604 research outputs found

    Inverse Problems of Determining Coefficients of the Fractional Partial Differential Equations

    Full text link
    When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model, for example, the orders of the fractional derivative or the source term, are often unknown, which requires one to discuss inverse problems to identify these physical quantities from some additional information that can be observed or measured practically. This chapter investigates several kinds of inverse coefficient problems for the fractional diffusion equation

    Numerical analysis of nonlinear subdiffusion equations

    Get PDF
    We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α∈(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments

    A note on semilinear fractional elliptic equation: analysis and discretization

    Get PDF
    In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order s∈(0,1)s \in (0,1). We identify minimal conditions on the nonlinear term and the source which leads to existence of weak solutions and uniform L∞L^\infty-bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli-Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α∈(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Inverse Problems of Determining Sources of the Fractional Partial Differential Equations

    Full text link
    In this chapter, we mainly review theoretical results on inverse source problems for diffusion equations with the Caputo time-fractional derivatives of order α∈(0,1)\alpha\in(0,1). Our survey covers the following types of inverse problems: 1. determination of time-dependent functions in interior source terms 2. determination of space-dependent functions in interior source terms 3. determination of time-dependent functions appearing in boundary condition
    • …
    corecore