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Synopsis 

 

The goal of my Ph.D. work was to investigate the behavioral markers and the brain activities 

responsible for the emergence of sensorimotor communication. Sensorimotor communication can be 

defined as a form of communication consisting into flexible exchanges based on bodily signals, in 

order to increase the efficiency of the inter-individual coordination. For instance, a soccer player 

carving his movements to inform another player about his intention. This form of interaction is highly 

dependent of the motor system and the ability to produce appropriate movements but also of the 

ability of the partner to decode these cues.  

 

To tackle these facets of human social interaction, we approached the complexity of the problem by 

splitting my research activities into two separate lines of research.  

 

First, we pursued the examination of motor-based humans’ capability to perceive and “read” other’s 

behaviors in focusing on single-subject experiment. The discovery of mirror neurons in monkey 

premotor cortex in the early nineties (di Pellegrino et al. 1992) motivated a number of human studies 

on this topic (Rizzolatti and Craighero 2004). The critical finding was that some ventral premotor 

neurons are engaged during visual presentation of actions performed by conspecifics. More 

importantly, those neurons were shown to encode also the actual execution of similar actions (i.e. 

irrespective of who the acting individual is). This phenomenon has been highly investigated in 

humans by using cortical and cortico-spinal measures (for review see, fMRI: Molenberghs, 

Cunnington, and Mattingley 2012; TMS: Naish et al. 2014; EEG: Pineda 2008).  

During single pulse TMS (over the primary motor cortex), the amplitude of motor evoked potentials 

(MEPs) provides an index of corticospinal recruitment. During action observation the modulation of 

this index follow the expected changes during action execution (Fadiga et al. 1995). However, dozens 

of studies have been published on this topic and revealed important inconsistencies. For instance, 

MEPs has been shown to be dependent on observed low-level motor features (e.g. kinematic features 

or electromyography temporal coupling; Gangitano, Mottaghy, and Pascual-Leone 2001; Borroni et 

al. 2005; Cavallo et al. 2012) as well as high level movement properties (e.g. action goals; Cattaneo 

et al. 2009; Cattaneo et al. 2013). Furthermore, MEPs modulations do not seem to be related to the 

observed effectors (Borroni and Baldissera 2008; Finisguerra et al. 2015; Senna, Bolognini, and 

Maravita 2014), suggesting their independence from low-level movement features.  
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These contradictions call for new paradigms. Our starting hypothesis here is that the organization and 

function of the mirror mechanism should follow that of the motor system during action execution. 

Hence, we derived three action observation protocols from classical motor control theories: 

1) The first study was motivated by the fact that motor redundancy in action execution do not 

allow the presence of a one-to-one mapping between (single) muscle activation and action 

goals. Based on that, we showed that the effect of action observation (observation of an actor 

performing a power versus a precision grasp) are variable at the single muscle level (MEPs; 

motor evoked potentials) but robust when evaluating the kinematic of TMS-evoked 

movements. Considering that movements are based on the coordination of multiple muscle 

activations (muscular synergies), MEPs may represent a partial picture of the real 

corticospinal activation. Inversely, movement kinematics is both the final functional 

byproduct of muscles coordination and the sole visual feedback that can be extracted from 

action observation (i.e. muscle recruitment is not visible). We conclude that TMS-evoked 

kinematics may be more reliable in representing the state of the motor system during action 

observation.  

2) In the second study, we exploited the inter-subject variability inherent to everyday whole-

body human actions, to evaluate the link between individual motor signatures (or motor styles) 

and other’s action perception. We showed no group-level effect but a robust correlation 

between the individual motor signature recorded during action execution and the subsequent 

modulations of corticospinal excitability during action observation. However, results were at 

odds with a strict version of the direct matching hypothesis that would suggest the opposite 

pattern. In fact, the more the actor’s movement was similar to the observer’s individual motor 

signature, the smaller was the MEPs amplitude, and vice versa. These results conform to the 

predictive coding hypothesis, suggesting that during AO, the motor system compares our own 

way of doing the action (individual motor signature) with the action displayed on the screen 

(actor’s movement). 

3) In the third study, we investigated the neural mechanisms underlying the visual perception of 

action mistakes. According to a strict version of the direct matching hypothesis, the observer 

should potentially reproduce the neural activation present during the actual execution of action 

errors (van Schie et al. 2004). Here, instead of observing an increase of cortical inhibition, we 

showed an early (120 ms) decrease of intracortical inhibition (short intracortical inhibition) 

when a mismatch was present between the observed action (erroneous) and the observer’s 

expectation. As proposed by the predictive coding framework, the motor system may be 
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involved in the generation of an error signal potentially relying on an early decrease of 

intracortical inhibition within the corticomotor system.  

 

The second line of research aimed at the investigation of how sensorimotor communication flows 

between agents engaged in a complementary action coordination task. In this regard, measures of 

interest where related to muscle activity and/or kinematics as the recording of TMS-related indexes 

would be too complicated in a joint-action scenario. 

1) In the first study, we exploited the known phenomenon of Anticipatory Postural 

Adjustments (APAs). APAs refers to postural adjustments made in anticipation of a self- 

or externally-generated disturbance in order to cope for the predicted perturbation and 

stabilize the current posture. Here we examined how observing someone else lifting an 

object we hold can affect our own anticipatory postural adjustments of the arm. We 

showed that the visual information alone (joint action condition), in the absence of 

efference copy (present only when the subject is unloading by himself the object situated 

on his hand), were not sufficient to fully deploy the needed anticipatory muscular 

activations. Rather, action observation elicited a dampened APA response that is later 

augmented by the arrival of tactile congruent feedback. 

2) In a second study, we recorded the kinematic of orchestra musicians (one conductor and 

two lines of violinists). A manipulation was added to perturb the normal flow of 

information conveyed by the visual channel. The first line of violinist where rotated 180°, 

and thus faced the second line. Several techniques were used to extract inter-group 

(Granger Causality method) and intra-group synchronization (PCA for musicians and 

autoregression for conductors). The analyses were directed to two kinematic features, 

hand and head movements, which are central for functionally different action. The hand 

is essential for instrumental actions, whereas head movements encode ancillary expressive 

actions. During the perturbation, we observed a complete reshaping of the whole patterns 

of communication going in the direction of a distribution of the leadership between 

conductor and violinists, especially for what regards head movements. In fact, in the 

perturbed condition, the second line acts as an informational hub connecting the first line 

to the conductor they no longer can see. This study evidences different forms of 

communications (coordination versus synchronization) flowing via different channels 

(ancillary versus instrumental) with different time-scales.  
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General introduction 

Social interaction is an essential part of human’s everyday life. By moving our own body and in 

parallel perceiving other’s behavior we can communicate in various contexts like speaking at the 

phone, shaking hands, smiling to a passerby or playing music. These forms of interaction rely on 

sensorimotor communication. Sensorimotor communication is a form of communication that consists 

into flexible exchanges of bodily signals, to promote an efficient coordination. This form of 

communication is highly dependent of the motor system and the ability to produce appropriate 

movements but also of the ability of the partner to decode these cues (Pezzulo et al. 2018). 

 

For methodological reasons, the neurophysiological study of sensorimotor communication has first 

been done by examining isolated individuals engaged in simulated social context. In these contexts, 

many studies investigated the fundamental ability to predict and adapt to incoming perceptual 

information about other’s behaviour. 

Observing others’ actions activates brain areas (Action Observation Network - AON) including 

premotor and inferior parietal regions (inferior frontal (IFC), anterior intraparietal (AIP), superior 

temporal sulcus (STS) and somatosensory cortices (S1)) partially overlapping with those recruited 

for action preparation and execution (Giese and Rizzolatti 2015). Many studies in humans have in the 

last 20 years attempted to identify brain regions having what have been defined “mirror properties”. 

This lead to broad and sometimes speculative claims about their role in social cognition 

(Molenberghs, Cunnington, and Mattingley 2012). In fact, the neural substrates of mirror activities 

remain controversial. 

More particularly, using Transcranial Magnetic Stimulation (TMS), about 100 studies have shown 

that corticospinal excitability (CSE), via Motor Evoked Potentials (MEPs) modulation, maps action 

execution features during observation (Fadiga et al. 1995; Fadiga, Craighero, and Olivier 2005; Naish 

et al. 2014). Some studies show that MEPs are modulated by observation of movement features (low-

level features), for example the kinematic features (finger aperture in a grasping action; Gangitano, 

Mottaghy, and Pascual-Leone 2001), the amplitude of muscle activity over time (Borroni et al. 2005; 

Cavallo et al. 2012) or the forces needed (lift objects of different weights; Alaerts et al. 2010; Senot 

et al. 2011). Other reports show that MEPs are modulated by action goals (Cattaneo et al. 2009; 

Cattaneo et al. 2013; high-level features). For instance, MEPs modulation do not seem to depend on 

the effector used to attain the same object grasping goal (Borroni and Baldissera 2008; Senna, 

Bolognini, and Maravita 2014; Finisguerra et al. 2015), suggesting independence from low-level 

movement features. Lastly, studies trying to separate these dimensions, highlight the multi-
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dimensionality of the Action Observation Effect (AOE), dependent on the details of the experimental 

setup such as instructions (Mc Cabe et al. 2014; Sartori et al. 2015), TMS trigger timing (Cavallo et 

al. 2013) and recorded muscles (Betti, Castiello, and Sartori 2015). Additionally, external influences 

like learning (Catmur, Walsh, and Heyes 2007; Catmur et al. 2008) or context (Brass et al. 2007) 

modulate AOEs. The large variability and incongruence regarding AOEs questions fundamental 

methodological and theoretical aspects of how to best take advantage of TMS in this field. In this 

regard, two major explanatory models currently coexist bringing in many cases to opposite 

predictions.  

The direct matching hypothesis (Rizzolatti, Fogassi, and Gallese 2001; Rizzolatti and Craighero 

2004) is based on the idea that action observation activates the neurons that represent this action in 

the observer’s premotor cortex. These activations induce automatically a motor representation of the 

observed action corresponding to the one spontaneously generated during action execution. On this 

basis, general action outcomes become accessible to the observer as if he was himself acting. This 

hypothesis is based on neurophysiological evidences that perception and execution of actions show 

an important degree of neurobehavioral overlap (e.g. common feature; Borroni et al. 2005; Cattaneo 

et al. 2013; Gangitano, Mottaghy, and Pascual-Leone 2001; Hilt et al. 2017; Kilner and Lemon 2013; 

Naish et al. 2014; Rizzolatti and Sinigaglia 2016). In agreement with such claims,  perceiving actions 

out of the observer’s motor abilities (e.g. a dog barking) did not activate motor structures, unlike 

actions present in the motor repertoire (e.g. biting done by a dog or a human; Buccino et al. 2004). 

These results might be the proof of a direct match occurring between observed and executed actions 

based on what the observer can extract from a visual description of other’s actions. 

Differently, the predictive-coding approach suggests that “reading” other’s actions stem from an 

empirical Bayesian inference process, in which top-down expectations (e.g. goal) allow the prediction 

of lower level of action representation (e.g. motor commands; Kilner, Friston, and Frith 2007). 

Predicted motor commands are compared with observed kinematics to generate a prediction error that 

is further propagated across cortical levels to update information according to the actual outcome. 

Motor activities during perception are indeed modulated by higher-order information (e.g. prior 

knowledge or contextual cues; Amoruso and Urgesi 2016; Cretu et al. 2018; Hudson et al. 2016). In 

this perspective, an increase of activity in the action observation network reflects the computation of 

a larger error between predicted and currently perceived movements, instead of an exact match. 

We propose that these controversies arise from a poorly defined description of what the activity of 

the motor cortex, as well as motion kinematics and muscle level representation, should look like 

during action execution. In other terms, the difficulties in understanding the mirror coding may 
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directly stem from which level of description we adopt when modeling the function of the motor 

system.  

The works presented in the first part will show different approaches based on classical motor control 

theories (muscular synergies and individual motor signatures) to allow a deeper understanding of 

sensorimotor activities during action observation.  

 

Furthermore, resolving these issues may be of great importance to tackle human’s ability to efficiently 

interact together. Indeed, others’ action discrimination may serve a social role in rapidly preparing an 

appropriate answer. One key function of the AON could be that of supporting temporal and spatial 

interpersonal coordination, as for joint actions (JA; Sebanz, Bekkering, and Knoblich 2006). In fact, 

we need to observe other’s actions, to produce complementary responses in a turn-taking fashion 

(e.g., playing tennis) or to smoothly and simultaneously coordinate our own movement with the one 

of others (e.g., when moving a heavy object together). Following the predictive coding hypothesis, 

fast coordination in an interactive scenario may be achieved by building an internal predictive model 

of the partner(s) behavior and compare it with the current observed movement, to generate a 

prediction error (Friston, Mattout, and Kilner 2011) and update the ongoing motor planning (Sebanz, 

Bekkering, and Knoblich 2006). 

In this regard, a first body of literature investigated how dyads achieve interpersonal simple 

sensorimotor coordination, such as walking side-by-side (van Ulzen et al. 2008), rocking in rocking-

chairs (Richardson et al. 2007) or coordinating finger movements (Repp 2005; Oullier et al. 2008). 

In such contexts, co-actors continuously influence each other and tend to spatially and temporally 

synchronize their movements - even unintentionally (Richardson et al. 2007; van Ulzen et al. 2008). 

However, social interaction goes beyond synchronization with other’s actions and relies also on 

inferring others’ motor goals and intentions to generate a context-appropriate action. Interestingly, 

activity of the AON differentiates between AO to imitate and AO to generate a complementary 

response (Newman-Norlund, van Schie, et al. 2007; Sartori and Betti 2015), with the initial imitative 

reaction being suppressed by a self-generated and context-appropriate response (Brass et al., 2005; 

Cross et al., 2013; Longo et al., 2008; Sartori et al., 2012). Collaborative actions may also indirectly 

recruit the mirror neuron system, to relate observed and executed actions and then use this matching 

to support complementary actions planning.  

The role of mirror like phenomena in complementary actions may be approached by examining the 

phenomenon of motor contagion (or automatic imitation). Automatic imitation is the involuntarily 

tendency to reproduce specific movement features of the interacting partner (i.e. of the observed 

action). For instance, participants’ movements are automatically contaminated by the velocity profile 
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of an interacting partner (in building a tower; (D’Ausilio, Badino, et al. 2015) or a moving dot (Bisio 

et al. 2010) in respectively ballistic reaching or rhythmic movements. This automatic motor contagion 

decreased when the interacting partner violates the biological laws of motion (i.e. bellshaped velocity 

profile; Bisio et al. 2014). These findings highlight the existence of a sensory-motor matching 

mechanism, at a very low-level, that may form the basis upon which higher levels of social interaction 

could be built (e.g. by facilitating group behavioral entrainment; Dumas, Laroche, and Lehmann 

2014).  

The works presented in the second part examine how sensory information modulates in real-time 

different types of complex sensorimotor interactions.  
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Part 1. Action Observation 

1. Study 1: Action observation effects reflect the modular organization of the human motor 

system 

 

Action observation, similarly, to action execution, facilitates the observer's motor system and 

Transcranial Magnetic Stimulation (TMS) has been instrumental in exploring the nature of these 

motor activities. However, contradictory findings question some of the fundamental assumptions 

regarding the neural computations run by the Action Observation Network (AON). To better 

understand this issue, we delivered TMS over the observers' motor cortex at two timings of two 

reaching-grasping actions (precision vs power grip) and we recorded Motor-Evoked Potentials (4 

hand/arm muscles; MEPs). At the same time, we also recorded whole-hand TMS Evoked Kinematics 

(8 hand elevation angles; MEKs) that capture the global functional motor output, as opposed to the 

limited view offered by recording few muscles. By repeating the same protocol twice, and a third 

time after continuous theta burst stimulation (cTBS) over the motor cortex, we observe significant 

time-dependent grip-specific MEPs and MEKs modulations, that disappeared after cTBS. MEKs, 

differently from MEPs, exhibit a consistent significant modulation across pre-cTBS sessions. Beside 

clear methodological implications, the multidimensionality of MEKs opens a window on muscle 

synergies needed to overcome system redundancy. By providing better access to the AON 

computations, our results strengthen the idea that action observation shares key organizational 

similarities with action execution. 

 

My Contribution: data analysis, results interpretation and manuscript writing 

 

This work was published in Cortex: 

PM Hilt, E Bartoli, E Ferrari, M Jacono, L Fadiga and A D’Ausilio (2017) Action observation effects 

reflect the modular organization of the human motor system. Cortex, 95: 104-118 

 

This work has been presented as on oral communication in the Brain Stimulation and Imaging 

Meeting (24 and 25 june, 2016, Geneva, Switzerland): 

PM Hilt, E Bartoli, E Ferrari and A D’Ausilio. The role of the motor cortex in action observation: a 

cTBS study 
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(a) Introduction 

Action execution and action observation evoke similar activities in the human brain (Rizzolatti and 

Sinigaglia 2016). However, there is a considerable debate around the specificity and purposes of 

action observation-evoked motor facilitation (D’Ausilio, Bartoli, and Maffongelli 2015a). 

Dozens of studies have been published using Transcranial Magnetic Stimulation (TMS) and Motor 

Evoked Potentials (MEPs) to investigate how modulations of corticospinal excitability (CSE), during 

action observation, reflect action execution features (Fadiga et al. 1995; Fadiga, Craighero, and 

Olivier 2005; Naish et al. 2014). Some studies show that MEPs are modulated by observation of low-

level motor features, such as kinematic features (e.g. fingers aperture during grasping action, 

Gangitano et al., 2001), EMG temporal coupling (Borroni et al. 2005; Cavallo et al. 2012) or forces 

(observation of lifting of objects of different weight, Alaerts et al., 2010; Senot et al., 2011). Others 

works report higher level modulations, such as action goals (Cattaneo et al., 2009, 2013; high-level 

features). For instance, MEPs modulations do not seem to depend on the effector used in the 

observation of the same object grasping goal (Senna, Bolognini, and Maravita 2014; Finisguerra et 

al. 2015; Borroni and Baldissera 2008), suggesting their independence from low-level movement 

features. Lastly, studies trying to separately analyse these aspects, highlight the multi-dimensionality 

of Action Observation Effects (AOEs), which may depend on several details of the experimental 

protocol such as instructions (Mc Cabe et al. 2014; Sartori et al. 2015), TMS trigger timing (Cavallo 

et al. 2013) and number of recorded muscles (Betti, Castiello, and Sartori 2015). External influences 

such as learning (Catmur, Walsh, and Heyes 2007; Catmur et al. 2008) or context (Brass et al. 2007) 

may modulate AOEs as well. 

However, apart from identifying key features of the AOEs, these studies rarely tested the 

reproducibility of their effects. In fact, MEPs are highly variable across time (S. Schmidt et al. 2009) 

and hugely dependent on cortical states (Klein-Flügge et al. 2013) and on spontaneous cortical 

oscillatory dynamics (Elswijk et al. 2010; Keil et al. 2014). More importantly, in many cases MEPs 

might not be the most accurate measure to explore AOEs. In fact, one basic tenet of action observation 

studies is that the visual appearance of actions is directly mapped onto one unique muscle activity 

pattern. Based on this assumption, CSE is usually recorded from few muscles at a time, during the 

observation of often complex kinematic configurations. CSE modulations are then used to build 

inferences about the functional meaning of motor activities during action observation (Naish et al. 

2014). However, it is known that the same kinematic configuration can be achieved via largely 

different underlying muscle activation patterns (Levin et al. 2003; Grasso, Bianchi, and Lacquaniti 

1998). 
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Here we suggest that the TMS-evoked kinematic pattern (Motor Evoked Kinematics, MEK) provides 

a more reliable measure of motor activities induced by action observation. This assumption is based 

on principles of redundancy and invariance during motor execution (Sporns and Edelman 1993; Flash 

and Hochner 2005; Guigon, Baraduc, and Desmurget 2007) and it takes into account the fact that the 

control of grasping actions relies upon the composition of intracortical, corticospinal, spinal and 

peripheral influences (Fetz et al. 2002) which in turn regulate the temporal-spatial coordination of 

multiple agonist and antagonist muscles. 

The functional output of the motor system can be extrapolated from TMS-induced MEK (Finisguerra 

et al. 2015; Gentner and Classen 2006; Bartoli et al. 2014). Single finger MEKs are modified by 

physical practice (Classen et al. 1998) and by action observation training (Celnik et al. 2006; Stefan 

et al. 2005; Stefan et al. 2008) thus reflecting short-term cortical plasticity. Whole-hand MEKs 

replicate the modular organization of hand functions, which are dissociable in discrete postures 

(Gentner and Classen 2006), requiring years of practice to be significantly changed (Gentner et al. 

2010). Importantly, MEKs offer a direct measure of the functional motor output, without losing its 

inherent multidimensionality. This fact may have a significant impact on how we investigate the 

nature of AOEs (D’Ausilio, Bartoli, and Maffongelli 2015a) and could clarify to what extent action 

observation and action execution share similar synergistic organization principles.  

To this end, we compared side-by-side MEPs and MEKs in a classical action observation protocol. 

Subjects observed a goal directed grasping action towards one of two simultaneously presented 

objects, requiring either a precision or a power grip. We recorded MEPs from 4 hand muscles as well 

as whole-hand MEKs at one of two possible time points during the observed reaching phase. The first 

time-point corresponds to maximal wrist acceleration, when limited cues are available to predict 

which object is going to be grasped. The second one was temporally aligned to maximal wrist 

velocity, occurring during the fingers opening phase, a moment at which the action goal becomes 

predictable (Gangitano, Mottaghy, and Pascual-Leone 2001). The experimental design replicates the 

same paradigm to evaluate the reproducibility of the AOEs. On day one, the action observation 

protocol was measured alone, on the second day the action observation protocol was repeated before 

administering continuous Theta Burst Stimulation (cTBS) over the primary motor cortex. The action 

observation was then repeated a third time after cTBS administration to evaluate a potential causal 

contribution of M1 excitability to both measures, MEPs and MEKs. Beside important considerations 

about the replicability of MEKs and MEPs, results will nourish theoretical considerations about the 

way by which action observation-induced motor facilitation reflects the functional, synergistic 

organization of the motor output. 
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(b) Material and methods 

Participants 

Fifteen volunteers (5 males, 10 females, mean age 25.4 ± 3.41 years (m±sd)) participated in the study. 

