235 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Improving the skills of forest harvester operators

    Get PDF
    Forestry suffers from a shortage of trained machine operators, which jeopardises efficient and productive operations. Extensive training is required to skilfully master the complex tasks of operators of forest harvesters and forest forwarders. Therefore, the digitisation of the industry envisages training and support systems on machines that provide real-time support to operators, both on-site and remotely. The aim of this thesis was to improve training methods and pave the way for the development of future operator support systems, therefore a detailed analysis of harvester operators' work tasks, focussing on motor control skills and cognitive (work)load, was conducted. The work was guided by the following two general research questions, which were systematically answered throughout the studies presented in this thesis. (1) How can training methods for robotic arm operators be improved by analysing performance limiting factors in the bimanual control of the robotic cranes and (2) How can the machine operators be effectively supported with different sensorimotor support systems to ensure high level performance? To this end, a multi-pronged approach using qualitative and quantitative methods was adopted and five scientific studies were carried out. For three quantitative laboratory studies, a multi-joint robotic manipulator was designed and programmed as a simulation environment, which in its basic layout resembles the crane of real forestry machines. To identify the challenges in learning the motor control of such robotic cranes, this work focussed on the joystick control of the individual joints (joint control) or the movement of the tip (end-effector) of the robotic crane. Two experimental studies on the acquisition of operating skills with the two different control schemes, showed that in spite of a gain in mental workload reduction with end-effector control, movement accuracy remains difficult with both control schemes. This refers with joint control to the challenging use of the joints involved in the fine control of the robotic crane and with end-effector control to a general lack of accuracy. In a third study, visual and auditory (sonification) support systems were implemented in the simulation environment and compared for increasing accuracy. Auditory support systems showed higher effectiveness, which depends on initial operator performance level. In summary, this thesis has shown that behavioural analysis at the level of joystick movements and the analysis of crane movements can be very fruitful for studying the development of human control skills and deriving new performance indicators that can be used in operator training and the design of different operator support systems. The development of machines with increasing technical operator support will potentially lead to new challenges in real-world operation, where the management of cognitive workload and the detrimental effects, specifically of cognitive underload conditions, will require a rethinking and design of the operators’ work

    An uncontrolled manifold analysis of arm joint variability in virtual planar position and orientation tele-manipulation

    Get PDF
    Objective: In teleoperated robot-assisted tasks, the user interacts with manipulators to finely control remote tools. Manipulation of robotic devices, characterized by specific kinematic and dynamic proprieties, is a complex task for the human sensorimotor system due to the inherent biomechanical and neuronal redundancies that characterize the human arm and its control. We investigate how master devices with different kinematics structures and how different task constraints influence users capabilities in exploiting arm redundancy. Methods: A virtual teleoperation workbench was designed and the arm kinematics of seven users was acquired during the execution of two planar virtual tasks, involving either the control of position only or position-orientation of a tool. Using the UnControlled Manifold Analysis of arm joint variability we estimated the logarithmic ratio between task irrelevant and the task relevant manifolds (Rv). Results: The Rv values obtained in the position-orientation task were higher than in the position only task while no differences were found between the master devices. A modulation of Rv was found through the execution of the position task and a positive correlation was found between task performance and redundancy exploitation. Conclusion: Users exploited additional portions of arm redundancy when dealing with the tool orientation. The Rv modulation seems influenced by the task constraints and by the users possibility of reconfiguring the arm position. Significance: This work advances the general understanding of the exploitation of arm redundancy in complex tasks, and can improve the development of future robotic devices

    Attention and time constraints in performing and learning a table tennis forehand shot

    Get PDF
    This is a section on p. S95 of article 'Verbal and Poster: Motor Development, Motor Learning and Control, and Sport and Exercise Psychology' in Journal of Sport and Exercise Psychology, 2010, v.32, p.S36-S237published_or_final_versio

    EEG coherence between the verbal-analytical region (T3) and the motor-planning region (Fz) increases under stress in explicit motor learners but not implicit motor learners

    Get PDF
    This journal supplement contains abstracts of NASPSPA 2010Free Communications - Verbal and Poster: Motor Learning and Controlpublished_or_final_versionThe Annual Conference of the North American Society for the Psychology of Sport and Physical Activity (NASPSPA 2010), Tucson, AZ., 10-12 June 2010. In Journal of Sport and Exercise Psychology, 2010, v. 32 suppl., p. S13

