ¦˜μ„ μ‚¬μš©ν•˜λŠ” 방법에 λΉ„ν•΄ μƒλŒ€ κ°œμ„ λ₯  16.67%이 ν™•μΈλ˜μ—ˆλ‹€.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Exploring the use of speech in audiology: A mixed methods study

    Get PDF
    This thesis aims to advance the understanding of how speech testing is, and can be, used for hearing device users within the audiological test battery. To address this, I engaged with clinicians and patients to understand the current role that speech testing plays in audiological testing in the UK, and developed a new listening test, which combined speech testing with localisation judgments in a dual task design. Normal hearing listeners and hearing aid users were tested, and a series of technical measurements were made to understand how advanced hearing aid settings might determine task performance. A questionnaire was completed by public and private sector hearing healthcare professionals in the UK to explore the use of speech testing. Overall, results revealed this assessment tool was underutilised by UK clinicians, but there was a significantly greater use in the private sector. Through a focus group and semi structured interviews with hearing aid users I identified a mismatch between their common listening difficulties and the assessment tools used in audiology and highlighted a lack of deaf awareness in UK adult audiology. The Spatial Speech in Noise Test (SSiN) is a dual task paradigm to simultaneously assess relative localisation and word identification performance. Testing on normal hearing listeners to investigate the impact of the dual task design found the SSiN to increase cognitive load and therefore better reflect challenging listening situations. A comparison of relative localisation and word identification performance showed that hearing aid users benefitted less from spatially separating speech and noise in the SSiN than normal hearing listeners. To investigate how the SSiN could be used to assess advanced hearing aid features, a subset of hearing aid users were fitted with the same hearing aid type and completed the SSiN once with adaptive directionality and once with omnidirectionality. The SSiN results differed between conditions but a larger sample size is needed to confirm these effects. Hearing aid technical measurements were used to quantify how hearing aid output changed in response to the SSiN paradigm

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    otorhinolaryngology; neurosciences; hearin

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    ​The International Symposium on Hearing is a prestigious, triennial gathering where world-class scientists present and discuss the most recent advances in the field of human and animal hearing research. The 2015 edition will particularly focus on integrative approaches linking physiological, psychophysical and cognitive aspects of normal and impaired hearing. Like previous editions, the proceedings will contain about 50 chapters ranging from basic to applied research, and of interest to neuroscientists, psychologists, audiologists, engineers, otolaryngologists, and artificial intelligence researchers.

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    • …
    corecore