All participants were right handed (Edinburgh handedness inventory ; Oldfield, 1971), with normal 

or corrected to normal vision and no contraindication to TMS according to their personal clinical 

history. None of them reported after-TMS undesired effects. The whole experimental procedure was 

approved by the local ethics committee and was in compliance with National legislation and the Code 

of Ethical Principles for Medical Research Involving Human Subjects of the World Medical 

Association (Declaration of Helsinki). Participants gave their informed consent before performing 

the experiment and were remunerated for their participation.  

Stimuli 

During the whole experiment, subjects sat on a TMS chair (Rogue Research Inc., Montreal, Quebec), 

with their elbow flexed at 90° and their hand prone in a relaxed position. Their head was kept stable 

via a chin and a head rest. The stimuli, two video-clips of reach-to-grasp actions, were displayed 

through Psychtoolbox-3 software (PTB-3, The MathWorks Inc., Natick, MA, USA), on a computer 

screen placed in front of the subject (distance of 60 cm). Clips were recorded via a Sony 3D camera 

(Sony Corporation, Tokyo, Japan) at the format of 800x600 pixel and length of 2500ms. Each clip 

showed an actor reaching either one of two different objects, simultaneously present on a table. The 

distance between the hand resting position and the objects was about 50 cm. The two objects were a 

small sphere (diameter 2 cm; graspable by precision grip) and a large sphere (diameter 10 cm; 

graspable by power grip). The two objects were placed on a table at a small distance from each other 

(10 cm) to create an ambiguity regarding the final target of the grasping action. Actions were shown 

from a lateral perspective to maximize the visibility of hand trajectory and finger opening but making 

it difficult to predict the action goal. The two video-clips (one for each object) were selected from a 

set of 40 video-clips of the same actor reaching for the small sphere (half of the trials) or the large 

one. During these video recordings, we also captured movement kinematics and electromyography 

(EMG) of the actor. This information was used to select two movies with similar duration and similar 

kinematic features (e.g. wrist velocity and grip aperture, Figure 1B). A more detailed description of 

kinematic and EMG recording of the stimuli are available in Supplementary Material B. 
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Figure 1: Illustration of the experimental protocol, stimuli and dependent variables.  

A. Time course of the experiment across the two days, showing the 3 sessions (session 1 – day 1, 

session 2 – day 2pre-cTBS and session 3 – day 2post-cTBS) each starting with a baseline (baselinepre), 

followed by an action observation run (AO) and a second baseline recording (baselinepost). The cTBS 

protocol was applied on day 2 (between session 2 and session 3). B. Four representative frames of 

the two displayed movies (upper panel: power grip, lower panel: precision grip) and associated 

kinematic (grip aperture and index velocity). Timing t1 and t2 are represented by black dotted vertical 

lines. C. Typical recording for MEPs (four muscles: FDI, ADM, EDC and FLX) and MEKs (8 

elevation angles: thumb, index, middle finger, ring finger, 5th finger, index knuckle, 5th finger 

knuckle, and wrist). In the present study, we used the peak to peak amplitude for both measures. 

 

Procedure 

All subjects completed three experimental sessions over two different days (Figure 1A). During the 

first day, they performed one experimental run of the action observation protocol (session 1 – day 1). 

In the second day, the participants completed two experimental runs of the same action observation 

protocol: one session before (session 2 – day 2pre-cTBS) and one after (session 3 – day 2post-cTBS) the 

application of continuous theta burst stimulation (cTBS) over the left primary motor cortex (see the 
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TMS section for more details). Each day started with the TMS mapping procedure (see the TMS 

section for more details). Each action observation run started with 15 baseline trials with the subject 

at rest (baselinepre). After the baseline, subjects completed 60 action observation trials (30 trials for 

each object type, precision and power), followed again by 15 baseline trials (baselinepost). Each action 

observation trial began with a fixation cross on the computer screen. After an inter-trial interval 

(varying from 8 to 12 seconds) the fixation cross disappeared and the movie started. In one third of 

the trials, subjects were asked if the action just presented was the same as the previous one (to monitor 

attention). The two first sessions lasted about 30 minutes, and the third session lasted about 50 

minutes, including subject preparation, debriefing, and cTBS application (only for the third session). 

On average the time elapsed between session 1 and 2 was 6 days (+/1.2 days (STD)). The time of the 

day was kept as constant as possible: it was the same for 10 subjects, while for the remaining 

participants largest difference was 3 hours. 

TMS, EMG and motion capture 

EMG signals were recorded with a standard tendon-belly montage (Ag/AgCl electrodes), on four 

right intrinsic and extrinsic hand muscles: First Dorsal Interosseus (FDI), Abductor Digiti Minimi 

(ADM), arm Flexor Digitorum Superficialis (FLX), Extensor Digitorum (EDC). Data was amplified 

via a wireless electromyography system (ZeroWire EMG, Aurion, Italy), with a band pass between 

10-1000Hz. Analog to digital conversion was done via a dedicated board (Power1401 CED, 

Cambridge Electronic Design Limited, Cambridge, England) at a sampling rate of 2kHz. Right arm 

TMS-evoked movements were measured via a passive motion capture system (VICON, Oxford, UK) 

with 9 near infrared cameras with an acquisition frequency of 100Hz. Nine reflective markers were 

attached on the right hand. Markers were respectively on the nail of the thumb, nail of the index, nail 

of the middle finger, nail of the ring finger, nail of the 5th finger, ulnar styloid, radial styloid (thumb 

knuckle), index knuckle, 5th finger knuckle (Figure 1C). TMS was applied using a Magstim 200 

stimulator (Magstim Company, Whitland, UK) and a 70 mm figure of eight coil. Coil position was 

determined at the beginning of session 1 (day 1) and 2 (day 2pre-cTBS) based on standard procedures 

(Rossini et al. 1994; Rossini et al. 2015) to define the optimal coil location for the muscles of interest. 

In this case, coil position and orientation was optimized to achieve reliable MEPs on all recorded 

muscles, at the lowest possible intensity. Resting Motor Threshold (rMT) was determined as the 

intensity evoking at least 50µV MEPs in all the four recorded muscles, at least 5 times out of 10. At 

the beginning of session 2, the active motor threshold (aMT) was also determined. The aMT was 

defined as the minimal TMS intensity evoking, in all muscles, 5 out of 10 MEPs of at least 200µV, 

during voluntary sub-maximal contraction. Once we determined the optimal coil position, we used a 

mechanical support to fix the coil position with respect to the head. The head was also constrained 
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by a chin-rest and an ark-shaped two-points support on the forehead and on the right lateral side of 

the head. We additionally marked the coil outline on the head of the participant (five small marks 

where drawn directly on the skin with an ink marker to match coil position and orientation). An 

experimenter was standing behind the participant for the whole duration of the experiment to control 

that the coil was not displaced at any time with respect to the optimal location identified. TMS was 

delivered during an approximately equal amount of muscles contraction (all four muscles; 30% 

maximal) lasting 2s and followed by 8-12s of rest. Muscle contraction onset was prompted by a tone 

sound and was monitored on a screen by the experimenter and the subject, via continuous visual 

feedback. Between session 2 (day 2pre-cTBS) and 3 (day 2post-cTBS) we applied a cTBS protocol over the 

left primary motor cortex. The cTBS protocol consists of a series of TMS trains (three pulses at 50 

Hz) repeated every 200ms for 40s (total of 600 pulses) and it was applied at an intensity of 80% of 

the aMT (Huang et al. 2005). During the baseline and the action observation protocol, the intensity 

of stimulation was set at 120% of the rMT. During baseline trials, TMS was delivered at random 

intervals (ranging between 8-12s) while subjects were asked to rest and relax. During action 

observation trials a single TMS pulse was delivered on each trial at one of the two possible time 

points (60 total trials, with 15 pulses for each combination of the two object types with the two 

stimulation time points; Figure 1B). The first stimulation time point (t1) corresponded to maximal 

arm transport acceleration, 250ms from the start. This time point was chosen to offer very little visual 

information to disambiguate which object was going to be grasped. As shown in Supplementary 

Material B (Fig. B.2), at timing t1 (peak acceleration) few differences were visible in the main 

parameters of the kinematics of the actor (grip aperture, velocity, acceleration, fingers kinematics). 

The video-clips used as stimuli were chosen specifically to be as similar as possible in the early phase 

of reaching. The second stimulation timing (t2) was delivered at maximal transport velocity, 500ms 

from the start. At this time point a significant amount of visual information about the observed 

movement is available and this also corresponds to maximal CSE modulation (Gangitano, Mottaghy, 

and Pascual-Leone 2001). In total, 30 trials for each of the two timings were recorded (15 per grip 

type). 

Data analysis 

Preprocessing. The data collected (EMG, motion capture and behavioral responses) were processed 

with custom software written in Matlab (Mathworks, Natick, MA). From EMG recordings, we 

computed peak-to-peak maximal amplitude of each MEP for all four muscles, on a variable-length 

window, after the TMS pulse. The exact window length was set separately for each subject and 

muscles by averaging all trials in all conditions. This procedure ensures that the window of peak-to-

peak computation is tailored to the specific MEPs morphology (Figure 1C). Motion capture data were 
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first low-pass filtered using a digital fifth-order Butterworth filter at a cutoff frequency of 20Hz. We 

then computed 8 elevation angles (Figure 1C): (1) from radial styloid to nail of thumb, (2) index 

knuckle to nail of index, (3) index knuckle to nail of middle, (4) 5th finger knuckle to nail of ring, (5) 

5th finger knuckle to nail of 5th finger, (6) ulnar styloid to radial styloid, (7) ulnar styloid to index 

knuckle, (8) ulnar styloid to 5th finger knuckle. Elevation angles are defined by the angle of each 

segment with the vertical axis. This measure represents not just the displacement of a unique finger, 

but rather its movement with respect to the movement of the hand and is comparable to previous 

investigations using inductive sensors (Gentner and Classen 2006). Elevation angles were then low-

pass filtered (Butterworth filter at a cutoff frequency of 20Hz). To account for slight changes in the 

initial hand position, we normalized elevation angles, at each trial level, by the pre-stimulation mean 

amplitude (500 ms period before TMS). After this pre-processing, the peak-to-peak amplitude of each 

angular displacement was used to define MEKs. Outliers’ values, exceeding 2 standard deviations 

(SD) from the average of each subject, were discarded (around 5% of trials). In addition, MEPs and 

MEKs data exhibiting excessive muscle activity prior to the TMS pulse within each experimental 

session were removed from further analysis (>3 SD; MEPs: 1% of trials, MEKs: 3% of trials). Finally, 

MEPs and MEKs individual trials values were normalized on the basis of the average of the baselinepre 

for each session and each subject separately. 

Permutation tests. Permutation test is a class of randomization test, based on the computation of the 

values of the statistical test after all possible randomization of the labels between the compared 

datasets. Contrary to parametric statistics, these tests do not depend on priors or on the form of the 

populations sampled, and showed more reliability in case of violations of these foundational 

assumptions (Byrne 1993; Hunter and May 2003). Randomization techniques, such as permutations 

test, are particularly relevant for cognitive/experimental psychology relying on small samples (Byrne 

1993; Hunter and May 2003; Killeen 2005), situation in which they outperform the classical 

parametric approaches (Ludbrook and Dudley 1998; Nichols and Holmes 2001). Thus, permutation 

test, as a conservative strategy, are becoming the method of reference in EEG, MEG and fMRI studies 

(Eklund, Nichols, and Knutsson 2016; Maris and Oostenveld 2007; Nichols and Holmes 2001; 

Pantazis et al. 2005; Singh, Barnes, and Hillebrand 2003). For these reasons, permutation tests are a 

well-suited tool for the investigation of AOEs via TMS and we present only the statistic values 

reported by this technique (results from parametric tests can be found in Supplementary Material D). 

Comparing two datasets A and B with permutation tests, an absence of significant differences 

suggests that, the labelling of the data under investigation could be considered as arbitrary and that 

the same data would have arisen whatever the experimental condition is. The method generates 

shuffled data sets by randomly permuting the labels associated to the conditions and estimating the 
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sampling distribution of the test statistic under this strong null hypothesis. Repeating the process 

many times, a distribution of test statistics is obtained representing the distribution under the null 

hypothesis. Then, the null hypothesis is rejected at a significance level if the tested statistic is greater 

than the 1−α percentile of the empirical permutation distribution (where α is the significance level). 

At the end, the final p-value gives the proportion of occasions on which the data would have 

segregated into such disparate groups by chance. We performed multiple permutation tests using the 

matlab function ‘mult_comp_perm’ using 5000 repetitions. When applying permutation tests with 

multiple comparisons a correction must be performed. The "tmax" method was used for adjusting the 

p-values of each variable in the same way as Bonferroni correction does for a t-test (Blair and Karniski 

1993; Westfall and Young 1993). 

Statistical analysis. We performed four different groups of multiple comparisons using two-tailed 

corrected permutation test on all variables (4 MEPs and 8 MEKs). (1) Generic attentional effects: the 

first analysis was aimed at evaluating non-specific action observation or attentional effects. 

Specifically, we analysed the temporal evolution of our dependent variables where no AOEs are 

expected (baselinepre trials vs. baselinepost vs. AO trials with stimulation at t1 in both grasp-type 

conditions (t1power&precision)). All possible comparisons between these 3 conditions were run for session 

1 and 2 separately (day 1 and day 2pre-cTBS). (2) Action observation effects: the second analysis was 

directed to the investigation of AOEs. For this purpose, we ran multiple permutation tests to compare 

the grasp-type conditions (precision and power) and the two timings (t1 vs. t2). For each pre-cTBS 

session separately (day 1 and day 2pre-cTBS), all possible comparisons between these 4 conditions were 

performed. (3) Effects of cTBS on M1: the third analysis was performed to evaluate the effect of 

cTBS on baseline trials (pre-post cTBS effects on all MEPs and MEKs). Since the effect of cTBS has 

been reported to be highly variable across participants (Huang et al. 2005; Palmer et al. 2016; Ridding 

and Ziemann 2010; Vallence et al. 2015; Vernet et al. 2014; Hamada et al. 2013), we also show the 

effect of cTBS, on corticospinal excitability, at the single subject level as a separate piece of 

information (see Figure A.1 in Supplementary Material A). At the group level, we ran a simple two-

tailed permutation test on each variable. At the subject level, we ran a series of paired two-tailed t-

tests, between the measures recorded at rest before the cTBS protocol (baselinepost – day 2pre-cTBS) and 

the ones recorded at rest 5 minutes after (baselinepre day 2post-cTBS). (4) Effect of cTBS on AOEs: the 

last analysis was performed to evaluate the change in the AOEs following cTBS application. We ran 

multiple permutation tests to compare the grasp-type conditions (precision and power) on timing t2, 

between the two sessions (day2 pre-cTBS, day2 post-cTBS). All possible comparisons between these 4 

conditions were performed. This analysis was repeating two times: (1) in normalizing by the 

baselinepre of each session, (2) in normalizing by the baselinepre of the session 2 (day2 pre-cTBS). 
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Principal Component Analysis. A Principal Component Analysis was used to investigate the 

modulation in the whole hand pattern of movement elicited by TMS. This method is classically used 

as an index of movement coordination evaluation (Paizis et al. 2008; Berret et al. 2009; Daffertshofer 

et al. 2004; Hicheur, Terekhov, and Berthoz 2007) and has already been employed in previous 

investigations on TMS-evoked movements (Gentner and Classen 2006). This procedure uses an 

orthogonal transformation to convert selected variables into a set of new variables, less numerous, 

linearly uncorrelated and named principal components. These new variables are the results of linear 

combination of the initial variables explaining the maximal variance of the dataset. This operation 

can be thought as an efficient manner to reveal the hidden internal structure of a multivariate dataset 

in a way that best explains the variance in the data. As done by (Gentner and Classen 2006), we 

defined for each trial a posture vector formed by the value of the eight elevation angles at a precise 

time-point. This time-point was computed as the time where the absolute sum of joint angles (relative 

to baseline) reached a maximum in the temporal window from 0 to 150ms after the TMS pulse. 

Separate PCAs were performed for each participant and for each condition on a matrix M, composed 

of m=30 rows (number of trials for each grasp type) and n=8 columns (number of angles). Each 

column Mi (1≤i≤n) of M was centered and normalized. Based on this transformation, the covariance 

matrix of M was computed and orthonormally diagonalized to obtain the matrix of the eigenvectors. 

Eigenvectors were then reordered in a decreasing order based on the value of the associated 

eigenvalue. This new matrix, denoted W (formed by the columns (wij)i≤1,j≤1) contained the weighting 

coefficients or loadings associated to the principal components. Then, the principal components 

(denoted by PC), are defined by the following linear combination: PC = MW. Deduced from this, the 

first PC is obtained by the following equation: 

 

The first eigenvector (associated to the first principal component) represents the direction of the 

maximum variance. The ratio between the first eigenvalue and all the eigenvalues gives a number 

between 0 and 1 (converted in percentage and reported as PC%). Expressed at each subject level, 

variance explained by the first PC captures the amount of “invariance” between movements across 

trials. Functionally speaking, a high PC% value means that markers movement are dependent and 

suggest a grouped control of the variables instead of an individual control of each joint. 

From this computation, we analysed across subjects the number of components necessary to obtain a 

PC%≥90, and the PC% value for a number of 3 and 4 components (average number of components 

found across subjects). We first ran multiple permutation tests defined similarly to the three analyses 
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performed on MEPs and MEKs (see 2.5.3 Statistical Analysis: Generic attentional effects, Action 

Observation Effects and Effects of cTBS over M1). These computations showed no significant effect 

and interaction for any variable. However, since PCA analysis requires a large amount of data 

(Gentner and Classen 2006), this absence of significance was expected. We then performed a second 

analysis by grouping together trials belonging to the two grasp types (precision and power) in order 

to increase the number of observations. Multiple one-tailed permutation tests were then run to 

compare baseline vs AO trials (baseline, t1, t2) within and between all sessions (day1, day2pre-cTBS, 

day2post-cTBS). 

 

(c) Results 

In the following section, we present the modulations observed on the MEPs for the 4 recorded muscles 

(FDI, ADM, FLX, EDC) and on the MEKs for the 8 elevation angles (thumb, index, middle, ring, 5th 

finger, thumb knuckle, index knuckle, and 5th finger knuckle), in function of the different 

experimental conditions: timing of TMS pulse (t1, t2), observed grip type (power, precision) and 

sessions (day 1, day 2pre-cTBS, day 2post-cTBS). 

We will first present the generic modulation induced by the observation of an action. In a second part, 

we will investigate the specific modulation of MEPs and MEKs related to grip type (power vs 

precision) before cTBS application (day 1 and day 2 pre-cTBS). Then we will describe the effect of cTBS 

(day 2post-cTBS) on the previously observed modulations. To finish we will analyse modularity of TMS-

evoked movements, by applying PCA data reduction to the MEKs data, to explore how these 

coordination patterns are affected by action observation and cTBS application. For graphical reasons, 

we present in this section only the principal actors of the movement. The additional variables 

modulations are shown in Supplementary Material C. 

Generic attentional effects 

These analyses focused on changes of MEPs and MEKs measures that cannot be attributed to specific 

AOEs (i.e. differences in the observed grasping movements), but rather to a generic modulation 

related to action observation or attentional effects. The permutation test highlighted a generic action 

observation effect in the first and second session (day 1 and day 2pre-cTBS) on the MEPs from all 4 

muscles, by showing an increase of the MEPs recorded at timing t1 precision&power with respect to 

baselinepre (p<0.05; Figure 2). On the MEKs, this effect appeared on the index in the day 2pre-cTBS only 

(p=0.013; Figure 2). In addition, an increase from baselinepre to baselinepost appeared for FDI 

(p=0.007) and FLX (p=0.001) on day 2pre-cTBS. Altogether, MEPs measures displayed stronger generic 

attentional-related effects with respect to MEKs measures.  
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Figure 2: Generic attentional effects on MEPs and MEKs amplitude. 

Mean and standard error for the four muscles (FDI, ADM, FLX, and EDC) MEPs and three elevation 

angles MEKs (thumb, index and 5th) are shown as a percentage (%) of the average of baselinepre on 

the y-axis. The two sessions are stacked vertically for each measure (day 1 on top, day 2pre-cTBS on 

bottom). The baselinepre level is represented by the low horizontal bar (100%). The 2 phases 

contrasted (timing 1power&precision, baselinepost) are shown on the x-axis. Significant differences 

(p<0.05) with baselinepre are represented by an asterisk in the top of the value, between the two 

phases by a horizontal segment surmounted by an asterisk. The Y-axis scale is the same within 

variables (MEPs [90 to 210%], MEKs [60 to 180%]). X-axis labels are constant across variables 

and are reported on for the first variable (FDI). 

 

Action observation effects 

These analyses focused on contrasting the specific modulations induced by the observation of the two 

grasping actions (i.e., the classical AOEs). The permutation test highlighted a grasp-type related 

modulation at timing t2 (i.e. mirror-like effect; Figure 3) on EDC MEPs (day 2pre-cTBS: p=0.028) and 

thumb MEKs (day 1: p=0.043; day 2pre-cTBS: p=0.014). Therefore, the thumb MEKs tracked the 

expected AOEs reliably across sessions, whereas the MEPs result was not present in the first session. 