    Neural and motor basis of inter-individual interactions

    Get PDF
    The goal of my Ph.D. work was to investigate the behavioral markers and the brain activities responsible for the emergence of sensorimotor communication. Sensorimotor communication can be defined as a form of communication consisting into flexible exchanges based on bodily signals, in order to increase the efficiency of the inter-individual coordination. For instance, a soccer player carving his movements to inform another player about his intention. This form of interaction is highly dependent of the motor system and the ability to produce appropriate movements but also of the ability of the partner to decode these cues. To tackle these facets of human social interaction, we approached the complexity of the problem by splitting my research activities into two separate lines of research. First, we pursued the examination of motor-based humans\u2019 capability to perceive and \u201cread\u201d other\u2019s behaviors in focusing on single-subject experiment. The discovery of mirror neurons in monkey premotor cortex in the early nineties (di Pellegrino et al. 1992) motivated a number of human studies on this topic (Rizzolatti and Craighero 2004). The critical finding was that some ventral premotor neurons are engaged during visual presentation of actions performed by conspecifics. More importantly, those neurons were shown to encode also the actual execution of similar actions (i.e. irrespective of who the acting individual is). This phenomenon has been highly investigated in humans by using cortical and cortico-spinal measures (for review see, fMRI: Molenberghs, Cunnington, and Mattingley 2012; TMS: Naish et al. 2014; EEG: Pineda 2008). During single pulse TMS (over the primary motor cortex), the amplitude of motor evoked potentials (MEPs) provides an index of corticospinal recruitment. During action observation the modulation of this index follow the expected changes during action execution (Fadiga et al. 1995). However, dozens of studies have been published on this topic and revealed important inconsistencies. For instance, MEPs has been shown to be dependent on observed low-level motor features (e.g. kinematic features or electromyography temporal coupling; Gangitano, Mottaghy, and Pascual-Leone 2001; Borroni et al. 2005; Cavallo et al. 2012) as well as high level movement properties (e.g. action goals; Cattaneo et al. 2009; Cattaneo et al. 2013). Furthermore, MEPs modulations do not seem to be related to the observed effectors (Borroni and Baldissera 2008; Finisguerra et al. 2015; Senna, Bolognini, and Maravita 2014), suggesting their independence from low-level movement features. These contradictions call for new paradigms. Our starting hypothesis here is that the organization and function of the mirror mechanism should follow that of the motor system during action execution. Hence, we derived three action observation protocols from classical motor control theories: 1) The first study was motivated by the fact that motor redundancy in action execution do not allow the presence of a one-to-one mapping between (single) muscle activation and action goals. Based on that, we showed that the effect of action observation (observation of an actor performing a power versus a precision grasp) are variable at the single muscle level (MEPs; motor evoked potentials) but robust when evaluating the kinematic of TMS-evoked movements. Considering that movements are based on the coordination of multiple muscle activations (muscular synergies), MEPs may represent a partial picture of the real corticospinal activation. Inversely, movement kinematics is both the final functional byproduct of muscles coordination and the sole visual feedback that can be extracted from action observation (i.e. muscle recruitment is not visible). We conclude that TMS-evoked kinematics may be more reliable in representing the state of the motor system during action observation. 2) In the second study, we exploited the inter-subject variability inherent to everyday whole-body human actions, to evaluate the link between individual motor signatures (or motor styles) and other\u2019s action perception. We showed no group-level effect but a robust correlation between the individual motor signature recorded during action execution and the subsequent modulations of corticospinal excitability during action observation. However, results were at odds with a strict version of the direct matching hypothesis that would suggest the opposite pattern. In fact, the more the actor\u2019s movement was similar to the observer\u2019s individual motor signature, the smaller was the MEPs amplitude, and vice versa. These results conform to the predictive coding hypothesis, suggesting that during AO, the motor system compares our own way of doing the action (individual motor signature) with the action displayed on the screen (actor\u2019s movement). 3) In the third study, we investigated the neural mechanisms underlying the visual perception of action mistakes. According to a strict version of the direct matching hypothesis, the observer should potentially reproduce the neural activation present during the actual execution of action errors (van Schie et al. 2004). Here, instead of observing an increase of cortical inhibition, we showed an early (120 ms) decrease of intracortical inhibition (short intracortical inhibition) when a mismatch was present between the observed action (erroneous) and the observer\u2019s expectation. As proposed by the predictive coding framework, the motor system may be involved in the generation of an error signal potentially relying on an early decrease of intracortical inhibition within the corticomotor system. The second line of research aimed at the investigation of how sensorimotor communication flows between agents engaged in a complementary action coordination task. In this regard, measures of interest where related to muscle activity and/or kinematics as the recording of TMS-related indexes would be too complicated in a joint-action scenario. 1) In the first study, we exploited the known phenomenon of Anticipatory Postural Adjustments (APAs). APAs refers to postural adjustments made in anticipation of a self- or externally-generated disturbance in order to cope for the predicted perturbation and stabilize the current posture. Here we examined how observing someone else lifting an object we hold can affect our own anticipatory postural adjustments of the arm. We showed that the visual information alone (joint action condition), in the absence of efference copy (present only when the subject is unloading by himself the object situated on his hand), were not sufficient to fully deploy the needed anticipatory muscular activations. Rather, action observation elicited a dampened APA response that is later augmented by the arrival of tactile congruent feedback. 2) In a second study, we recorded the kinematic of orchestra musicians (one conductor and two lines of violinists). A manipulation was added to perturb the normal flow of information conveyed by the visual channel. The first line of violinist where rotated 180\ub0, and thus faced the second line. Several techniques were used to extract inter-group (Granger Causality method) and intra-group synchronization (PCA for musicians and autoregression for conductors). The analyses were directed to two kinematic features, hand and head movements, which are central for functionally different action. The hand is essential for instrumental actions, whereas head movements encode ancillary expressive actions. During the perturbation, we observed a complete reshaping of the whole patterns of communication going in the direction of a distribution of the leadership between conductor and violinists, especially for what regards head movements. In fact, in the perturbed condition, the second line acts as an informational hub connecting the first line to the conductor they no longer can see. This study evidences different forms of communications (coordination versus synchronization) flowing via different channels (ancillary versus instrumental) with different time-scales
    • …
    corecore