In addition, the contrast between the two timings revealed an increase from t2 power to t1 power (p=0.028) 
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and t1 precision (p=0.048) on day2 pre-cTBS, and of the index MEKs (precision, day 1: p=0.001) at timing 

t1 with respect to timing t2 (Figure 3). 

 

 

Figure 3: Action observation effects on MEPs and MEKs amplitude. 

Mean and standard error of the four muscles (FDI, ADM, FLX, and EDC; panel A) and MEKs 

(thumb, index and 5th; panel B) expressed as a % of the average of baselinepre, separately for session 

(day 1, day 2 pre-cTBS), timing (t1, t2), and grasp type (precision (prec), power (pow)). Significant 

differences are represented by an asterisk (p<0.05). X-axis labels are constant across variables 

(referred to the first panels ‘FDI’ and ‘thumb’). 

 

Effect of cTBS over M1 

This analysis aimed at verifying the general efficacy of the cTBS protocol in inhibiting TMS-evoked 

responses at rest (baselinepre and baselinepost). On average, cTBS reduced the baseline MEPs 

amplitude of 19% for FDI, 32% for ADM and FLX, and 28% for EDC (Figure 4). Permutation tests 

showed a significant effect on FLX (p=0.008) and EDC (p=0.035) (Figure 4). On MEKs, an increase 

of amplitude following cTBS was observed for the thumb (37%), index (10%), and thumb knuckle 

(15%) while a decrease was found for the middle (19%) and 5th finger (20%). No change (<5%) was 

noticed for ring, index knuckle and 5th finger knuckle (Figure 4). None of these MEKs modulation 

are significant after permutation tests. In addition, the effect of cTBS at the subject level, on EDC 

MEPs and thumb MEKs can be found in Supplementary Material A (Figure A.1). 
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Figure 4: Effects of cTBS on baseline MEPs and MEKs. 

For each graph, the first point (to the left) represents the mean and standard error of the 15 baseline 

trials recorded before cTBS (pre-cTBS). The second point (to the right) represents the mean and 

standard error of the 15 baseline trials recorded after cTBS (post-cTBS). Asterisks denote significant 

differences (p<0.05). X axis labels are constant across variables (referred to the first panel ‘FDI’). 

 

Effect of cTBS on AOEs 

This analysis focused on the inhibitory effect that a cTBS stimulation over the primary motor cortex 

has on both MEPs and MEKs AOEs, by examining the AOEs after the cTBS protocol (day 2post-cTBS). 

On day 2post-cTBS, no significant AOEs modulations (precision vs power and t1 vs. t2) were found for 

MEPs and MEKs (p>0.05; Figure 5). As shown in 3.2, a significant AOEs modulation was found 

only for thumb MEK (p=0.007) and EDC MEP (p=0.023). The exact same significant modulations 

were found for the two types of normalization. These results show that the cTBS protocol affected 

the previously reported AOEs on both the MEPs and MEKs.  

 

 

Figure 5: Effects of cTBS on AOEs. 

Mean and standard error of EDC MEP (A) and thumb MEK (B), as a function of grasp type (precision 

(prec), power (pow)) at timing t2, before (left side) and after (right side) cTBS protocol over M1. All 

values are expressed as a % of the average of baselinepre for each session. Asterisks denote significant 

differences (p<0.05). X axis labels are constant across variables (referred to the first panel ‘EDC’). 
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Movement modularity evaluation 

The PCA analyses were employed to investigate if the whole hand pattern of movement coordination 

elicited by TMS was altered by action observation and by cTBS over the primary motor cortex. On 

average, the first four PCs accounted for 93%, 93.1%, 92.5% of the variance in day1, day2pre-cTBS and 

day2post-cTBS respectively, with the first two accounting for 74.1%, 74.7%, 73.9% of the variance. This 

result is in agreement with previous reports showing, with a larger amount of data, that the first four 

PCs accounted for 89.3% of the variance, with the first two accounting for 72.6% (Gentner & Classen, 

2006). Furthermore, we intended to measure if cTBS altered the AOEs and baselines. We ran the 

permutation tests to contrast baseline vs AO trials (baselinepre&post, t1power&precision, t2power&precision) 

within and between sessions (day 1, day 2pre-cTBS, day 2post-cTBS). A significant PC% reduction of 

baseline day 2post-cTBS compared to baseline in day 1 (p=0.015) and day2pre-cTBS (p=0.049) was 

revealed (Figure 6). Moreover, a significant PC% increase at t2power&precision compared to baseline was 

found on day 2post-cTBS (p=0.029). These results suggest that the cTBS affected the organization of 

coordinated hand movements at baseline, while the action observation partially restored it.  

 

 

Figure 6: Whole hand configuration changes across sessions and conditions. 

PC% values of the fourth first components (y-axis), computed on the 8 elevation angles, are shown 

for baseline and AO trials (baseline, timing t1 and timing t2) for the three sessions (day 1, day 2pre-

cTBS, day 2post-cTBS). Asterisks denote significant differences (p<0.05). 

 

(d) Discussion 

The present study evaluated, side-by-side, motor evoked potential (MEPs) and TMS-evoked 

kinematics parameters (MEKs) to characterize action observation effects in humans. The 

experimental protocol consisted in a classical action observation task (i.e. Gangitano et al., 2001), 
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involving reaching-grasping towards either one of two objects with different sizes (thus affording 

power or precision grip). MEPs amplitude during all action observation conditions increased with 

respect to baseline. This increase is associated to generic action observation because it is not action-

specific (i.e. precision vs. power grasping; Fadiga et al., 1995; Strafella and Paus, 2000; Aziz-Zadeh 

et al., 2002; Clark et al., 2004). Therefore, it cannot be excluded that in our experiments MEPs 

modulation is driven by a more general attentional grab due to the increased saliency of moving visual 

stimuli. On the contrary, this effect did not appear on MEKs, suggesting that these measurements are 

less prone to attentional modulations. 

The critical modulation that we were expecting was related to the grip type (precision vs. power grip) 

particularly at the later stimulation timing (t2, as opposed to the earlier timing t1, when far less action-

specific visual cues are available). As we found in our data, larger responses for precision grip were 

more likely to occur at t2. Precision grip requires indeed more accuracy in finger positioning and 

consequently greater control on muscle activity during execution (Marzke 1997; Gribble 2003). 

Moreover, as shown by cortical stimulation and recording experiments performed on monkeys (Fluet, 

Baumann, and Scherberger 2010; Rizzolatti et al. 1988) and humans (Pistohl et al. 2012), precision 

grip has a larger cortical representation than power grip.  

Our results showed a clear difference between the two kind of measures. While MEPs at t2 increased 

only for finger extensors and only in one session, a significant MEKs modulation at t2 was found for 

the thumb elevation angle in both recording sessions. This major involvement of the thumb could be 

related to its fundamental role in grasping tasks (Cotugno, Althoefer, and Nanayakkara 2016) and to 

the larger probability in evoking thumb movements via TMS stimulation (Gentner and Classen 2006).  

For both measures (extensor muscle MEPs, thumb MEKs), after the application of cTBS over M1 

significant AOEs modulation was not observed anymore. This result do not match with previous 

reports showing no change in CSE-based AOEs (Avenanti et al. 2007) or in behavioral execution-

adaptation effects (Cattaneo and Barchiesi 2011), after the application of cTBS over M1. While 

contrasting with previous findings, our results are in line with the recent demonstration that M1 cTBS 

alters behavioral performance in an action observation task (Palmer et al. 2016). Further studies will 

be necessary to fully understand the role played by M1 in AOEs, especially in light of the discovery 

that in non-human primates, neurons with mirror-like properties have also been found in the primary 

motor cortex (Tkach, Reimer, and Hatsopoulos 2007; Dushanova and Donoghue 2010; Kraskov et 

al. 2014). 

Although the use of MEKs requires a greater amount of data processing and the selection of the 

kinematic parameters of interest (i.e., elevation angles in the present work; Gentner and Classen, 

2006), we demonstrated that the use of TMS-evoked thumb kinematics provides a greater 
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reproducibility of AOEs. Importantly, we evaluate AOEs via statistical methods that, by incorporating 

biophysically motivated constraints in the test statistic, drastically increase sensitivity of the statistical 

test (Maris and Oostenveld 2007). Strikingly, the recording of MEPs alone did not show the 

emergence of consistent AOEs (Fadiga et al. 1995; Fadiga, Craighero, and Olivier 2005; Naish et al. 

2014). Although reproducibility issues are becoming more and more important (Kobayashi and 

Pascual-Leone 2003; Mills 1999), this is rarely verified. Our findings, together with the known 

difficulty in publishing negative results (Matosin et al. 2014; Mervis 2014), suggest that a quite 

significant number of unpublished studies did not find AOEs using classical CSE measures (i.e. 

MEPs). Although a larger number of subjects or trials might have shown effects on MEPs in both 

sessions, the critical point here is that another measure recorded in parallel (MEKs) can show the 

same AOEs twice, with the same number of trials and subjects. As a consequence, it is here more 

interesting to discuss why MEKs should be more consistent than MEPs. 

To understand why MEPs could be more affected by confounds it is important to consider some key 

experimental constraints. In action observation studies, the classical procedure consists in focusing 

on very few muscles (up to two or three) and stimulation is applied just above threshold to maximize 

response sensitivity to AOEs modulations. Recording MEPs on several muscles would require higher 

TMS intensities, to accommodate for the different thresholds and partially non-overlapping 

representations. Increasing stimulation intensities though, would sample from different regions of the 

recruitment curve in each individual muscle (Devanne, Lavoie, and Capaday 1997), and this is known 

to affect MEPs sensitivity to AOEs (Loporto et al. 2013). Therefore, recording from very few muscles 

is primarily driven by technical limitations in measuring reliable CSE. This is a potential reason for 

which we do not find a clear replicable modulation on the MEPs, while we do on the MEKs. 

Although the solution may seem to record less muscles, this is a sub-optimal choice to explore AOEs 

for goal-directed actions. In fact, in a realistic scenario (e.g. movement execution to reach an object), 

small postural changes (such as those caused by a change in height of the table) have a dramatic 

influence on the temporal evolution and recruitment of the same muscle in the same action towards 

the same goal. The same amount of EMG activity in one muscle is present in many different actions 

and is not necessarily predictive of the action goal. For example, finger extensors activation while 

lifting an object is in principle against the goal of applying forces onto an object, but it is necessary, 

via co-contraction with the flexors, to stabilize fingers and wrist joints. Therefore, recording from 

finger extensor only, would not allow us to discriminate the act of opening or closing fingers. In 

general, during action execution, little discriminative information can be extracted from the activity 

of one (or few) muscle(s)). 
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Many AOE studies instead, used intransitive (non goal-directed) simpler movements, involving few 

muscles, such as the abduction-adduction of the index or the 5th finger (Maeda, Kleiner-Fisman, and 

Pascual-Leone 2002; Urgesi et al. 2006; Catmur, Walsh, and Heyes 2007). This situation offers a 

direct one-to-one mapping between cortical recruitment, muscle activities and observed movement 

kinematics. At the same time, these experimental settings may offer a limited insight about the neural 

mechanisms at play during naturalistic action observation. Nevertheless, these simplified action 

observation protocols were used to debate about the origin of mirror-like activities in general (Cook 

et al. 2014). Specifically, if AOEs are the by-product of sensorimotor associative learning or do they 

represent a genetic adaptation to fulfil a specific socio-cognitive function? (Catmur, Walsh, and 

Heyes 2007; Barchiesi and Cattaneo 2013; Cavallo et al. 2014).  

We concur that understanding the relationship between AOEs and the plastic modulations induced 

by action observation learning is important. In fact, typical AOEs studies propose long sessions of 

repetitive action observations, which is the exact same protocol used to induce observational learning 

effects (Celnik et al. 2006; Williams and Gribble 2012; Stefan et al. 2005; Stefan et al. 2008), thus 

creating a fundamental confound between these two components. Here we show a baseline increase 

from pre to post-action observation on the MEPs (see “3.1 Generic attentional effects”). Crucially, 

this effect never appeared on MEKs, indicating greater independence from these learning-induced 

changes. The reason could be that MEKs convey a richer description of the multidimensional nature 

of the descending volley. In fact, whole-hand TMS-evoked motor synergies more than muscle-level 

modulations, have been shown to be relatively robust to long term motor learning (Gentner et al. 

2010). It remains to be seen whether MEKs during goal-directed action observation are affected by 

short-term counter-mirror observational training, as it was the case for CSE in simple intransitive 

movement observation (Catmur, Walsh, and Heyes 2007). 

More importantly from a theoretical point of view, similar kinematic patterns (and thus visual 

appearance) may very well be associated to quite different muscle recruitment over time and space. 

Redundancy and invariance principles in action execution (Guigon, Baraduc, and Desmurget 2007; 

Sporns and Edelman 1993; Flash and Hochner 2005), suggest that the functional kinematic output, 

more than the activities of (few) muscles, provides the best action goal description. These 

considerations are based on behavioral observations of how kinematics relates to (multi-) muscle 

activity. At the same time, if we look at the anatomical targets of the descending corticospinal tract, 

its role and function becomes clearer. In fact, direct corticospinal projections largely target the dorsal 

horns at the spinal level, meaning that muscle activity is mediated by divergent interneuronal 

connectivity (Jankowska 1992; Nielsen 2016). Projections to the ventral horn, which are a relatively 

new product of evolution, instead target different spinal motor nuclei, innervating different muscles 
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at the same time (Fetz and Cheney 1980; Porter and Lemon 1993). It is for these reasons why MEKs 

may be better suited to measure goal-directed AOEs. MEKs measure the effect of the synergistic 

activity of multiple muscles producing coordinated movements, which are driven by intracortical, 

corticospinal, spinal and peripheral influences. 

When we move to the level of whole-hand coordination, we know it is neither based on muscle by 

muscle nor on single finger movement control. In fact, hand control relies on the temporo-spatial 

grouping of muscle activities that is further constrained by joint movement biomechanics. Thus, to 

consider the organization of the motor system, AOEs should be evaluated even beyond separated 

joint movements. To do so we performed a PCA on the TMS-evoked posture vectors composed by 

all joints movements. As previously found, a small set of three to four PCs accounted for much of the 

data variance of TMS-evoked movements (Gentner and Classen 2006). Whole-hand coordination, 

however, did not show any modulation for grip type observation. This can be explained by the 

relatively small amount of data-points we could use to extract uncorrelated whole-hand synergies (i.e. 

PCs). Previous investigations have indeed shown that at rest, single pulse TMS evoked a quite large 

number of different postures (Gentner and Classen, 2006). Despite this, we found a significant 

modulation of whole-hand coordination following cTBS application. Our data revealed a global 

disturbance of whole-hand coordination due to cTBS-driven injection of noise in the organization of 

hand movements (Miniussi, Harris, and Ruzzoli 2013). The same analyses revealed also a significant 

increase in coordination between action observation (at timing t2) and baseline recordings after the 

application of cTBS. This finding suggests that action observation partly countered the interfering 

effect of cTBS over primary motor cortex.  

In conclusion, we showed in this study that MEKs act as a more effective measure than MEPs in 

describing the motor activities triggered by action observation. Specifically, MEKs seem to be more 

robust to the two critical confounds that can occur when investigating AOEs: observational learning 

and attentional modulations. These differences are in agreement with other studies showing that while 

MEKs discriminate between observed actions with different effectors, while MEPs did not 

(Finisguerra et al. 2015). This lack of sensitivity could ultimately derive from the small amount of 

information we can extract from MEPs recorded from one muscle. Neural control of arm and hand 

movements is the consequence of many adjustments at the muscular level (Bernstein 1967; Bizzi et 

al. 1984; Gribble 2003), following possibly a synergistic organization (D’Avella et al. 2006; Gentner 

and Classen 2006; Santello, Baud-Bovy, and Jörntell 2013; Leo et al. 2016). In the present study, we 

demonstrate that recording the net motor output is substantially less ambiguous and more robust in 

describing the nature of AOEs. The shift from a single muscle to a functional output perspective 

frames the investigation of AOEs within current models of action control.  
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(e) Additional data and analyses 

A: Study 1.1: Evaluation of cTBS effects at the single subject level 

 

Figure A: Evaluation of cTBS effects at the single subject level. 

Bars represent, for each subject, the ratio between the average of the 15 baselinepost for EDC MEPS 

(light grey) and thumb MEKs (dark grey) in session 2 (baselinepre-cTBS) with the 15 baselinepre 

recorded in session 3 (baselinepost-cTBS). Values smaller than 1 indicate a reduction of amplitude in 

post-cTBS baseline recordings, indexing the expected inhibitory effect of cTBS on each measure. 

Asterisks denote a subject-wise significant cTBS effect (t-test; p<0.05). Large Inter-subject variability 

of cTBS effects is also supported by studies and reviews (Ridding and Ziemann 2010; Vernet et al. 

2014; Vallence et al. 2015)  

 

B: Study 1.1: Stimuli kinematic and muscular description 

In order to choose the most relevant stimuli, we recorded 40 repetitions of an actor performing reach-

to-grasp movements toward the two objects (small and large sphere, 20 movements each, Figure 1B 

of the main text). We selected one movie per grip type (power and precision) based on duration, wrist 

velocity, wrist acceleration and grip aperture. The following section shows a detailed description 

(EMG and kinematic) of the 40 repetitions of the movements and of the two stimuli selected. 

 

Kinematic: By analyzing the trajectories for the two movements selected as stimuli in the present 

work, it is possible to notice that the thumb elevation angle increased more in precision grip than 

power grip, and that this change appeared late relatively to timing 2. The precision grip movement 

was associated to a smaller displacement of the index at both timing 1 and 2. The index knuckle, 

reflecting wrist movement, was unchanged in function of grip type (Figure A.2). 
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Figure B1: Stimuli kinematic features. 

Wrist velocity and acceleration and angular trajectories of thumb, index, 5th finger and index knuckle 

recorded during the execution of the two movements selected as stimuli, showing the power grasp 

(pow) in black and precision (prec) in green. The two vertical dashed lines denote the two time-points 

(t1 and t2) selected to deliver the single-pulse TMS during the action observation part of the 

experiment. 

 

By analyzing the average across the 20 repetitions of the two movements (power and precision), the 

kinematic parameters did not show any clear modulation related to grip type around timing t1 and t2 

(Figure A.3). It is important to note that one marker (thumb knuckle) was missing in the actor 

kinematic as compared to the MEKs recording. To compute the thumb elevation angle we then used 

the segment from the thumb apex to index knuckle (Figure A.2 and A.3). This change in computation 

could influence the trajectory showed here. 

 

Figure B2: Movement repetitions kinematic features. 

Mean and standard deviation of four elevation angles trajectories (thumb, index, 5th finger, index 

knuckle), for the 40 repetitions of the reaching movements recorded (20 precision grip, 20 power 
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grip). The power grasp is plotted in black and precision in green. The two vertical dashed lines denote 

the two timings (t1 and t2) selected to deliver the single-pulse TMS during the action observation part 

of the experiment. 

 

EMG: By analyzing the EMG data from the 20 repetitions of the two movements, EDC and FLX 

muscles revealed no clear grip-type-modulation. FDI and ADM muscles showed a difference around 

timing t2: a greater and earlier increase in amplitude when performing a reach-grasp movement 

aiming at a precision grip compare to power grip (Figure A.4A).  

By analyzing the EMG activity recorded during the execution of the two movements selected as 

stimuli in the present work, we showed that FDI activation amplitude changes depending on the grip 

type. This difference was in the opposite direction as compared to the data from the 40 repetitions, 

being increased for power grip with respect to precision grip around timing 2 (Figure A.4B). The data 

recorded from FLX and ADM also showed a modulation, with greater activity for the movement 

aimed at the power grip around timing 1. 

 

 

Figure B3: Stimuli and movement repetitions EMG recordings 

A. Movement repetitions EMG recordings. Mean and standard deviation of activation of the four 

muscles (FDI, ADM, FLX, EDC) calculated across the 40 repetitions of the reaching movements 

recorded on the actor (20 precision grip, 20 power grip). B. Stimuli EMG recordings. Muscular 

activation for the four muscles (FDI, ADM, FLX, EDC) in the two movements selected as stimuli. For 

both panels, power grasp is plotted in black and precision in green, and the two vertical dashed lines 

denote the two timings (t1 and t2) selected to deliver the single-pulse TMS during the action 

observation part of the experiment.  
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C: Study 1.1: Additional MEKs data 

 

Figure C1: Generic attentional effects on MEKs amplitude. 

Mean and standard error for the five elevation angles MEKs (middle, ring, thumb knuckle, index 

knuckle and 5th knuckle) are shown as a percentage (%) of the average of baselinepre on the y-axis. 

The two sessions are stacked vertically for each measure (day1 on top, day2pre-cTBS on bottom). The 

baselinepre level is represented by the low horizontal bar (100%). The 2 phases contrasted (timing 

1power&precision, baselinepost) are shown on the x-axis. Significant differences (p<0.05) with baselinepre 

are represented by an asterisk in the top of the value 

 

 

Figure C2: Action observation effects on MEKs amplitude. 

Mean and standard error of the five MEKs (middle, ring, thumb knuckle, index knuckle and 5th 

knuckle) expressed as a % of the average of baselinepre, separately for session (day1, day2pre-

cTBS), timing (t1, t2), and grasp type (precision (prec), power (pow)).  
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Figure C3: Effects of cTBS on baseline MEKs. 

For each graph, the first point (to the left) represents the mean and standard error of the 15 baseline 

trials recorded before cTBS (pre-cTBS). The second point (to the right) represents the mean and 

standard error of the 15 baseline trials recorded after cTBS (post-cTBS). 

 

 

Figure C4: Effects of cTBS on AOEs. 

Mean and standard error of FDI, ADM and FLX MEPs (A) and middle, ring, thumb knuckle, index 

knuckle and 5th knuckle MEKs (B), as a function of grasp type (precision (prec), power (pow)) at 

timing t2, before (left side) and after (right side) cTBS protocol over M1. All values are expressed as 

a % of the average of baselinepre for each session. 
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D: Study 1.1: Comparison between permutation test and parametric method 

 

Figure D1: Generic attentional effects on MEPs and MEKs amplitude. 

Mean and standard error for the four muscles (FDI, ADM, FLX, and EDC) MEPs and three elevation 

angles MEKs (thumb, index and 5th) are shown as a percentage (%) of the average of baselinepre on 

the y-axis. The two sessions are stacked vertically for each measure (day1 on top, day2pre-cTBS on 

bottom). The baselinepre level is represented by the low horizontal bar (100%). The 2 phases 

contrasted (timing 1pow&prec, baselinepost) are shown on the x-axis. Significant differences with 

baselinepre are represented by an asterisk in the top of the value, between the two phases by a 

horizontal segment surmounted by an asterisk (red for permutation test, blue for classical parametric 

test; p<0.05). 
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Figure D2: Action observation effects on MEPs and MEKs amplitude. 

Mean and standard error of the four muscles (FDI, ADM, FLX, and EDC; panel A) and MEKs 

(thumb, index and 5th; panel B) expressed as a % of the average of baselinepre, separately for session 

(day 1, day 2pre-cTBS), timing (t1, t2), and grasp type (precision (prec), power (pow)). Significant 

differences are represented by an asterisk (red for permutation test, blue for classical parametric 

test; p<0.05). 

 

 

Figure D3: Effects of cTBS on AOEs. 

Mean and standard error of EDC MEP and thumb MEK, as a function of grasp type (precision (prec), 

power (pow)) at timing t2, before (left side) and after (right side) cTBS protocol over M1. All values 

are expressed as a % of the average of baselinepre for each session. Significant differences are 

represented by an asterisk (red for permutation test, blue for classical parametric test; p<0.05). 
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Figure D4: Whole hand configuration changes across sessions and conditions. 

PC% values of the fourth first components (y-axis), computed on the 8 elevation angles, are shown 

for baseline and AO trials (baseline, timing 1 and timing 2) for the three sessions (day 1, day 2 pre-

cTBS, day 2 post-cTBS). Significant differences are represented by an asterisk (red for permutation 

test, blue for classical parametric test; p<0.05). 
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2. Study 2: Motor recruitment during action observation: effect of interindividual 

differences in action strategy 

 

Visual processing of other’s actions is supported by sensorimotor brain activations. Access to 

sensorimotor representations may, in principle, provide the top-down signal required to bias search 

and selection of critical visual features. For this to happen it is necessary that a stable one-to-one 

mapping exist between observed kinematics and underlying motor commands. However, due to the 

inherent redundancy of the human musculoskeletal system, this is hardly the case for multi-joint 

actions where everyone has his own moving style (individual motor signature IMS). Here we 

investigated the influence of subject’s IMS on subjects’ motor excitability during the observation of 

an actor achieving the same goal by adopting two different IMSs. Despite a clear dissociation in 

kinematic and electromyographic patterns between the two actions, we found no group-level 

modulation of corticospinal excitability (CSE) in observers. Rather, we found a negative relationship 

between CSE and actor-observer IMS distance, already at the single-subject level. Thus, sensorimotor 

activity during action observation does not slavishly replicate the motor plan implemented by the 

actor, but rather reflects the distance between what is canonical according to one’s own motor 

template and the observed movements performed by other individuals.  

 

My Contribution: protocol definition, data recording and analysis, results interpretation and 

manuscript writing 

 

This work is currently submitted in ELife: 

PM Hilt, P Cardellicchio, E Dolfini, T Pozzo, L Fadiga and A D’Ausilio. Motor recruitment during 

action observation: effect of interindividual differences in action strategy 
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(a) Introduction 

The coordination of our own actions with those of others requires the ability to read and anticipate 

what and how our partner is about to do. Indeed, when observing someone else moving, we can 

extract useful information such as future bodily displacements (Blakemore and Frith 2005; Falck-

Ytter, Gredebäck, and Von Hofsten 2006; Flanagan and Johansson 2003) or infer higher-order 

cognitive processes hiding behind those actions (Becchio et al. 2008; Soriano et al. 2018). In 

principle, knowledge about the invariant properties of movement control (Flash and Hogans 1985; 

Bennequin et al. 2009) could support inferences about the unfolding of other’s actions (Casile et al. 

2010; Dayan et al. 2007). In this regard, it has been proposed that these inferences may be based on 

a direct match between actor’s sensorimotor activations during Action Execution (AE) and observer’s 

sensorimotor activations triggered by AO (Rizzolatti and Craighero 2004; Rizzolatti, Fogassi, and 

Gallese 2001; Rizzolatti and Sinigaglia 2016). Indeed, using TMS-evoked CSE, motor recruitment 

during AO was shown to automatically mirror the sequence of motor commands implemented by the 

actor (for a review please see: (Naish et al. 2014)). 

This idea is however challenged by the redundancy that characterizes the organization of human 

movement (Kilner 2012; D’Ausilio, Bartoli, and Maffongelli 2015a; Hilt et al. 2017). The abundance 

of degrees of freedom available during AE suggests that different joint configurations, as well as 

spatio-temporal patterns of muscle activity, can equally be used to reach the same behavioral goal 

(Bernstein 1967). In this regard, the direct-matching hypothesis (Rizzolatti, Fogassi, and Gallese 

2001; Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 2016) explains inferences when a 

direct relationship exists between muscle recruitment, movement kinematics and behavioral goals 

(e.g. simple finger movements). However, it is less clear how this proposal deals with the observation 

of complex movements (i.e. multi-joint movements). In this case, any sensorimotor-based inference 

about other’s actions, amount to finding a solution to a many-to-many mapping problem.  

Here we suggest that a simpler mapping exists between behavioral goals and the lower dimensionality 

space of whole-body configurations (i.e. synergies; (Hilt et al. 2017)). In fact, although a handful of 

kinematic solutions are biomechanically valid, everyday actions (i.e. reaching for an object on the 

floor starting from a standing posture) are usually performed via a limited number of possible 

kinematic configurations of the biomechanical chain (e.g. “ankle” and “hip” strategies for postural 

control; (Berret et al. 2009; Horak and Nashner 1986)). On the top of that, each individual carry his 

own robust and yet unique way of moving (Individual Motor Signature – IMS; (Hilt et al. 2016; 

Słowiński et al. 2016)). These two properties of human motor control may lead to a new one-to-one 

mapping that is function of everyone own way of moving (individual motor strategy, IMS). Backed 
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by this, we hypothesize that while observing others’ multi-joint actions, people build sensorimotor-

based predictions by referencing what they see to the motor engrams of their own IMS. 

To verify our hypothesis, we asked naive participants to first perform and then observe a whole-body 

reaching action which could be executed with different IMSs. After characterizing subjects’ own IMS 

during execution, we measured their sensorimotor recruitment (corticospinal excitability, CSE) by 

administering single-pulse Transcranial Magnetic Stimulation (TMS) on their motor cortex while 

they observed an actor achieving the same goal by using different IMSs (i.e. the participant’s own 

IMS and a different one). CSE was measured from the cortical representation of the Tibialis Anterior 

muscle (TA) that shows a clearly dissociable pattern while executing the two IMSs.  

According to a strong version of the direct matching hypothesis, all subjects requested to observe the 

actions should mirror the TA recruitment characterizing the actor (Fadiga et al. 1995; Fadiga, 

Craighero, and Olivier 2005; Naish et al. 2014). An alternative hypothesis predicts that CSE would 

reflect, on an individual basis, a measure of the distance between own IMS and observed IMS. 

Furthermore, if sensorimotor activations are greater for little IMS distance, then it is likely that the 

motor system is computing the similarity between observed and own IMS. On the contrary, a negative 

relationship, would suggest that sensorimotor inferences about other’s goals might be built by 

computing the difference or an error measure between one’s own motor template and the observed 

movement. 

 

(b) Materials and Methods 

Participants  

Twenty right handed volunteers (11 females and 9 males; age: 24 ±5 years) participated in the study. 

Data from 1 subject was removed due to technical problems during the experiment. None of the 

participants reported neurological, psychiatric or other contraindications to TMS (Simone Rossi et al. 

2009). They had normal or corrected-to-normal visual acuity and were unaware of the purposes of 

the study. All of them gave informed consent before the experiment, which was approved by the 

Ferrara University/Hospital unified Ethics Committee and conducted in accordance with the ethical 

standards of the 1964 Declaration of Helsinki, as revised in 1983. 

Procedure and setups 

The experiment was divided into three parts. Participants were first asked to perform the action 

execution task lasting ≅5 minutes. After that, the TMS procedure during the action observation task 

started (lasting ≅30 minutes). In the last part, participants were asked to repeat the action execution 

task. These two tasks are described below. 
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Figure 7: Stimuli illustration. 

(A) Screenshots of the two AO task video-clips representing ankle and knee strategy. A single-pulse 

TMS was released at one of two different timings: t1 (start of actor movement) and t2 (end of actor 

movement) (B) Muscular activity of the actor right tibialis anterior (TA) for each motor strategy. At 

t1, actor kinematics and TA activation are similar while at t2, actor kinematics and TA recruitment 

are different across video-clips. (C) Average and standard error of normalized MEPs amplitude at t1 

and t2 when observing the ankle (red) and knee (blue) video-stimuli. No group level MEPs modulation 

was present. 

 

Action execution task  

The action execution task was replicated from a previous study (Hilt et al. 2016) investigating the 

different motor strategies when pointing towards a homogeneous surface and without a specific 

target. This protocol was chosen because it keeps free the subjects from external constraints (e.g. a 

precise point to reach) and evokes natural inter-subject variability. Participants were asked to perform 

a series of whole-body pointing movements towards a uniform opaque curtain fixed to a wooden 

frame (2.5 tall × 1.5 m large; see Fig. 1) positioned at a 15° angle with respect to the vertical. The 

surface was soft enough to prevent subjects from using it as a support when finishing the movement 

but sufficiently elastic to keep its shape and remain flat. Subjects were told that they could point at 
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any position they wanted over the surface. Starting from a standing position and at a distance of 130% 

of arm’s length from the surface, subjects had to move all body parts with the only constraint to keep 

the feet fixed and to move both arms simultaneously. The request to move the two arms together 

ensured that all markers lay approximately along the para-sagittal plane (Berret et al. 2009) to limit 

the kinematic analysis to this plane (right hemibody in 2D coordinates). All subjects were able 

perform the task. Ten trials were run before and after the action observation protocol. 

More importantly, this protocol by avoiding external constraints (e.g. a precise target to reach), allow 

subjects to execute the movement they would naturally/spontaneously use (e.g. IMS). A previous 

study using this task observed a large movement variability across subjects but low intra-subject 

variability (Hilt et al. 2016). Interestingly, subjects behaviors were a trade-off between the 

optimization of two distinct cost functions. The first strategy (named Ankle) limits mechanical energy 

expenditure but uses a kinematic configuration that may be risky for equilibrium maintenance: 

bending the body forward using mainly ankle and shoulder joints while freezing knee and hip joints 

(large center of pressure forward displacement). In muscular terms, the ankle strategy is associated 

with a pre-activation of the tibialis anterior (anticipatory postural adjustment) followed by an 

inhibition of this muscle later in the movement (see Figure 7 in red). The second strategy (named 

Knee) increases mechanical energy expenditure but uses a kinematic configuration that may be safer 

for equilibrium maintenance: substantial knee flexion and forward trunk bending associated with a 

backward hip displacement (limited center of pressure forward displacement). In muscular terms, the 

knee strategy implied an activation of lower-leg muscles (including tibialis anterior) during the 

movement (see Figure 7 in blue).  

Kinematic recordings. Whole-body movements in 3 axes (mediolateral, X; anteroposterior, Y; 

vertical, Z) were recorded using a seven cameras motion capture system (Vicon, Oxford, UK) 

sampling at 100 Hz. Eight retro-reflective markers (15 mm in diameter) were recorded. Markers were 

placed at the following anatomical locations on the right side of the body: the acromial process 

(named here “shoulder”), the lateral condyle of the humerus (named here “elbow”), the styloid 

process of the ulnar (named here “wrist”), the last phalanx of the index finger (named here “index”), 

the greater trochanter (named here “hip”), the knee interstitial joint space (named here “knee”), the 

ankle external malleolus (named here “ankle”) and the fifth metatarsal head of the foot (named here 

“toe”).  

Electromyographic recordings. Electromyography (EMG) of left Tibialis Anterior muscle (TA; 

Figure 7B) was acquired from each subject via a wireless system (Aurion, ZeroWire EMG). The TA 

muscle was selected because it plays a central role in whole-body forward reaching execution 
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(Leonard, Brown, and Stapley 2009; Stapley, Pozzo, and Grishin 1998). Before electrodes placement, 

the skin was shaved and cleaned with alcohol to obtain low impedance (< 5 kΩ). EMG signals were 

band-pass filtered (50–1000 Hz), digitized (2 kHz), acquired by a CED power1401 board and 

visualized with Signal 3.09 software (Cambridge Electronic Design, Cambridge, UK).  

Action observation task 

Stimuli. The experimental stimuli consisted in short video clips showing a lateral view of a female 

actor who executed the action following two different motor strategies, the Ankle strategy (in red, 

Figure 7) and Knee strategy (in blue, Figure 7). The kinematic data of the actor was measured as 

previously described for the Action execution task. Movement onset and offset times were defined as 

the instant at which the linear tangential velocity of the index fingertip passed respectively above or 

below 5% of the peak value obtained during the reaching movement. Duration of the two movements 

were around 1.2sec. Video-clips started 400ms before the beginning of the movement and finished 

400ms after the end of it (Figure 7B), for a total length of around 2sec. Electromyography (EMG) of 

the actor left TA (Figure 7B) and left Soleus (SO) were also acquired (for more details, see “Action 

execution task” – “Electromyography recordings”). Activities of the two muscles for each stimulus 

are presented in Supplementary Material E. 

Procedure. Subjects were seating in a comfortable armchair with their legs resting. A 17″ LCD 

computer monitor (1024×768 pixels; refresh rate 60Hz) was placed at a distance of 60 cm from their 

frontal plane. Each trial started with the presentation of a grey central fixation cross displayed on a 

black screen. After 3s, a video-clip appeared. During each video-clip a single-pulse TMS was released 

at one of two different timings. The first (t1) corresponded to the start, the second (t2) to the end of 

the movement shown in the video-clips. Defined in this way, the two timings refer to very distinct 

moments in term of kinematic and muscular activities. At t1, actor body posture is similar across 

video-clips (Figure 7A), while TA muscular anticipatory activations are present in the ankle strategy 

only (Figure 7B). By contrast, at t2 actor kinematics are different across video-clips (Figure 7A), and 

TA is inhibited in the ankle strategy while remains active in the knee strategy (Figure 7B). At the end 

of each trial, an attentional question appeared on the screen (for more details see Supplementary 

Material F). In total, 80 trials were presented: 2 video stimuli X 2 timings of stimulation X 20 

repetitions. Twenty baseline trials were recorded at rest (eyes closed, subjects imagining a relaxing 

landscape) half at the beginning and half at the end of the session. The presentation of the stimuli, the 

timing of the TMS pulses and response collection were controlled by Psychtoolbox Version 3.0 (PTB-

3), implemented in MATLAB (The MathWorks Inc., Natick, MA, USA). 

TMS and EMG recordings. Motor Evoked Potentials (MEP) were recorded with a wireless EMG 

system (Aurion, ZeroWire EMG) from the left Tibialis Anterior (TA). Before electrodes placement, 



52 

 

the skin was shaved and cleaned with alcohol to obtain a low impedance (< 5 kΩ). EMG signals were 

band-pass filtered (50–1000 Hz), digitized (2 kHz), acquired by a CED power1401 board and 

visualized with Signal 3.09 software (Cambridge Electronic Design, Cambridge, UK). A 70 mm (loop 

diameter) figure-of-eight shaped conic coil connected to a Magstim stimulator (Magstim Co., 

Whitland, Dyfed, U.K.) was placed over the right primary motor cortex with antero-posterior directed 

current orientation. As optimum scalp position was considered the location on the scalp where 

maximum amplitude MEPs in the TA were evoked at the lowest possible stimulation intensity 

(hotspot). Once the optimal site was found, the scalp was marked with a felt pen to ensure consistency 

between stimulations. The coil was secured by a lockable articulated arm (Fisso, Swiss). The resting 

Motor Threshold (rMT) was assessed by using standard protocols (5 out of 10 MEPs exceeding 50 

µV peak-to-peak amplitude), with an inter-stimulus interval of about 8 seconds. During the 

experiment, single-pulse TMS was applied with an intensity of stimulation corresponding to 120% 

of the rMT. 

Data analysis 

Kinematic data. Kinematic trajectories were low-pass filtered using a digital fifth-order Butterworth 

filter at a cutoff frequency of 10 Hz. We focused the kinematic analysis on the final posture in the 

sagittal plane (Y, Z) that described the motor strategy used by the subject. Movement onset (tstart) and 

offset (tend) time were defined as described earlier for the action video-clips. At tend, four 

intersegmental angles were computed for the four principal joints used: ankle, knee, hip, and shoulder. 

These intersegmental angles were already used to characterize the motor strategies in previous studies 

(Hilt et al. 2016; for more details see Supplementary Material G). 

IMS index. We computed an individual action execution index (IMS index) by normalizing (z-score) 

and averaging the final value of the four intersegmental angles considered. This index is a simple way 

to represent the final kinematic configuration of each subject and may thus be considered as 

description of the postural strategy implemented by each participant. 

IMS distances. To complement the IMS index, we evaluated the difference/similarity between the 

IMS of each subject and the actor’s implementation of the two IMSs. To this aim, we defined a 

distance by computing the root mean squared error (RMSE) between inter-segmental angular 

trajectories of the actor and each of the subjects. RMSE is commonly used to compute the average 

magnitude of the errors between experimental values and associated model predictions (Hilt et al. 

2016). 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
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All trials were time-normalized (from tstart to tend) to 100 frames. For each subject and each joint 

(ankle, knee, hip, and shoulder) we computed an averaged angular trajectory that we compared (using 

RMSE) with the corresponding angular trajectory of the actor in both IMSs. RMSE were then 

normalized across subjects (z-score) and averaged across joints, to obtain a unique distance value for 

each pairwise comparison between subject’s and actor’s IMSs. From this point, Dist_ankle and Dist_knee 

will refer to the distance between the IMSs of subjects and the video-stimuli respectively showing 

the ankle strategy and the knee strategy. 

Neurophysiological data. Trials with EMG activity in the 50ms period prior to TMS were discarded 

from the analysis (1% of the trials). Peak-to-peak value (mV) was used to represent MEP amplitude. 

MEPs exceeding 3 standard deviations (SD) from the mean peak-to-peak amplitude, at the single 

subject level, were excluded from the dataset (2% of the trials). The remaining MEPs were then 

averaged for every experimental condition and each subject. To perform correlation with IMS, we 

computed and normalized (z-score) the subtraction of the MEPs amplitude recorded when observing 

the video stimulus 1 (ankle strategy) from the MEPs amplitude recorded when observing the video 

stimulus 2 (knee strategy), for each subject (i.e. MEPs AO-knee – MEPs AO-ankle). This subtraction will 

be further called action observation index (AO index). Computed in this way (see Figure 8C): a 

negative value of AO index indicates a greater CSE modulation when observing knee stimulus 

compared to ankle stimulus, a positive value of AO index indicates a greater CSE modulation when 

observing ankle stimulus compared to knee stimulus, and an AO index close to null indicates similar 

CSE modulation when observing the two stimuli. 

Statistical analysis 

We used Shapiro-Wilk test to check the normality assumption for parametric tests. MEPs data and 

kinematic parameters were not normally distributed (p<0.05) and we then decided to use a two-tail 

permutation test (5000 permutations; Matlab function mult_comp_perm_t1).  

All preprocessing and analyses were performed using custom software written in Matlab (Mathworks, 

Natick, MA, USA). For each correlation analysis, we estimated the Pearson correlation coefficient 

(R) and the associated p-value (Matlab function corcoeff). The data used in the correlation analysis 

were all normally distributed according to Shapiro-Wilk test (p>0.05). All P-values were corrected 

for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (Matlab function 

fdr_bh).  

 

(c) Results 

Action execution task 



54 

 

No significant changes in the execution task appeared between the two repetitions of the same action 

execution task, before and after action observation. This was verified on the final posture achieved 

by participants (IMS) and on the measure of IMS distance with respect to actor’s IMSs (Dist_knee and 

Dist_ankle; for values and statistics refer to Supplementary Material H and I). Additionally, and in 

agreement with previous results (Hilt et al. 2016), IMSs showed large between-subjects and small 

within-subject variability (Supplementary Material H). Furthermore, as already shown earlier (Hilt et 

al. 2016)., we found a significant negative correlation between the two distances (Distknee vs Distankle; 

R=-75, p<0.01; Supplementary Material J), such that the more a subject had an IMS close to one of 

the two strategies, the further away will be from the other. This confirms that the two selected IMSs 

are likely the two ends of a natural behavioral continuum. Also, no correlation was found in our 

experimental subjects (Supplementary Material K) between TA activation at t2 and kinematics of the 

final posture (AE index) suggesting that a many-to-many mapping indeed exists between muscle 

pattern and movement kinematics. 

Action observation task  

Subjects answered correctly to the attentional question in most of the trials (90% ±8). Regarding CSE, 

a significant decrease was observed in the baseline computed after action observation (0.34±0.07V) 

compared to before (0.43±0.10; t=2.88, p<0.01). A change of baseline before and after observation 

has already been described and commented in (Hilt et al. 2017). Furthermore, we found a significant 

increase of MEPs amplitude in the trials recorded during action observation (average of the four 

conditions: 0.53±0.10V) compared to baseline pre (t=-2.15, p<0.05) and post (t=-4.25, p<0.01). These 

variations are associated to an unspecific action observation effect, which may be explained by a 

generic arousal effect (see (Hilt et al. 2017)). Rather, the specificity of the action observation task has 

to be verified across conditions (timing of TMS and properties of the action stimuli). When 

normalizing on the averaged baseline pre and post, no significant difference was observed between 

the four experimental conditions: t1knee (1.59±0.18%), t1ankle (1.55±0.16%), t2knee (1.63±0.24%), t2ankle 

(1.57±0.19%). Equivalent non-significant results were found in normalizing the data on baseline pre. 

Since no kinematic cue is present in timing t1, this condition may be used as an intra-experiment 

baseline. When normalizing the MEPs amplitude at t2 by the average amplitude in t1knee and t1ankle, we 

obtained no significant differences between the two conditions (t2knee: 1.01±0.05%, t2ankle: 

1.01±0.05%; t=-0.10, p=0.93). In conclusion, regardless of data normalization choice, no group level 

significant effects were present between the different conditions. 

Correlations between IMS index and CSE modulation 



55 

 

To further evaluate the link between IMS and CSE modulation we ran a correlation analysis between 

the IMS recorded during the action execution task of each subject and the AO indexes (difference 

between MEPs amplitudes in the two action observation conditions). A significant correlation was 

found between IMS and the AO index on timing t2 only (t1: R=-12, p=0.94; t2: R=-73, p<0.01; Figure 

8). Equivalent results were found when separating for the IMS recorded before (t1: R=-1, p=0.99; t2: 

R=-70, p<0.01) and after AO (t1: R=-22, p=0.94; t2: R=-63, p<0.01). This result suggests that only in 

the presence of discriminative kinematic cues (t2), CSE modulation to AO depends on IMS.  

 

 

Figure 8: Correlation between action execution and action observation index indexes. 

Correlation between the action execution index (AE index) and the action observation index (AO 

index) at TMS timing t1 (A) and t2 (B). A negative AO index value (lower part – red background) 

indicate larger corticospinal excitability when observing ankle IMS compared to knee IMS, and vice 

versa for positive values (upper part – blue background). Pearson correlation coefficients and p-

values are reported above each graph. 

 

Correlations between IMS distance to stimuli and CSE modulation 

To complement absolute IMS information, we defined a distance measure (Distankle and Distknee) that 

evaluates the difference/similarity between the IMS of each subject and the two IMSs implemented 

by the actor (two video-stimuli). We analysed these distances in relation to the AO index. The 

correlation analysis at timing t2 revealed two significant correlations, in opposite directions. The AO 

index is negatively correlated with Distknee (R=-65, p<0.01; Figure 9A) and positively correlated with 

Distankle (R=59, p<0.05; Figure 9B). In other terms, subjects exhibited larger MEPs amplitude when 

observing the action that differed the most from their own IMS (Figure 10). No significant correlation 

was present at t1 (Dist knee: R=-3, p=0.90; Dist ankle: R=26, p=0.37). 

The same significant effect was found when using distances computed from pre-AO data (AOt1 – 

Dist ankle: R=-3, p=0.91; AOt1 – Dist knee: R=15, p=0.54; AOt2 – Dist ankle: R=-57, p<0.05; AOt2 – Dist 
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knee: R=57, p<0.05). Differently, using distances computed from post-AO, no significant correlation 

was observed (AOt1 Dist ankle: R=-3, p=0.89; AOt1 Dist knee: R=31, p=0.18; AOt2 Dist ankle: R=-44, 

p=0.11; AOt2Dist knee: R=-42, p=0.14). This absence of significant correlation (despite a trend similar 

to pre-AO) revealed a slight change during the AO task (already suggested by the change of CSE 

between baseline pre and post-AO). 

 

 

Figure 9: Correlation between distances to each stimulus and the AO index at TMS timing t2. 

The Pearson correlation coefficients and p-values are reported on each graph. Each graph (A, B) 

can be separated into four regions. The blue region indicates subjects exhibiting a higher CSE when 

observing knee IMS video-clip compared to ankle IMS video-clip. The red region indicates the 

position of subjects exhibiting a higher CSE when observing ankle IMS video-clip compared to knee 

IMS video-clip. Darker areas indicate subjects exhibiting greater CSE when observing their own 

IMS. On the opposite, lighter areas (and black points) indicate subjects exhibiting greater CSE when 

observing the IMS opposite to their own behavior in AE. 

 

(d) Discussion 

Previous studies on action observation mostly investigated mirroring mechanisms evoked by simple 

goal-directed actions (i.e. involving few degrees of freedom) performed in the canonical way. 

However, due to motor redundancy, observation of daily life actions is rarely characterized by a 

univocal relationship between the visual (e.g. observed kinematics) and the motor description (e.g. 

underlying motor commands) of the action. For the same reason, it is not clear how the predictions 

about others’ actions (multi-joint) would be simplified by a direct access to the motor commands (e.g. 

muscle-level). 

To better understand these mechanisms in the context of multi-joint actions, we investigated 

observers’ motor excitability while seeing two different motoric variants of a whole-body reaching 

action. To this purpose we selected the cortical representation of TA muscle, differentially involved 

in the variants of the IMS used to achieve the goal. During execution of the first variant (ankle IMS), 
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TA is activated only in anticipation of the movement onset (at t1, Figure 7A). In the second variant 

(knee IMS), TA becomes active only after the initiation of the movement (at t2, Figure 7A). Group-

level analysis did not find any significant difference in CSE modulation, mainly because of a huge 

inter-subject variability. In agreement with this result, several authors recently reported a quite large 

inter-subject variability in CSE modulations to AO (Palmer et al. 2016; Hilt et al. 2017; Hannah, 

Rocchi, and Rothwell 2018). This large inter-subject variability may have multiple origins. As we 

argued earlier, one possibility is that the lack of a clear muscle-to-movement mapping in complex 

actions, leads to mixed results when we observe CSE modulations at the group level. Inter-subject 

variability increases with task complexity. Indeed, a simple motor task (e.g. finger’s 

abduction/adduction) is characterized by a simple and unique motor mapping directly translated into 

coherent group-level AO effects (e.g. (Romani et al. 2005)). In more complex actions involving a 

larger number of degrees of freedom (e.g. upper-limb reaching to-grasp movement), the mapping 

depends upon individual strategies leading to larger inter-subject variability. These facts may explain 

why we did not find robust group-level CSE modulations to complex AO (Palmer et al. 2016; Hilt et 

al. 2017; Hannah, Rocchi, and Rothwell 2018). In other words, our results indicate that CSE-based 

measures of sensorimotor activations during others’ (complex) action observation are subject-

dependent and cannot be summarized into a common standard pattern. When CSE data were analysed 

at the single subject level, a clear result emerged. CSE was modulated at the single subject level 

according to the “distance” between actors’ and observer’s IMS: larger CSE modulations are 

associated with the observation of a more different IMS (Figure 10).  

 

 

Figure 10: Illustration of the main results. 

MEPs amplitudes are depicted when observing knee (blue stick figure) or ankle (red stick figure) 

stimulus, for a subject that performed the knee (A) or the ankle (B) IMS in AE. Our results showed 

that corticospinal excitability was greater when actor and observer IMSs differ the most. These 

results agree with the predictive coding hypothesis that hypothesize the existence of a distance 

computation between observed movement and observer’s IMS. 
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Neurophysiological studies conducted on experts have also shown a relationship between 

sensorimotor recruitment and motor familiarity or similarity with other’s action (i.e. sport players: 

(Aglioti et al. 2008), musicians: (Candidi et al. 2014; D’Ausilio et al. 2006), dancers: (Calvo-Merino 

et al. 2005; Calvo-Merino et al. 2006; Jola et al. 2012)). This body of research seems to suggest a 

positive correlation between the amount of sensorimotor activity while observing skilled actions, and 

the individual expertise in that skill. These findings seem to contradict what we found in the present 

experiment. However, it is important to bear in mind the fundamental difference existing between 

common everyday actions (as in our study) and overtrained ones (as in studies with experts). In fact, 

extensive and highly specific training isolate one skillset also by reducing generalization to adjacent 

ones (negative transfer: (Ajemian et al. 2010; R. A. Schmidt and Lee 1999; R. A. Schmidt and Young 

1986)). In this regard, expertise could amount to a greater ability to compute very precise distances 

in one specific skill only (Aglioti et al. 2008). At present, we show evidence that the sensorimotor 

system, while observing complex but perfectly common whole-body actions, computes differences 

rather than similarities. 

At this point, it is important to discuss how CSE modulations translate into sensorimotor activities 

capable of supporting inferences about others’ action. Our results are at odds with a simulative 

account of other’s action during discrimination by challenging the claim that a direct matching of the 

actor’s kinematic and/or muscular activities does take place in the observer’s motor system. Instead, 

the fact that sensorimotor activities during AO are shaped around a measure of error between 

observed and own IMSs, agrees with the predictive coding framework. In this model, prior motor 

knowledge provides critical top-down signals that are integrated with bottom-up sensory-based 

processing (Friston 2010b; Friston, Mattout, and Kilner 2011). To do so, a comparison between 

predicted and observed kinematic information generates a prediction error signal that is used to update 

the representation of other’s action. Neurophysiological studies on simple goal-directed actions 

indicated that sensorimotor recruitment during AO reflect a prediction error signal (Aglioti et al. 

2008; Candidi et al. 2014; Cardellicchio et al. 2018). Interestingly, previous behavioral studies found 

an increase in perceptual discrimination performance of other’s actions, when actor-observer motor 

distance was small (Koul et al. 2016; Macerollo et al. 2015). From these data, we speculate that actor-

observer similarity may induce smaller prediction errors, and consequently more accurate perceptual 

performances. On the opposite side, large actor-observer IMS distance is associated to a decline in 

perceptual performance (Koul et al. 2016; Macerollo et al. 2015) while sensorimotor activations 

increased, possibly playing a compensatory role (D’Ausilio et al. 2014; Schmitz et al. 2018; Bartoli 

et al. 2015). In other words, a greater uncertainty about other’s action will call for a greater need of 

trustful predictions and consequently recruit to a greater extent the sensorimotor areas. In this context, 
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the present study adds direct neurophysiological evidence that prediction errors are estimated by 

accessing IMS-related information.  

Our results suggest that the many-to-many mapping problem in other’s (multi-joint) action 

discrimination might be solved by accessing knowledge about IMSs. Indeed, the stability of IMSs 

(Coste et al. 2017; Słowiński et al. 2016) may reflect the implicit control and prioritization of a limited 

number of internal parameters during action planning and execution, partly solving the motor 

redundancy problem. In our task, individual anatomical differences contribute but do not fully explain 

the properties of the two IMSs (Hilt et al. 2016). More importantly, IMSs could derive from long-

term processes of learning and adaptation to slow but constant changes of our body and neural circuits 

involved in the control of movements and sensations (Thoroughman and Shadmehr 2000; 

Thoroughman and Shadmehr 1999). Indeed, these neurobehavioral factors could be intertwined with 

other similarly important psychosocial aspects. For instance, the relatively small intra-subject 

variability observed in IMS (Hilt et al. 2016) could reflect variation in the emotional states of 

participants which are discriminable by an attentive observer (Montepare, Goldstein, and Clausen 

1987). On the other hand, the relative stability of IMS may be associated to personality traits (e.g. 

knee IMS was associated to increased anxiety (Carpenter et al. 2006) or even psychiatric condition 

(e.g. in schizophrenia (Slowiński et al. 2017)). These data are promising in the framework of 

developing experimental procedures to investigate individual behavior and complement group-level 

averaged results with potentially important idiosyncratic differences 

In conclusion, we demonstrated that individual differences in the execution of a multi-joint action 

shape the sensorimotor activities during the observation of the same action. This shaping is made 

visible by our experimental design but should in principle be an ingredient of any multi-joint action. 

Beside the general suggestion that inter-subject variability should be considered as a tool rather than 

a problem, our results force us to redefine the core properties of the direct matching hypothesis. In 

fact, we propose that the AO Effects reflects sensitivity to differences rather than similarities with 

respect to other’s behavior.  
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(e) Additional data and analyses 

E: Study 1.2: Actor’s muscular activities 

 

Figure E: Actor muscular activities. 

Muscular activity of the actor right tibialis anterior (TA) and soleus (SO) for each video-clip: IMS 

knee (blue) and IMS ankle (red). Timing t1 and t2 at which single-pulse TMS were given are reported 

on each graph. At t1, TA activation is similar to the initial position and similar across video-clips. By 

contrast, at t2, TA recruitment is different across video-clips. These differences between timings and 

video-clips are less visible in SO. Therefore, TA was selected as the muscle of interest. 

 

F: Study 1.2: Attentional questions 

Three different questions could randomly appear, regarding the clip subjects just saw. Specifically, 

we asked what the final angle of the shoulder, hip or knee joint was, by offering two alternatives on 

screen. Two human silhouettes showed the two alternative postures, so that participants could indicate 

the correct answer by a computer mouse (i.e. left button click if the correct posture was displayed on 

the left side or right button click if the correct answer was shown on the right side of the screen). 

Responses were given with the right hand (ipsilateral to the stimulated motor area). 

 

Figure F: Attentional questions. 

Attentional questions were randomly presented at the end of each action observation trial, to ensure 

a good attentional level of all subjects to the stimuli. The question here are translated in English but 

were presented to subjects in Italian. Subjects had to press, with their right hand (ipsilateral to the 

stimulated motor area), on the left or right button of a mouse to indicate the side of the correct figure 
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(i.e. final angle). The correct answer could be presented either to the left or to the right side. Each 

type of question was shown and explained to the subjects before starting the experiment. 

 

G: Study 1.2: Angles computation 

We first defined five segments: foot (from toe to ankle), shank (from ankle to knee), thigh (from knee 

to hip), trunk (from hip to shoulder) and arm (from shoulder to elbow). We computed then the 

elevation angle (angle with the gravity’s vertical) of each segment in the sagittal plane via the 

following equation:  

𝜃𝑠𝑒𝑔𝐴𝐵 =   𝑡𝑎𝑛−1 (
𝐵𝑦−𝐴𝑦

𝐵𝑧−𝐴𝑧
)  

Where 𝜃𝑠𝑒𝑔𝐴𝐵 represents the elevation angle of the segment linking A to B having for cartesian 

coordinates in the sagittal plane (Ay, Az) and (By, Bz) respectively. 

Elevation angle are constrained by the anatomical limit of each joint, and never reach values higher 

(or lower) than 2π (or -2π respectively). In 2D, knowing these constraints, intersegmental angles can 

be deduced directly from elevation angles. The intersegmental angle between the two segments SegA 

and SegB is equal to the subtraction of the elevation angle of SegB to the elevation angle of SegA. 

Elevation and resulting intersegmental angles are illustrated in Supplementary Figure G left and right 

panel respectively. 

 

Figure G: Elevation angles computation. 

Illustration of the computed elevation angles (left panel) and intersegmental angles (right panel) in 

the (Y,Z) plane. Angles are represented by a grey arrow. The sign “-“ above an arrow indicates that 

the angle for this final posture is negative. Kinematic markers are represented by black dots. 
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H: Study 1.2: Final intersegmental angles values  

 

Figure H: Detailed subjects’ intersegmental angular values 

Final intersegmental angular values for each subject (1 to 19; ordered from the largest to the smaller 

AE index) and each joint (ankle, knee, hip, shoulder), averaged across AE trials (pre and post AO). 

For each subject, standard error encompasses the variability across trials and session (pre and post 

AO). As a reference, we added the corresponding value for each stimulus (IMSknee, IMSankle). No 

standard error can be computed for stimuli because they refer to one video (i.e. trial) of the actor. 

These graphs illustrate the expected large difference between subjects IMS and the small intra-subject 

variability (relatively small standard error).  
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Table H: Detailed subjects’ intersegmental angular values and statistics. 

Mean and standard error (across subjects) of the final intersegmental angles of the ankle, knee, hip 

and shoulder, extracted from the kinematics recorded in the action execution task pre-AO (left 

column), post-AO (right column). The third column presents the results of the permutation test 

comparing the values pre-AO and post-AO of each intersegmental angle.  

 

Mean ±ste 

(rad) 
pre-AO post-AO Statistic 

Ankle 1.26 ±0.03 1.25 ±0.03 p=0.69, t=0.41 

Knee -0.09 ±0.08 -0.09 ±0.07 p=0.99, t=0.01 

Hip 0.51 ±0.08 0.50 ±0.07 p=0.91, t=0.12 

Shoulder 1.43 ±0.05 1.41 ±0.05 p=0.40, t=0.88 

 

I: Study 1.2: Kinematic distances to stimuli values pre and post-AO 

Table I: Detailed subjects’ kinematic distances and statistics. 

Mean and standard error (across subjects) of the kinematic distance between subject’s and ankle 

(upper part) or knee (lower part) video-stimuli kinematics for the ankle, knee, hip and shoulder 

intersegmental angles. For each subject, these distances were computed via RMSE on the angular 

trajectories recorded during action execution task pre-AO (left column) and post-AO (right column). 

The third column presents the results of the permutation test comparing the values pre-AO and post-

AO of each intersegmental angle.  

 

Distance to ankle video-stimulus (RMSE) 

Mean ±ste (rad) pre-AO post-AO Statistic 

Ankle 4.6 ±3.6 5.9 ±4.2 p=0.41, t=-0.89 

Knee 9.2 ±10.6 8.9 ±10.9 p=0.88, t=0.13 

Hip 19.9 ±13.5 20.3 ±11.0 p=0.87, t=-0.17 

Shoulder 55.5 ±38.0 50.9 ±34.1 p=0.10, t=1.66 

Distance to knee video-stimulus (RMSE) 

Mean ±ste (rad) pre-AO post-AO Statistic 

Ankle 12.3 ±5.1 13.3 ±4.8 p=0.37, t=-0.96 

Knee 39.8 ±12.8 39.4 ±11.1 p=0.91, t=0.13 

Hip 28.9 ±12.3 28.7 ±9.0 p=0.94, t=-0.08 

Shoulder 120.3 ±27.2 115.8 ±36.6 p=0.53, t=0.95 
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J: Study 1.2: Between distances correlation 

 

 

Figure J: Correlation between kinematic distances. 

Individual distances to each video-stimulus (red: to ankle stimulus, blue: to knee stimulus), ordered 

in function of distance to ankle stimulus (Distankle). Due to z-score normalization, negative values 

represent small distances to stimulus (i.e. high similarity) while positive values large distances (i.e. 

high discrepancy). Distance to the two actor’s kinematics configurations were defined by computing 

the root mean squared error (RMSE) between inter-segmental angular trajectories of the actor and 

each of the subjects. RMSE were normalized and averaged across joints to obtain a unique distance 

value for each pairwise comparison between subject’s and actor’s IMSs. 

 

K: Study 1.2: Subject’s TA muscle activity during AE 

 

Figure K: Tibialis Anterior activity in function of kinematic strategies. 

For each subject, we recorded tibialis anterior (TA) activity during the action execution part. Data 

were redressed, centered and low-pass filtered (Butterworth filter, order 5, cut-off: 20Hz). In this 

analysis, we verified the link between TA activity and kinematic strategy. For each trial (of each 
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subject), we computed the ratio between the root mean square value on a 50ms a window around t2 

(finger’s movement offset; from t2-25 to t2+25) on the one around t1 (finger’s movement onset; from 

t1-25 to t1+25). Before computing an average value for each subject, we discarded values exceeding 

the mean by 2 standard deviations (i.e. outliers) within subject. If the value is greater than 1, the TA 

muscle is more activated in t2 compared to t1, and the opposite for values inferior to 1. In a first 

correlation analysis (upper panel), we compared this ratio to our AE index, characterizing each 

subject final posture kinematic. A positive trend is present but no significant correlation. This 

suggests the absence of a clear linear link between subject’s kinematics and the activity of the 

principal leg muscle of this movement (i.e. no one-to-one mapping). Similarly, when comparing this 

ratio with our AO index, a negative trend appears, but no significant correlation.  
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3. Study 3: Early modulation of intra-cortical inhibition during the observation of action 

mistakes 

 

Errors while performing an action are fundamental for learning. During interaction others’ errors 

must be monitored and taken into account to allow joint action coordination and imitation learning. 

This monitoring relies on an action observation network (AON) mainly based on parietofrontal 

recurrent circuits. Although different studies suggest that inappropriate actions may rapidly be 

inhibited during execution, little is known about the modulation of the AON when an action misstep 

is shown. Here we used single and paired pulse transcranial magnetic stimulation to assess 

corticospinal excitability, intracortical facilitation and intracortical inhibition at different time 

intervals (120, 180, 240 ms) after the visual presentation of a motor execution error. Results show a 

specific and early (120 ms) decrease of intracortical inhibition likely because of a significant 

mismatch between the observed erroneous action and observer’s expectations. Indeed, as proposed 

by the top-down predictive framework, the motor system may be involved in the generation of these 

error signals and our data show that this mechanism could rely on the early decrease of intracortical 

inhibition within the corticomotor system. 

 

My Contribution: protocol definition, data recording and analysis, results interpretation and 

manuscript writing 

 

This work was published in Scientific Reports: 

P Cardellicchio, PM Hilt*, E Olivier, L Fadiga and A D’Ausilio (2018) Early modulation of intra-

cortical inhibition during the observation of action mistakes. Scientific Reports, 8(1): 104-118 (* co-

first author) 

 

This work has been presented as on oral communication in the International Organization of 

Psychophysiology Congress (4-8 september, 2018, Lucca, Italy): 

A D’Ausilio, P Cardellicchio, E Dolfini and PM Hilt. Motor processes in a multi-agent environment. 
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(a) Introduction 

In everyday life, while interacting with others, we continuously infer their intentions (Becchio et al. 

2012) through a combination of bottom-up and top-down processing particularly sensitive to action 

goals (Bekkering et al. 2009; Botvinick et al. 2001; Vesper et al. 2010). Thus, fast and effective 

detection of action errors is fundamental for flexible adaptation to other’s behavior and provides 

essential support for social learning (Botvinick et al. 2001). The literature on action error observation 

has indicated that different brain regions may be active during error observation. In particular, 

different parts of the medial prefrontal cortex are active during the observation of unusual actions 

(Brass et al. 2007) depending on whether the observed behavior is intentional or not (Desmet and 

Brass 2015). At the same time, also simple action error observation elicits an electroencephalographic 

early error-related negativity (ERN; Bates, Patel, and Liddle 2005), similarly localized in medial-

frontal structures (van Schie et al. 2004). However, other studies observed an increase of the P300 

component probably associated with a more general monitoring process (De Bruijn, Schubotz, and 

Ullsperger 2007). The lateral premotor cortex is also activated within both hemispheres, although 

with a lateralization to the right, during the observation of both correct and erroneous actions 

(Manthey, Schubotz, and Von Cramon 2003). These activations could reflect a matching process 

between observed actions onto corresponding stored motor representations (Rizzolatti, Fogassi, and 

Gallese 2001). In this regard, some studies proposed that social action error detection may rely on 

our capability in sensing subtle kinematic violations in the observed action (Bond et al. 1992; Frank 

and Ekman 1997; Sebanz and Shiffrar 2009). According to this view, others’ actions cues are 

compared to stored internal models of the same action to detect significant deviations (Wolpert, Doya, 

and Kawato 2003). Two different accounts propose two different alternatives to explain how this 

comparison takes place in the AON (Action Observation Network). The classic AON account 

suggests a direct matching between observer and actor (Rizzolatti, Fogassi, and Gallese 2001; 

Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 2016) and thus observation of an error should 

activate the same inhibitory mechanisms at play during error execution (Buch et al. 2010). The 

predictive coding hypotheses suggests that the motor system computes the difference between 

expected and observed action-related information (Kilner, Friston, and Frith 2007; Urgen and Miller 

2015; Sartori et al. 2015), and thus errors should activate the AON to a greater extent. However, while 

some studies have shown stronger facilitation in the AON when observing erroneous (Candidi et al. 

2014; Senot et al. 2011), impossible or uncommon actions (Senot et al. 2011; Costantini et al. 2005; 

Koelewijn et al. 2008; Stapel et al. 2010; Abreu et al. 2012; Aglioti et al. 2008), other works show 

greater activity in the AON during observation of correct actions (van Schie et al. 2004; Shimada and 

Abe 2009; Shimada and Abe 2010; Avenanti et al. 2013). In this study, we investigated the 
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neurophysiological underpinnings of action error processing by focusing on its temporal dynamics. 

In fact, error processing may involve a cascade of neural events characterized by a temporally fine-

grained balance between excitation and inhibition of specific motor programs. To this purpose, we 

used Transcranial Magnetic Stimulation (TMS) to measure primary motor cortex (M1) cortical and 

corticospinal excitability (Fadiga, Craighero, and Olivier 2005), at three time points (120, 180, 240 

ms after action error). TMS timing was derived from a previous EEG investigation that shown an 

EEG error-related negativity (ERN) (van Schie et al. 2004; Wang et al. 2005; Gehring et al. 1993; 

Dehaene, Posner, and Tucker 1994) at about 120 ms latency and a correlated ERN feedback 

component (Nieuwenhuis et al. 2004; Talmi, Atkinson, and El-Deredy 2013) at about 250 ms latency 

after error occurrence. It is worth noting that 120 ms is also the earliest latency at which corticospinal 

excitability is modulated by graspable object observation (Franca et al. 2012). Specifically, we 

adopted single pulse (spTMS), short intracortical inhibition (sICI), and intracortical facilitation (ICF) 

protocols during the observation of picture sequences depicting either correct or erroneous actions. 

MEPs (Motor evoked potentials) evoked by spTMS provide an instantaneous read-out of the state of 

the motor system and had been widely used to investigate modulations related to action observation 

(Fadiga, Craighero, and Olivier 2005; Fadiga et al. 1995; Naish et al. 2014). Instead, sICI and ICF 

have rarely been used to investigate AON activity (Koch et al. 2010; Strafella and Paus 2000; 

Borgomaneri, Vitale, and Avenanti 2017), in particular during erroneous actions observation. They 

differ from the spTMS because they reflect the behavior of distinct populations of inhibitory and 

excitatory cortical interneurons without affecting spinal circuits (Kujirai et al. 1993). ICF and sICI 

may reflect the balance between excitation and inhibition mainly mediated by glutamatergic 

facilitation through N-methyl-D-aspartate (NMDA) receptors (Ziemann et al. 2004; Nakamura et al. 

1997) and GABA-ergic inhibition through GABA receptors (Di Lazzaro et al. 2000; Ilić et al. 2002; 

Tandonnet, Garry, and Summers 2010; Ziemann et al. 1996). Action stimuli consisted in knotting 

actions. While observing someone tying a knot, procedural errors are often conveyed by small visual 

cues, i.e. the rope passing top-down instead of bottom-up, which however, are very important as far 

as goal achievement is concerned. Interestingly, the use of knots tying, instead of others goal-directed 

action, reduces the possibility that subjects resort to inner verbalization to rehearse the sequence 

(Balconi and Caldiroli 2011; Sitnikova et al. 2008; Võ and Wolfe 2013; Maffongelli et al. 2015). 

Knots are indeed very hard to describe verbally, and the didactics of knots is almost never based on 

textual (books) or spoken (online tutorials) material, but rather on visual demonstrations. We used 

two different type of errors, procedural errors (wrong passage of the rope) and control errors (in which 

the rope suddenly appears cut in two segments, see Figure 11). Considering the direction of the TMS-

evoked modulations, two alternative predictions are possible 
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from: (1) the AON account (Bond et al. 1992; Frank and Ekman 1997; Sebanz and Shiffrar 2009) or 

(2) the predictive coding account (Friston 2005; Friston, Harrison, and Penny 2003; Friston, Mattout, 

and Kilner 2011). The first one suggests an important anatomo-functional overlap between action 

execution and observation. Following this analogy, increase of inhibition/reduction of facilitation are 

usually observed in both, volitional inhibition (Hoshiyama et al. 1996; Leocani et al. 2000; Coxon, 

Stinear, and Byblow 2006) and action error execution (Neubert et al. 2011; Reynolds and Ashby 

1999). Based on the assumption that a strong overlap exists between these two mechanisms8, we 

should see the same pattern of results during the observation of an action misstep (increased inhibition 

and decreased facilitation). The second one suggests instead that action observation involves the 

minimization of the sensory prediction error (i.e., Bayesian-like inferences are generated and 

dynamically compared to the incoming sensory information). These prediction errors propagate 

through recurrent interactions among the different levels of the cortical hierarchy involved in action 

perception. The predictive coding framework would then predict greater facilitation and less 

inhibition in the presence of larger prediction error, as it is the case for the observation an action 

misstep (decreased inhibition and increased facilitation). The relative balance between local cortical 

inhibition and facilitation can in principle disentangle which one of the two views is the most effective 

in explaining how action missteps are incorporated in the representation of other’s action. 

 

(b) Material and Methods 

Participants 

Nineteen naïve volunteers (8 females; mean age 24 years, range 20–29) participated in the study. All 

subjects were right-handed, as assessed by the Edinburgh Handedness Inventory (Oldfield 1971). 

None of the participants reported neurological, psychiatric or other contraindications to TMS (Simone 

Rossi et al. 2009). They had normal or corrected-to-normal visual acuity in both eyes and were 

unaware of the purposes of the study. All of them gave informed consent before the experiment, 

which was approved by the Ethics Committee of the Ferrara University and conducted in accordance 

with the ethical standards of the 1964 Declaration of Helsinki. 

Stimuli 

The visual stimuli consisted of sequences of eight pictures showing the different steps of an actor (1 

male and 1 female) tying a knot (Figure 11B). All pictures had a uniform black background. Two 

different actors (1 male, 1 female) recorded from a first-person perspective, were performing two 

different types of knots. The actors either completed the knot (Correct condition) or did a mistake in 

executing it (Execution Error condition) by introducing the extremity of the rope inside the loop from 
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top-down instead of bottom-up. This mistake results in the dissolution of the knot and was shown in 

the fifth picture of the sequence (see Figure 11B). In the Control condition, we modified the same 

fifth picture frame by showing the rope cut in two segments (Figure 11B). This causes the 

impossibility to achieve the goal as well, but for intrinsic object properties and not for action-

dependent factors. In all conditions (Correct, Execution Error, Control condition) the first four frames 

of each sequence were the same (corresponding to the loop forming, see Figure 11). Thus, the 3 

conditions are perfectly identical until the 5th frame. This choice avoids any prediction from the 

subjects. 

 

 

Figure 11: Stimuli and conditions. 

In panel A, each row represents the timeline of the experimental conditions. For all conditions, the 

left part of the figure depicts the first frame shown (i.e. the expected final knot). The red squares 

highlight the frame associated to the error, in both Execution Error and Control conditions. In panel 

B, each picture shows, from left to right, the Correct, Execution Error and Control conditions. 

 

TMS and electromyographic recordings.  

Motor Evoked Potentials (MEP) were recorded with a wireless EMG system (Aurion, ZeroWire 

EMG) from the right First Dorsal Interosseus (FDI) muscle by using standard tendon-belly montage 

with Ag/AgCl electrodes. EMG traces were band-pass filtered (50–1000 Hz), digitized (2 kHz), 
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acquired by a CED power1401 board and visualized with Signal 3.09 software (Cambridge Electronic 

Design, Cambridge, UK). A 70 mm figure-of-eight coil connected to a Magstim BiStim stimulator 

(Magstim Co., Whitland, Dyfed, U.K.) 

was placed over the left primary motor cortex with the handle pointing backwards at 45° from the 

midline. As optimum scalp position marked on the scalp of the subjects by using a make-up pencil, 

was considered the location on the scalp where maximum amplitude MEPs in the FDI were evoked 

at the lowest possible intensity (hot spot). The resting Motor Threshold (rMT) was assessed by using 

standard protocols (5 out of 10 MEPs exceeding 50 μV peak-to-peak amplitude67), with an inter-

stimulus interval of ≅8 seconds. Three different stimulation protocols were used: Single pulse 

(spTMS), short interval Intracortical Inhibition (sICI) and Intracortical facilitation (ICF). During the 

spTMS protocol, a TMS pulse was delivered at the intensity of 120% of the rMT. During the paired-

pulse TMS paradigm (ppTMS), sICI and ICF were assessed in accordance with an established 

protocol (Kujirai et al. 1993; Ziemann, Rothwell, and Ridding 1996). The intensity of the 

conditioning stimulus (CS) was set at 80% of the rMT. Before each experimental session we 

confirmed that this intensity never induced MEPs in 10 out of 10 repetitions. The test stimulus (TS) 

intensity was the same as that used in the spTMS session. In the ppTMS the inter-stimuli intervals 

(ISIs) of 3 ms and 12 ms were used to respectively assess sICI and ICF (Kujirai et al. 1993; Ziemann, 

Rothwell, and Ridding 1996; Borgomaneri et al. 2015).  

Procedure and experimental design 

Subjects were seated on a comfortable armchair. A 17” LCD computer monitor (1024x768 pixels; 

refresh rate: 60Hz) was placed at a distance of 58 cm from their frontal plane. Their right hand was 

placed on a cushion in a relaxed prone position. Before the experimental sessions, participants were 

familiarized with the visual stimuli. Each trial started with the presentation of a green central fixation 

cross displayed on a frame depicting the completed knot. After 2000 ms, the knot disappeared, and a 

sequence of pictures was shown. Each picture presentation lasted 200 ms followed by a delay of 800 

ms TMS was administered after the fifth picture onset at 3 different delays: 120, 180 and 240 ms. 

Participants were instructed to look attentively at each picture sequence and to press a button when 

they detect something going wrong: wrong knot execution (execution error) or broken rope (control 

condition). In one third of trials (correct condition), participants did not have to produce any response. 

Responses were provided with the left hand, ipsilateral to the stimulated motor area, and were 

recorded by a custom-made response box. Reaction times (RTs) were collected relative to picture 

onset. In total, 270 trials were randomly presented to every subject: 3 experimental conditions 

(Correct, Control, Execution Error) X 3 stimulation protocols (spTMS, sICI, ICF) X 3 timings of 

stimulation (120 ms, 180 ms, 240 ms) X 10 repetitions. Twelve baseline trials for each stimulation 
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protocol (spTMS, sICI and ICF) were recorded at rest (eyes closed, subjects imagining a relaxing 

landscape70,71) at the beginning of the session, and at the end. The presentation of the stimuli, the 

timing of the TMS pulses and response collection were controlled by Psychtoolbox Version 3.0 (PTB-

3), implemented in MATLAB (The MathWorks Inc., Natick, MA, USA). 

Analysis 

Behavioral data. Incorrect answers or RTs lower than 100 ms or higher than 1000 ms were discarded 

from the analysis (less than 7% of trials). RTs were analyzed by paired-samples two-tailed t-tests 

(significance threshold, P < 0.05). The same analysis was applied to responses accuracy. 

Neurophysiological data. Preprocessing: Neurophysiological data were processed off-line by custom-

made Signal script (Signal 3.09 software Cambridge Electronic Design, Cambridge, UK). As MEP 

amplitude we considered the peak-to-peak value (mV). MEPs associated with incorrect answers or 

with EMG activity in the 50 ms period prior to TMS were discarded from the analysis (less than 10% 

of total trials number). During spTMS and ppTMS, trials with MEPs lower than 0.05 mV were not 

considered as proper MEPs and were discarded (less than 2% of total trials number). The average 

number of trials in each condition was 9.5 trials ± 0.2.  

Baseline modulation. In the first analysis our aim was to exclude modifications of intracortical and 

corticospinal excitability during the recording session. We compared baseline spTMS MEPs at the 

start and at the end of the experiment, with a two-tailed paired t-test. We also verified if sICI and ICF 

effects were in the direction of inhibition and facilitation, respectively. We ran a repeated-measures 

ANOVA on MEPs amplitude ratios between ppTMS protocols and the spTMS protocol (mean CS 

relative to mean TS)29,68, using the two protocols (sICI and ICF) and the two baselines as factors. 

Generic action observation modulation. Furthermore, we verified wether the three TMS protocols 

were generically modulated by action observation (Fadiga et al. 1995). We compared baseline spTMS 

MEPs with pooled action observation conditions, with a two-tailed paired t-test. We ran a repeated-

measures ANOVA on MEPs amplitude in the ppTMS protocols, using the two protocols (3 ms and 

12 ms) and pooled action observation vs. baseline data as factors. As an additional check, we also 

verified that intracortical inhibition and facilitation was modulated by generic action observation 

(Strafella and Paus 2000; Patuzzo, Fiaschi, and Manganotti 2003). The ratio between ppTMS and 

spTMS was analyzed with a repeated-measures ANOVA using the two protocols (3 ms and 12 ms) 

and pooled action observation vs. baseline data as factors.  

Error-related modulation. Finally, we evaluated the effect of the different action observation 

condition on intra-cortical and corticospinal excitability modulations. We used a within-subjects 

repeated-measures ANOVAs, separately for the spTMS and ppTMS protocols. In the spTMS 

protocol, the dependent variable was MEPs amplitude normalized by the average baseline. The 
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repeated-measures ANOVA included the factors Condition (Correct, Control, Execution Error) and 

Timing (120 ms, 180 ms, 240 ms). To quantify sICI and ICF action related effects, we expressed 

MEPs amplitude in the ppTMS sessions in function of the spTMS MEPs amplitude (Kujirai et al. 

1993; Ziemann, Rothwell, and Ridding 1996; Borgomaneri, Vitale, and Avenanti 2015). For each 

experimental condition, we then computed a repeated-measures ANOVA using as index of 

intracortical modulation (iMEP) the mean ratio (ppTMScondition/spTMScondition) over the same 

mean ratio at baseline (ppTMSbaseline/ spTMSbaseline), separately for each ppTMS protocols (sICI, 

ICF). The relationship between the effect found in each condition was then transformed into 

percentages in multiplying by 100: 

 

A repeated-measures ANOVA was performed on these data with the within-subject factors TMS-

protocol (sICI, ICF), Condition (Correct, Control, Execution Error) and Timing (120 ms, 180 ms, 240 

ms). All analyses were run by using STATISTICA 9 (StatSoft, Inc.) using Newman-Keuls as post-

hoc comparison (P < 0.05) and partial eta-squared for effect size. 

 

(c) Results  

Behavioral data  

Analysis on RTs did not show any significant difference between Execution Error (562 ± 70 ms, 

mean ± SD) and Control (551 ± 62 ms) conditions (t(18) = 0.64, p = 0.52). Similarly, the accuracy of 

the responses did not show any significant effect (t(18) = 2.01, p = 0.06) (Execution Error: 78 ± 16; 

Control: 86 ± 8). 

Neurophysiological data  

Baseline modulation. Baseline spTMS MEPs recorded at the beginning (mean raw MEP amplitude: 

1.66 ± 1.2 mV), and at the end of the experiment (1.58 ± 1.3 mV) were not significantly different 

(t(18) = 0.48, p = 0.63), confirming no change of corticospinal excitability during the experiment 

(Chen et al. 1997). The 2 × 2 ANOVA between the TMS protocols (SICI, ICF) recorded in the two 

baselines (pre, post) revealed a main effect of protocols (F(1,18) = 212,62, p < 0.001; η²p = 0.9), with 

baseline sICI (mean CS/TS: 0.40 ± 0.36) significantly lower than ICF (1.30 ± 0.54). This result 

confirms that the two ppTMS protocols elicited the expected intracortical inhibition and facilitation 

in the baseline recordings. No other main effect (F(1,18) = 0,29, p = 0.59) or significant interaction 
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(F(1,18) = 2,56, p = 0.12) was found confirming no change of cortical modulation during the 

experimental sessions. 

Generic action observation modulation  

During generic action observation (all conditions together), spTMS MEPs amplitude (2.43 ± 1.44 

mV) significantly increased compare to baseline (1.61 ± 1.21 mV; t(18) = 3.95, p < 0.001). This result 

suggests that generic action observation elicits a generic increase of corticospinal excitability, in 

agreement with previous reports (Fadiga et al. 1995). The ANOVA on MEPs amplitude during action 

observation and baseline in the two different protocols (ppTMS 3 ms: action observation: 2.98 ± 1.32 

mV, baseline: 2.04 ± 1.13 mV; ppTMS 12 ms: action observation: 0.69 ± 0.73 mV, baseline: 1.11 ± 

0.92 mV) showed a significant main effect of TMS-protocol (F(1,18) = 86.51, p < 0.01; η²p = 0.82), 

with MEPs significantly smaller during the ppTMS 3 ms (mean MEP amplitude: 0.9 ± 0.8 mV) 

compared to ppTMS 12 ms (mean MEP amplitude: 2.5 ± 1.3 mV). A significant main effect of action 

observation was also observed (F(1,18) = 25.13, p < 0.01; η²p = 0.58), with MEPs significantly 

smaller during the baseline (mean MEP amplitude: 1.37 ± 1.1 mV) compared to action observation 

(mean MEP amplitude: 2.04 ± 1.4 mV). The ANOVA revealed also a significant interaction between 

TMS-protocol and action observation (F(1,18) = 6.76, p = 0.01; η²p = 0.2). Post hoc analyses 

evidenced higher MEPs amplitude in the ppTMS 12 ms protocol during action observation compared 

to other conditions (p < 0.01). In addition, amplitude of MEPs collected during the ppTMS 12 ms 

baseline was higher than in the ppTMS 3 ms protocols in both conditions (p < 0.01). Similarly to 

ppTMS 12 ms, MEPs amplitude for the two conditions were significantly different from each other 

in ppTMS 3 ms (p < 0.01). The ANOVA on intracortical excitability modulations (ratio between 

ppTMS and spTMS) during generic action observation and baseline showed only a significant main 

effect of the protocol (F(1,18) = 153.87, p < 0.01; η²p = 0.8) with higher values in ICF (1.41 ± 0.4) 

than sICI (0.45 ± 0.2). The action observation main effect was not significant (F(1,18) = 0.618, p = 

0.44) nor the interaction (F(1,18) = 3.39, p = 0.08). Although the interaction effect is not significant 

a trend was reported and is qualitatively visible in the ppTMS/spTMS ratios (ICF: action observation: 

1.33 ± 0.29, baseline :1.49 ± 0.54; sICI: action observation: 0.48 ± 0.28, baseline: 0.42 ± 0.28). 

Error-related modulation 

The 3 × 3 ANOVA on spTMS between the condition and TMS timing revealed no significant 

interaction or main effects (all F < 1.20, p > 0.31) showing no specific modulation of corticospinal 

excitability induced by error observation. The 2 × 3 × 3 repeated-measures ANOVA on the 

intracortical modulation index showed a significant main effect of TMS-protocol (F(1,18) = 9,1051, 

p < 0.01; η²p = 0.3), with iMEPs significantly smaller during the ICF (mean iMEP amplitude: 97% ± 
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31) compared to sICI (mean iMEP amplitude: 125% ± 48). Moreover, a significant 3-way interaction 

between TMS-protocol (sICI and ICF), Condition (Normal, Control, Error) and Timing (120, 180, 

240) was observed (F(4, 72) = 4,8966, p < 0.01; η²p = 0.2). Post hoc analyses revealed a modulation 

of iMEPs in the sICI protocol only (Figure 12). Specifically, iMEPs recorded during the Execution 

Error were higher at 120 ms (142% ± 51) than in the other timings (180 ms: 122% ± 31, p = 0.010; 

240 ms: 119% ± 42, p = 0.009). Moreover, at 120 ms iMEPs recorded during the Execution Error had 

higher amplitude than the Control and Correct conditions (Correct: 116% ± 42, p = 0.006; Control: 

122% ± 46 SD, p = 0.012). A similar effect was found for the Control condition but at different 

Timing. The iMEPs values for the Control condition are higher at 240 ms (146% ± 69) compared to 

other Timing (120 ms: 122% ± 46, p = 0.003; 180 ms: 116% ± 45, p < 0.001). At this timing (240 

ms), Control iMEPs had higher amplitude than the Correct and Execution Error conditions (Correct: 

126% ± 48, p = 0.010; Execution Error: 119% ± 42, p = 0.001). No other main effect or interaction 

was significant. Summing up, these results point out a significant reduction of intracortical inhibition 

at 120 ms for the Execution Error and at 240 ms for the Control conditions (Figure 12). 

 

 

Figure 12: Intracortical inhibition results. 

Modulation of the iMEP index (ratio of sICI in baseline and conditions, in function of the timing of 

the ppTMS (120, 180 and 240) in the three experimental conditions (see legend). Vertical whiskers, 

SEM. Asterisks indicate the significant comparison (Newman-Keuls, P < 0.05). To facilitate the 

understanding, data presented in this figure are normalized with respect to the mean. 
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(d) Discussions  

Action understanding is the building block of many important social cognitive skills, such as 

communication, imitation, intention understanding, learning and empathy (Blake and Shiffrar 2007). 

The relevance of predicting the consequence of other’s actions to understand “what” is happening has 

been extensively discussed at a theoretical level (Summerfield et al. 2009). However, less is known 

about the neural mechanisms used to cope with the rather frequent circumstances where these 

predictions are wrong because an error happens in the observed action. In this study, we aimed at 

investigating whether and how the motor system is sensitive to the observation of action missteps. 

We demonstrated an early (120 ms) reduction of inhibition for the observation of a motor execution 

error, while the control error elicited a similar effect but with a longer latency (240 ms). A similar 

biphasic modulation has also been shown for corticospinal excitability during action observation 

(Barchiesi and Cattaneo 2013). In Barchiesi and Cattaneo (2013), the early corticospinal modulation 

followed the automatic mapping between action execution and observation properties, whereas later 

effects were driven by the recent history of visuomotor associative learning. In general, our results 

support the hypothesis that early and late motor activations induced by action observation may reflect 

two distinct mechanisms. Our early effect is associated to the presentation of a motor execution error. 

A delay of 120 ms was shown to be enough to activate the motor system during graspable object 

presentation (Franca et al. 2012). This condition requires that the observer maps the functional 

relationships between hands and rope positions to derive the presence of an error. The late effect 

instead, is triggered by a cut in the rope which, independently from the action performed by the actor, 

do not allow the successful conclusion of the action. The detection of this latter deviation from the 

expected action outcome, may require access to strategic and abstract reasoning regarding the 

feasibility of the action plan, that only later translates into the intracortical modulation of the motor 

cortex (Andersen and Cui 2009). Interestingly, using single and paired-pulse TMS protocols, we 

could investigate changes in corticospinal excitability as well as intracortical facilitatory (ICF) and 

inhibitory (sICI) circuits while participants were being presented with different types of errors. 

Notably, these indexes have already proven to be more sensitive than the MEPs recording during 

spTMS in detecting weaker sensorimotor associations (D’Ausilio et al. 2006). Corticospinal 

excitability reflects the effect of inhibitory and excitatory inputs to the descending corticospinal 

pathway. The sICI and ICF reflect distinct neurophysiological mechanisms (Ziemann et al. 2004; 

Liepert et al. 1998). sICI is associated to the activation of low threshold inhibitory interneurons in 

M1 mediated by gamma-aminobutyric acid (GABAa) receptors (Di Lazzaro et al. 2000; Ilić et al. 
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2002; Ziemann et al. 1996). The ICF more likely reflects the work of glutamatergic excitatory M1 

circuits involving N-methyl-D-aspartate (NMDA) receptors (Ziemann et al. 2004). ICF, but not sICI, 

is thought to be influenced by the activation of long-range connections originating from remote brain 

regions (Ziemann et al. 2004; Ziemann 2004). Hence, our results reveal an early modulation of 

GABA-ergic inhibition in the motor system, driven by action error observation. Effects were observed 

for sICI but not for ICF, suggesting that the neural mechanisms involved in detecting action execution 

errors mainly consist in the modulation of intracortical inhibitory circuits. The lack of ICF effects is 

in line with previous studies showing no agreement on ICF modulations during action observation 

(Strafella and Paus 2000; Patuzzo, Fiaschi, and Manganotti 2003; Arias et al. 2014; Murakami, Restle, 

and Ziemann 2011). Similarly, previous works show that volitional inhibition in action execution 

does not affect ICF measures, but only sICI (Sohn, Wiltz, and Hallett 2002). Moving to the functional 

meaning of our results, according to the standard AON account, observing an action causes the 

reactivation of the same motor circuits in the observer’s brain (Rizzolatti and Sinigaglia 2016). 

However, our results seem to go in an opposite direction. In fact, peri-movement modulation of sICI 

is associated to the mechanism by which voluntary movement is gated on and off. Indeed, the 

magnitude of sICI is reduced just before voluntary contraction (Reynolds and Ashby 1999), increased 

before its cessation (Buccolieri, Abbruzzese, and Rothwell 2004) and is somatotopically specific 

(Stinear and Byblow 2003). TMS studies of action observation have shown an increase of excitation 

in terms of corticospinal excitability (Fadiga et al. 1995) paralleled by a decrease in sICI (Strafella 

and Paus 2000; Patuzzo, Fiaschi, and Manganotti 2003). These findings parallel the local intracortical 

excitatory and inhibitory dynamics observed during actual action execution by shifting the balance 

towards greater local excitation (Strafella and Paus 2000; Patuzzo, Fiaschi, and Manganotti 2003). 

As a consequence, observing action errors would set in motion the neural cascade of events that 

normally occur during the suppression of erroneous voluntary movements. For instance, in the stop-

signal task a decrease in corticospinal excitability and an increase of sICI (Hoshiyama et al. 1996; 

Coxon, Stinear, and Byblow 2006) is commonly observed. The magnitude of sICI acting on the 

agonist muscle increases also in the No-Go phase of a Go/No Go reaction time task (Sohn, Wiltz, and 

Hallett 2002), and in a countermanded reaction time task when the prepared movement is successfully 

retained (Coxon, Stinear, and Byblow 2006). This sICI increase was also present in others muscles, 

not engaged in the action (Hammond and Vallence 2007) and may prevent unwanted activations 

(Liepert et al. 1998; Sohn, Wiltz, and Hallett 2002). Our results, however, show that when an action 

error is detected, a decrease in inhibition rather than an increase is present. This is the opposite of 

what we would expect from a complete functional match between action execution and action 

observation processes. The predictive coding account (Friston 2005; Friston, Harrison, and Penny 
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2003), which has also been extended to explain mirror-like activities (Kilner and Frith 2007; Kilner, 

Friston, and Frith 2007), could offer some insight. This model suggests that the brain uses all available 

information to continuously predict forthcoming events and reduce sensory uncertainty by 

dynamically formulating perceptual hypotheses (Donnarumma et al. 2017). The formulation of 

perceptual hypotheses and their verification against incoming data, is fundamentally constrained by 

knowledge about the neural and biomechanical organization of movements (D’Ausilio, Bartoli, and 

Maffongelli 2015a; Donnarumma, Dindo, and Pezzulo 2017). This process occurs at all levels of the 

cortical processing hierarchy and is hypothetically instantiated in two types of computational units 

(Summerfield et al. 2009; Summerfield et al. 2006), representation and error units. While the 

representation units encode the predictions based on prior information, the error units compare the 

incoming signals with the predictions conveyed via the representation units. The discrepancies 

between predictions and input signals generate a prediction error signal. This prediction error signal 

updates the generative model at the next level of the cortical hierarchy and is consequently a critical 

component of the predictive mechanism (Summerfield et al. 2009; Friston 2010a). In this context, the 

main function carried out by the AON could be that of computing prediction errors based on visually 

perceived actions and to propagate them throughout the motor hierarchy (Aglioti et al. 2008; Urgen 

and Miller 2015; Kilner et al. 2004; Vastano et al. 2016; Wilson and Knoblich 2005; Urgesi et al. 

2010; Costantini et al. 2014). Therefore, greater AON activities should correspond to either greater 

prediction errors or errors whose implications extend across the motor hierarchy. Remarkably, our 

study significantly expands on these aspects by showing that observing erroneous actions does not 

elicit increased inhibition as it would be predicted by the classic view about motor mirroring of other’s 

action. Instead, the release from inhibition could be explained by the greater mismatch with respect 

to the generated top-down predictions. Action errors, as the one we investigated here, provide 

relatively small visual cues to disentangles errors from correct events. Nevertheless, these visual cues 

contain significant informative messages since the implications of such small and local differences 

directly propagate throughout the action hierarchy making it readily clear that the action goal will not 

be achieved.  
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Part 2. Joint Action 

 

1. Study 1: Predicting the postural adjustments during reach-to-grasp action by oneself or 

interacting dyads. 

 

It is recurrently claimed that human effortlessly detect others’ hidden mental state by simply 

observing their movements and transforming the visual input into motor knowledge to predict their 

behavior. Using a classical paradigm quantifying motor prediction, we tested the role of vision during 

a reach and load-lifting task performed either alone, or with the help of a partner. Wrist flexor and 

extensors muscle activities were recorded on the supporting hand. Early muscle changes preventing 

limb instabilities when participants performed the task by themselves, revealed the contribution of 

the visual input in postural anticipation. When the partner performed the unloading, a condition 

mimicking a split-brain situation, motor prediction followed a premature pattern evolving along the 

task course and gaining from the integration of the successive somatosensory feedbacks. Our findings 

demonstrate that during social behavior, further to self-motor representations, individuals adapt the 

cooperation by continuously integrating sensory signals coming from various sources. 

 

My Contribution: protocol definition, data analysis, results interpretation and manuscript writing 

 

This work is currently submitted in Cerebral Cortex:  

A Campos, PM Hilt*, L Fadiga, C Veronesi, A D’Ausilio and T Pozzo. Predicting the postural 

adjustments during reach-to-grasp action by oneself or interacting dyads. 
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(a) Introduction 

Imagine a waiter lifting with his right hand a glass of wine on a plate he is holding with the left hand. 

The success of such bimanual asymmetric task depends on the waiter capacity to counteract the 

upward perturbation induced by the unloading movement. In such a context, the central nervous 

system can anticipate movement consequences and produce anticipatory postural adjustments (APAs; 

Hugon, Massion, and Wiesendanger 1982; Massion et al. 1999). APAs consists in using an efference 

copy (Wolpert 1997) of the motor command descending toward the lifting hand to prevent the 

disturbance exerted on the postural hand.  

When the two hands hold the plate and the glass, APAs on the postural hand start before the onset of 

the unloading action. If a reaching phase precedes the unloading action, APAs could integrate the 

efferent copy to the visual feedback on the reaching and optimize the two hands coordination. Whilst 

interesting, previous investigations did not provide the appropriate experimental context to 

understand how these two signals contribute to efficient bimanual interactions. Indeed, either 

participants bimanually picked up objects with the two hands already positioned on the recording set 

up (Hugon, Massion, and Wiesendanger 1982; Dufossé, Hugon, and Massion 1985; Viallet et al. 

1992; Barlaam et al. 2011) or initiated the unloading by pressing a button (Diedrichsen et al. 2003). 

Further, when a reaching movement was included, the task was performed without visual feedback 

(Ng et al. 2013).  

The first goal of this study was to investigate the role of the visual feedback in the genesis of APAs 

by introducing a reaching phase preceding the bimanual load-lifting phase. Since one of the key tenets 

of APAs is that they must be self-produced (Diedrichsen et al. 2003), we should find APAs 

independently of visual feedback, and the task performed with eyes open or closed, should in principle 

produce identical results. 

The investigation of how vision can impact on APAs may be essential if we extend the scope to the 

joint action scenario (Sebanz, Bekkering, and Knoblich 2006) where the waiter offers the glass to a 

guest.  While APAs remain essential to the effectiveness of the dyadic interaction, the sole predictive 

signal is now provided by the visual cues about the guest’s hand trajectory toward the glass. In the 

next step of the current study, we seek to verify if residual APAs, in the joint action condition, might 

be driven by visual cues even in the absence of any efference copy signal. APAs are predicted on the 

fact that action observation elicits subthreshold sensorimotor activations analogous to those recruited 

during action execution (Fadiga et al. 1995; Rizzolatti and Sinigaglia 2016). Importantly, this 

sensorimotor recruitment has already shown some degree of anticipation with respect to the ongoing 

observed action (Borroni et al. 2005) and has been proposed to be a key asset in allowing others’ 
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action prediction both in absence of any interaction (Avenanti et al. 2013) and during joint action 

conditions (Pezzulo et al. 2017). 

(b) Materials and Methods  

Participants  

Seventeen couples of individuals took part in the experiment (8 man-man and 9 woman-woman; mean 

age: 25.5±2.5 SD). All participants had normal sensorimotor abilities and did not present any 

neurological or psychiatric disorders. No explicit information was given about the purpose of the 

study before the experiment. All participants gave informed consent to participate to the experiment. 

Procedures were approved by the local Ethics Committee and were fully complying with the 

Declaration of Helsinki. 

Experimental procedure  

The two participants sat comfortably on two chairs positioned face-to-face separated by a table 

(dimension: 1 x 0.3 m; Figure 13). In each couple, one participant was designated as the “Carrier”, 

the second as the “Partner”. Roles were kept the same during the whole experiment. The carrier role 

was to hold stable an object positioned on his left hand, until this object was lifted. The object was a 

touch-sensitive cylinder weighting 300g (6 x 18cm; diameter x height). The carrier held the object on 

a flat tray fixed to his hand by means of a Velcro strap. The tray was made of two platforms spaced 

3cm (dimension: 10 x 10 the top wood, and 7 x 7 cm the bottom one) to fit four load cells between 

them. The left arm of the carrier was kept flexed on the table with the wrist supinated and fingers 

pointing forward in an unconstrained posture throughout the entire experiment session. In a first 

experimental condition, the partner had to reach, grasp and lift the carrier’s object with his right hand 

(Joint condition; Figure 13B). In a second experimental condition, the carrier performed the same 

task by her/himself (Self condition; Figure 13A) by holding the tray with his left hand while reaching, 

grasping and lifting the object with her/his right hand. These two conditions were carried out with the 

carrier having either the eyes opened (EO) or closed (EC). In all conditions, reaching movement onset 

was self-paced and detected by a touch sensor fixed on a square plate (side: 10cm), marking on the 

table the starting position of partner’s right hand.  
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Figure 13: Experimental setup. 

(A) Self condition: frontal view of the carrier holding the object with his left hand and reaching (left), 

grasping (middle) and lifting (right) the object with his right hand. (B) Joint condition: Lateral view 

of the carrier (black dress) holding the object with his left hand, while his partner (grey dress) reach 

(left), grasp (middle) and lift (right) with his right hand. In all experimental conditions, the carrier 

had to keep his left arm flexed on the table with the wrist supinated holding the object in his hand. 

The bar situated below the pictures (C) represents the duration of the different phases of the task: 

reaching (white), grasping (light gray), lifting (dark gray) for a typical trial (condition self-EO). 

These phases were determined based on touch and load sensors displayed below (D). The two lower 

panels show the muscle activity of wrist flexor (FDS; E) and extensor (EXT; F) muscles for the same 

trial. Vertical lines indicate the moment at which the object was touched (Toc), at which the lifting of 

the object started (Lon) and at which the lifting ended (Loff). 
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The combination of these experimental conditions allowed us to evaluate the respective influence of 

somatic, visual and efference copy signals on an agent capability to anticipate the object lifting 

(Figure 14). In fact, to verify the effect of integrating somatic and visual inputs with the efferent signal 

on APAs, three movement phases were identified, each reflecting the presence of different 

combinations of predictive signals. These phases are respectively aligned to the onset of finger touch 

with the object (Toc for time of contact), Lift onset (Lon) and Lift offset (Loff). As illustrated in 

Figure 14, visual feedback (Vfb) and efference copy are progressively integrated by touch feedback 

(Tfb) and force feedback (Ffb) during Self-EO condition, while Self-EC instead lacks Vfb. Joint-EO 

closely matches the information present in Self-EO though lacking the critical contribution of 

efference copy. Finally, the Joint-EC lacks both Vfb and efference copy, while keeping only Tfb and 

Ffb. The experiment was run in two randomized blocks for each experimental condition: self-EO, 

self-EC, Joint-EO, Joint-EC. Each block consisted in 20 trials and was followed by 5 min of rest. 

During rest periods, instructions concerning the upcoming block were given. Before starting the 

recording, a variable number of training trials (~ 8 trials with EO and EC in both conditions) were 

run until the participants felt confident with the task. The entire procedure lasted around 40 min.  

 

 

Figure 14: Illustration of available sensorial information at each phase of the task. 

General schema showing the signals available for prediction in each phase of task: reaching, 

grasping and lifting. Start: for reaching movement onset (Mon); Touch: time of hand contact with the 

object (Toc); lift onset (Lon), lift offset (Loff). Shades of grey, blue, red and orange represent 

available information in each phase for experimental conditions. Self when the task was performed 

alone, and joint when it was performed by dyads. Eyes opened (EO) and closed (EC), Efference copy 

(ECopy), visual, tactile or force feedback (Vfb, Tfb, Ffb, respectively) become progressively available 

during the task. 

Electromyographic and Behavioral Signal Acquisition  

All data were acquired via an acquisition board (CED Power1401-3A, Cambridge Electronic Design, 

Cambridge, UK) and stored on a PC with Dasylab Software (MCC corporate, Norton, USA). 
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The electromyographic signal was recorded using a wireless system (Aurion, Italy) amplifying the 

data (gain of 1,000) and digitizing at 2000 Hz. Electrodes were arranged according to a bipolar 

tendon-belly montage over the flexor digitorium superficialis (FDS; Figure 13E) and the extensor 

digitorium communis (EXT; Figure 13F) of the carrier’s left arm for all conditions. Three other types 

of behavioral data were simultaneously acquired: (1) touch signal coming from the right hand starting 

place (binary signal: value 5 if the hand is in contact with the starting place, value 0 from the start of 

the reaching movement); (2) touch signal coming from the object holding by the Carrier (binary 

signal: value 5 when the hand is in contact with the object, value 0 before the grasp of the bottle by 

the right hand; Figure 13D); and (3)  weight-related signal coming from the four load cells situated 

in the tray (continuous signal; Figure 13D). These signals were recorded to define the movement 

phases and the precise events of object release from the tray supported by the carriers.  

Data Analysis  

Definition of movement phases: The right-hand movement onset (Mon) was determined as the first 

point at which the touch signal coming from the starting place reached a null value (for a minimum 

of 50ms). The right-hand time of contact with the object (Toc) was determined as the first point at 

which the touch signal coming from object reach a value of 5 (for a minimum of 50ms; Figure 13). 

The beginning and the end of the lifting phase (respectively Lon and Loff) were extracted from the 

tray’s load signal. Lon was defined as the first time-point dropping below 95% of the maximal load 

value (for a minimal duration of 50 ms). Loff was defined as the first time-point dropping below 5% 

of the maximal load value (for a minimal duration of 50 ms). By using these time-points, the duration 

of each movement phase was computed (Figure 13C): (1) Trial duration – from Mon to Loff; (2) 

reaching duration – from Mon to Toc; (3) grasping duration – from Toc to Lon, (4) lifting duration – 

from Lon to Loff. 

EMG processing: EMG signals of each muscle were first visually inspected trial-by-trial to control 

for the presence of recording artefacts. No trial was discarded after this procedure. FDS and EXT 

EMGs for each trial were first high-pass filtered (20 Hz) and then digitally full-wave rectified and 

low-pass filtered (Butterworth filter, cut-off frequency of 5 Hz, zero-phase distortion; Kubicki et al. 

2016) and normalized to 1,000 time steps. Compared to the tonic activity enabling the maintenance 

of the object on the tray, the unloading is compensated via a decrease of FDS activity and an increase 

of EXT (Figure 13E and F). To evaluate these modulations, EMG signals were cut and temporally 

aligned to Toc (from Toc-500ms to Toc+1000ms), Lon (from Lon-500ms to Lon+1000ms), and Loff 

(from Loff-650ms to Loff+850ms) for each trial. For each alignment, each participant and each 

experimental condition, we computed the mean activity of FDS and EXT muscles. We then evaluated 

the presence of EXT activations and FDS deactivations using a semi-automatic algorithm. For each 
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participant, we defined the onset of activation (EXT) or deactivation (FDS) as the first time-point at 

which muscle activity was higher (EXT) or lower (FDS) than the tonic baseline activity, for a 

minimum duration of 150ms. Baseline activity was computed for each participant and each muscle 

as the mean muscle activity on a 350ms window (from Toc-550ms to Toc-200m) adding (EXT) or 

subtracting (FDS) 3 standard deviations. Further, muscles adjustments were studied based on 

movement phases: reaching-APA (before Toc), grasping-APA (before Lon) and lifting-APA (before 

Loff).   

Statistical Analysis 

The Shapiro-Wilk test was used to check the normality assumption for parametric tests. Data were 

not all normally distributed (p<0.05). Thus, all statistical comparisons were done using two-tail 

permutation tests (5000 permutations; Matlab function mult_comp_perm_t1). All P-values were 

corrected for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (Matlab 

function fdr_bh). 

 

(c) Results  

Task Learning effects 

The first analysis considered the difference between the two recording sessions of each condition to 

evaluate a potential learning effect. No significant difference was found between experimental blocks 

for the duration of each movement phases (Statistical analyses in Supplementary Material L). Also, 

APAs for both FDS and EXT aligned to Toc, Lon and Loff did not differ (Statistical analyses in 

Supplementary Material L). Thus, since no learning effect was visible, analyses were run on all trials. 

The absence of learning effects suggested that the task is a well-learned and automatic daily action. 

All numerical results presented in this part are expressed in mean ±SEM. 

Movement phases Duration  

The duration of the reach and grasp actions (all: Mon-Lon; reach: Mon-Toc; grasp: Toc-Lon) were 

significantly longer in the self-EC condition (all: 898±40ms, reach: 613±32ms, grasp: 81±12ms, 

respectively) compared to the three other conditions (self-EO: all=718±28ms, reach=534±26ms, 

grasp=13±4ms; Joint-EO: all=753±28ms, reach=523±20ms, grasp=33±9ms; Joint-EC: 

all=760±28ms, reach=527±19ms, grasp=32±7ms; p<0.05). Thus, reaching duration was comparable 

when performed by the partner or the carrier herself. This excluded any mechanical effect due to 

potential higher hand momentum on the consecutive grasping and unloading phases and makes 

possible a suitable comparison of APAs between Self-EO and Joint-EO/EC conditions. Differently, 
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the duration of lifting phase (Lon-Loff) was shorter in self-EO (172±6ms) compared to other 

conditions (self-EC: 204±4ms; Joint-EO: 197±7ms; Joint-EC: 201±8ms; p<0.05). No other 

significant difference was found (Figure 15). 

 

 

Figure 15: Movement phases durations. 

Durations (in ms) of movement phases for each experimental condition. From left to right: (1) trial 

duration: from the onset of reaching movement (Mon) to the end of object lifting (Loff), (2) reaching 

duration: from Mon to the time of contact with the object (Toc), (3) grasping duration: from Toc to 

the onset of the object lifting (Lon), (4) lifting duration - from Lon to Loff. Asterisks indicate 

significant differences (p<0.05). Bars represent standard errors. 

 

EMG activation/deactivation onset 

Figure 16 shows the average FDS deactivation and EXT activation time-course with respect to each 

of the three identified time-points (Toc, Lon and Loff). Figure 17 instead represents the muscle 

activation (EXT) or deactivation (FDS) onset in relation to the three kinematic landmarks (Toc, Lon 

and Loff). 

 

 

Figure 16: Electromyographic activation patterns. 

Standard errors around the mean of electromyography activity of flexor (FDS, upper panels) and 

extensor (EXT, lower panels) muscles, aligned on time of contact with the object (Toc), lift onset 
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(Lon) and lift offset (Loff), for each experimental condition (Self-EO in grey, Self-EC in light blue, 

Joint-EO in red, Joint-EC in orange). EO, eyes opened; EC, eyes closed. 

 

APA before time of contact: FDS onset deactivation appeared significantly sooner in the two EO-

conditions (Self: -83±11ms; Joint: -45±22ms) compared to the two EC-conditions (Self: 20±19ms; 

Joint: 54±19ms; p<0.05). The activation of EXT in Self-EO condition occurred significantly earlier 

than in Self-EC (53±12ms; p<0.05, t=-9.1) and in Joint-EC (48±15ms; p<0.05, t=-4.6). No other 

significant difference was found (Figure 17A). 

APA before lift onset: FDS deactivation in Self-EO (-85±9ms) occurred significantly sooner 

compared to the three other conditions (Self-EC: -23±25ms, p<0.05, t=-2.3; Joint-EO: -36±19ms, 

p<0.05, t=-2.3; Joint-EC: 48±15ms, p<0.05, t=-8.9). Inversely, FDS deactivation during Joint-EC 

was significantly later than the other conditions (Self-EC: p<0.05, t=-2.3; Joint-EO: p<0.05, t=-4.1). 

A similar pattern of results was found for EXT. Activation in Self-EO (-40±9ms) was significantly 

sooner than Joint-EC (29±13ms, p<0.05, t=-4.1), marginally different from Self-EC (-15±7ms, 

p=0.05, t=-2.4), but no different than Joint-EO (14±38ms). Additionally, EXT activation in Joint-EC 

was significantly later than in Self-EC (p<0.05, t=-3.6; Figure 17B).  

APA before lift offset: There was no difference between Self-EO (FDS: -225±6ms; EXT: -206±8ms) 

and Self-EC (FDS: -214±8ms; EXT: -217±7ms) for both muscles. Further, the onset of activation for 

EXT and deactivation for FDS in the two Self conditions appeared significantly sooner compared to 

the two Joint conditions (Joint-EO: FDS: -183±7ms, EXT: -168±8ms; Joint-EC: FDS: -152±16ms, 

EXT: -140±14ms; p<0.05). In addition, a significant difference between the conditions Joint-EO and 

Joint-EC was found for EXT onset of activation (p<0.05, t=-1.8; Figure 17C). 

 

 

Figure 17: Activation and deactivation onset. 

EMG flexor (FDS) deactivation and extensor (EXT) activation onset in function of the time to contact 

with the object (Toc, left panel, A), the lift onset (Lon, middle panel, B) and the lift off (Loff, right 

panel, C). Experimental conditions are Self-EO in grey, Self-EC in light blue, Joint-EO in red, Joint-

EC in orange. EO, eyes opened; EC, eyes closed. Asterisks indicate significant differences (p<0.05). 
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To better interpret these results, Figure 18 illustrates the averaged onset of FDS deactivation and EXT 

activation in function of movement phases and experimental conditions. The figure highlights a clear 

effect of visual information on the timing of APAs. Indeed, delayed APAs are observed in the two 

EC conditions. In the Self-EC condition APAs started after Toc and the grasping duration also was 

also prolonged. The Joint-EC is the only condition in which APAs initiate after Lon. Finally, in Joint-

EO the APAs compared to Self-EO is slightly shortened but still visible. However, as shown in Figure 

16 the amplitude of FDS deactivation before Toc is far smaller during Joint-EO when compared to 

Self-EO, suggesting an incomplete anticipation when the efference copy is available. 

 

 

Figure 18: Main results illustration. 

Illustration of the averaged onset of FDS deactivation and EXT activation in function of the different 

kinematic landmarks (Mon, Toc, Lon, Loff) and the four experimental conditions (black: Self-EO; 

blue: Self-EC; red: Joint-EO; orange: Joint-EC). Reaching phase from movement onset (Mon) to 

time of contact (Toc) in white, grasping from Toc to start of lifting (Lon) in light grey, and lifting 

from Lon to lift off (Loff) in dark grey. 

 

(d) Discussion  

When participants performed the task themselves in full vision, muscle activities showed early APAs 

before the grasping onset. Without visual input, muscle changes on the load-bearing hand were 

significantly delayed after the grasping onset, similarly to the classical APAs (Hugon, Massion, and 

Wiesendanger 1982; Dufossé, Hugon, and Massion 1985; Massion et al. 1999). Importantly, APAs 

were present in the joint action scenario, though significantly modulated by the lack of efference copy 

signal and thus depended on accumulating sensory information. 

The behavioral analysis revealed longer movement duration in Self-EC compared to EO condition, 

suggesting the crucial role of the visual feedback for the task achievement. In fact, all movement 

phases (reaching, grasping, and lifting) increased, the first slower reaching impacting successive 
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grasping and lifting durations. Herein, participants were asked to reach a big object requiring a rough 

cylindrical hand grasp. Thus, the longer reaching duration did not reflect an impairment to monitor 

the reaching without visual feedback and to update the internal representation of target location. 

Indeed, object size, shape and distance were compatible with a successful grasping without visual 

input (Gentilucci et al. 1997; Rand et al. 2007).  The slower reaching thus rather reflected the 

difficulty to link the grasping with the lifting without vision. When performed by the partner, although 

reaching and grasping duration remained the same than in self, lifting phases was always longer 

compared to self-EO, providing the temporal condition for controlling the task in less predictive 

context.   

APAs investigation revealed clear forearm muscle changes in the self with eyes open condition where 

flexor deactivation started about 100ms before the hand touched the object (reaching APA). This 

result is difficult to compare with previous investigations where the two hands systematically gripped 

on the object to be lifted (Hugon, Massion, and Wiesendanger 1982; Dufossé, Hugon, and Massion 

1985; Barlaam et al. 2011) did not allow to verify the presence of APA during the reaching phase. 

However, such early-anticipated muscle modulation seems appropriate when the load-bearing hand 

is not mechanically stabilized, and consequently imposed huger spatial and temporal uncertainties to 

the reaching and grasping sub tasks. Oculomotor saccade toward the object to be grasped anticipating 

the hand reaching movement (Esposti et al. 2017) combined to the efference copy of the motor 

command could provide crucial inputs in producing reaching APAs. Without visual cues, flexor 

deactivation onset was systematically recorded after the grasping (grasping APA), suggesting that 

efference copy alone is not sufficient to generate reaching APAs.  

Because APAs have not been observed when the unloading was generated externally (e.g., (Dufossé, 

Hugon, and Massion 1985; Aruin and Latash 1995), or when the perturbation was signalled by an 

auditory tone (Dufossé, Hugon, and Massion 1985; Witney, Goodbody, and Wolpert 1999) the 

presence of APAs in the dyadic context was unlikely. Anticipated muscle changes however followed 

a different pattern in joint condition compared to self-initiated APAs where the abrupt deactivation 

of the flexor muscle contrasted with the smooth change before touch followed by a sharp flexor 

deactivation recorded in Joint-EO. Smooth and early muscle changes could reflect pre-APAs, the 

benefit of which remaining however to be elucidated. Possibly, the visual cues would prepare APAs 

that will be later fully release when somatic inputs are available. One potential advantage would be 

to progressively integrate the sequence of sensory events expected along the task course (see Figure 

14). The presence of flexor deactivation 150ms before the lift off when the efference copy and the 

visual feedback are lacking (Joint-EC condition), supports the contribution of the successive 

cutaneous and proprioceptive cues for ensuing late postural adjustments. Indeed, even delayed flexor 
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deactivation and extensor activation recorded before the lift off (lifting APAs) are compatibles with 

efficient postural adjustments. For instance, during a classical bimanual load-lifting task APAs are 

recorded about 30-20ms before the lift off (Hugon, Massion, and Wiesendanger 1982; Barlaam et al. 

2011). The duration of the present haptic interactions (including the grasping and the lifting phases) 

is thus compatible with the timing of sensorimotor loops engaged in corrective actions (~100ms; 

Johansson and Flanagan 2009). A fast-cutaneous response (about 50ms, Cole and Abbs 1988) and a 

modulation of the flexor deactivation of the supporting hand (about 200ms before the Loff in Joint-

EC) to assist the lifting movement are still possible when visual input and the efferent copy are 

lacking. Subsequently, longer grasping and lifting phases recorded in dyadic creates the temporal 

condition for a sensorimotor dialogue between the dyad, where the load bearing hand would assist 

the lifting hand. This agrees with the idea that APAs play a dynamic role in postural transition and 

provide additional force for the task goal achievement (Stapley et al. 1999; Hodges, Spatt, and 

Patterson 1999; Pozzo, Ouamer, and Gentil 2001).  

Several causes could limit the predictions about the two agents’ actions and thus promote a gradual 

sensorimotor integration to improve social interactions. Hand reaching movements, even if less 

variables when performed synchronously and without physical interaction (Sacheli et al. 2013), 

remains however strongly participant dependent and much less predictable than non-living object 

kinematic (Hilt et al. 2016; Berret et al. 2011). Further, self-bimanual movements represent a special 

case of multitasking requiring the organization of multiple command streams to control two effectors 

in addition to their temporal sequencing. Asking participants to perform the task with a pair (one 

agent picking with the right hand the object supported in by the left hand of the carrier) mimicks a 

‘split-brain’ situation (Wiesendanger and Serrien 2004) where the corollary discharge of the motor 

command to the lifting hand can no more be relayed to subcortical structures that modulates the 

commands to the postural hand. Thus, a considerable amount of neural activity related to ipsilateral 

limb available in self-condition (Kermadi et al. 1997; Donchin, Cardoso de Oliveira, and Vaadia 

1999) is missing in dyadic condition. Precisely, the basal ganglia (Wiesendanger et al. 1996) and the 

cerebellum (Nirkko et al. 1997) modulate hemispheric interactions during bimanual tasks. 

Investigations performed in patients with callosal lesion showed desynchronization of two interacting 

hands similarly in vision and no vision conditions. These results indicate the major role of the corpus 

callosum in exchanging sensory information about left and right limb motions and of the basal ganglia 

in adjusting the postural and the moving hand (Viallet et al. 1992; Serrien and Wiesendanger 2000). 

At last, previous artificial ‘split-brain’ experiment revealed that visual guidance alone was insufficient 

for perfect coordination of two independent arms (Perrig, Kazennikov, and Wiesendanger 1999). 
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Nonetheless, even if limited, visual cues about kinematic variables contribute to the dyadic 

interaction. Vision of others' actions has been demonstrated to recruit both the motor (Caetano, 

Jousmaki, and Hari 2007; Hari et al. 1998) and the somatic system (Avikainen, Forss, and Hari 2002; 

S. Rossi et al. 2002). These activations have been reported to anticipate the temporal deployment of 

observed actions (Rizzolatti and Sinigaglia 2016). These neurophysiological results fit with findings 

showing that the reuse of one’s own bimanual model could have positive effects on the prediction of 

co-actor’s action timing (Pezzulo et al. 2017). In our task, visual cues from partner’s action might be 

used to anticipate the time of contact with the object and thus engage pre-APAs. However, visual 

perception of action and associated motor resonance partially support internal variables adjustment 

of two interacting agents. Rather, our findings demonstrate that during complementary actions (a 

common social behavior requiring flexibility), in addition to self-motor representations, individuals 

adapt a real time cooperation by continuously integrating sensory signals coming from various 

sources. 

 

(e) Additional data and analyses 

L: Study 2.1: FDS/EXT onset of deactivation/activation 

 

• FDS: Data (mean ±sem) 
 

 

 

• FDS: Statistics (permutation test): Blok 1 vs Blok 2 

 

 ToC Lon Loff 

Self-EO p=0.74, t=0.50 p=0.67, t=0.62 p=0.67, t=0.45 

Self-EC p=0.74, t=0.47 p=0.67, t=0.46 p=0.67, t=-0.47 

Other-EO p=0.74, t=0.33 p=0.40, t=1.30 p=0.28, t=1.52 

Other - EC p=0.74, t=1.23 p=0.09, t=1.59 p=0.40, t=1.36 

 

 

 
 

 

 

 ToC Lon Loff 

Blok 1 Blok 2 Blok 1 Blok 2 Blok 1 Blok 2 

Self-EO -132 ±19 -152 ±29 -152 ±20  -170 ±21 -477 ±22 -493 ±27 

Self-EC 78 ±58 32 ±38 -49 ±51 -108 ±60 -547 ±71 -513 ±62 

Other-EO -21 ±42 -25 ±45 -71 ±45 -101 ±41 -335 ±117 -484 ±40 

Other-EC 239 ±86 136 ±51 201 ±88 63 ±43 -203 ±90 -325 ±52 
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• EXT: Data (mean ±sem) 
 

 

 

• EXT: Statistics (permutation test): Blok 1 vs Blok 2 

 

 ToC Lon Loff 

Self-EO p=0.51, t=1.21 p=0.59, t=1.21 p=0.60, t=1.16 

Self-EC p=0.51, t=1.39 p=0.58, t=1.71 p=0.60, t=1.69 

Other-EO p=0.94, t=0.28 p=0.86, t=0.25 p=0.90, t=0.22 

Other - EC p=0.80, t=0.64 p=0.86, t=0.51 p=0.90, t=0.44 

 

 

 

 

 

 

 

 

  

 ToC Lon Loff 

Blok 1 Blok 2 Blok 1 Blok 2 Blok 1 Blok 2 

Self-EO -20 ±44 -66 ±22 -38 ±43  -87 ±25 -378 ±42 -425 ±23 

Self-EC 97 ±21 41 ±39 -29 ±11 -113 ±46 -432 ±13 -515 ±46 

Other-EO 84 ±96 67 ±58 38 ±100 24 ±66 -357 ±102 -377 ±62 

Other-EC 216 ±86 150 ±66 187 ±86 136 ±78 -214 ±91 -259 ±69 
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2. Study 2: Multi-layer adaptation of group coordination to a sensorial perturbation 

 

Human interaction requires mastering the integration of multimodal sources of information to achieve 

effective interpersonal coordination. The present study examines the movement-based interaction 

dynamics in an orchestra (one conductor and two sections of violinists), adapting to a perturbation 

affecting their normal pattern of sensorimotor communication (half a turn rotation of the first 

violinists’ section). We explore the relation between different channels of communication (hand Vs. 

head kinematics) and the different modes of interaction (coordination versus synchronization). The 

instrumental movements (hand kinematics), highlighted robust leader to follower relations, 

substantially not affected by the experimental manipulation suggesting an important role of memory 

and score reading in this process. On the contrary, within ancillary movements (head kinematics), we 

could observe how the perturbation reshaped the social architecture of the orchestra. Indeed, the role 

of the second line of violinists evolved and, through a parallel regulation of inter-group coordination 

and intra-group synchronization, achieved status of mediator between the conductor and the first line. 

We show that complex, multi-agent, non-verbal interaction is achieved via the co-regulation of 

different modes of cooperation (complementary versus synchronous) through different channels of 

communication (ancillary versus instrumental movements) to flexibly adapt to contextual constraints. 

 

My Contribution: data analysis, results interpretation and manuscript writing 

 

This work is currently submitted in Scientific Reports:  

PM Hilt, L Badino, A D’Ausilio, G Volpe, L Fadiga and A Camurri. Multi-layer adaptation of group 

coordination to a sensorial perturbation.  

 

This work has been presented as a poster communication in the 17th international ACAPS 

congress (29th to 31st October 2017, Dijon, France): 

PM Hilt, L Badino, A D’Ausilio, G Volpe, L Fadiga and A Camurri. Communication Dynamics in 

Orchestra: musicians-musicians and musicians-conductor 
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(a) Introduction 

Successful human-to-human interaction requires important behavioral adaptation, as well as 

prediction. A large body of literature has focused on cooperation towards shared goals, where humans 

must combine available sensory information with internal movement production models (Wolpert, 

Doya, and Kawato 2003; Sebanz and Knoblich 2009; Jeannerod 2001; Friston, Mattout, and Kilner 

2011). In this regard, researchers investigated how dyads achieve interpersonal simple sensorimotor 

coordination, such as walking side-by-side (van Ulzen et al. 2008) or rocking in rocking-chairs 

(Richardson et al. 2007). In such contexts, co-actors continuously influence each other and tend to 

spatially and temporally synchronize their movements. Beside imitation, action complementarity play 

a key role in inter-individual coordination with the goal of achieving efficient collaboration 

(Newman-Norlund, Noordzij, et al. 2007). Social interaction indeed goes beyond synchronization 

with other’s actions and relies also on inferring others’ motor goals and intentions to generate a 

context-appropriate action. To achieve fast inter-individual coordination, individuals may build 

internal predictive models of other’s behavior. In function of the context, the most appropriate motor 

model is compared with the current observed movement, to generate a prediction error (Friston, 

Mattout, and Kilner 2011) and update own motor planning (Sebanz, Bekkering, and Knoblich 2006).  

Due to the technical and analytical complexity in exploring the details of human sensorimotor 

interaction, only few experiments went further than a dyadic set-up (Fessler and Holbrook 2016; 

Dikker et al. 2017; Alderisio et al. 2016; Codrons et al. 2014). However, in daily life, things are 

usually much more complex. For instance, during a conversation, information is sampled through 

multiple channels (e.g. vision, audition), sometimes in parallel (e.g. information in the foreground 

and information from the background) and at different temporo-spatial scales (e.g. slow whole-body 

movements versus fast lip motions). At the same time, different kinds of information may be 

conveyed in parallel through different channels. For example, in speech, bodily gestures and spoken 

words are generally co-expressive (McNeill 2000). In this context, communication requires flexible 

means to integrate multimodal data, across multiple timescales and act accordingly. Therefore, proper 

quantification of (realistic) group coordination is today one of the key missing elements to understand 

how humans manage to interact with others by efficiently selecting, processing and sending 

information. 

In this context, ensemble musicians have been proposed as an ideal model, by keeping the key 

multidimensional properties of natural sensorimotor interaction, but allowing relatively good 

experimental control (Volpe, D’Ausilio, et al. 2016; D’Ausilio, Novembre, et al. 2015). Few previous 

studies, by relying on kinematic recordings, have started to model sensorimotor information flows 

across musicians. D’Ausilio and collaborators (D’Ausilio et al. 2012) recorded violinists’ and 
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conductors’ movement kinematics to investigate causal relationships across musicians. They showed 

that conductors influenced communication between musicians and that aesthetic appreciation was 

dependent on the co-regulation of leader-to-musician and musician-to-musician communication 

patterns (D’Ausilio et al. 2012). Leadership in the orchestra scenario is explicit since the conductor 

determines tempo, selects musicians, leads rehearsals, and takes critical decision about interpretation 

of the pieces. In the absence of explicit leadership (e.g. quartet), this role is shared across musicians 

(Badino et al. 2014). The quartet scenario was also used by Chang and collaborators (Chang et al. 

2017) to investigate the leader-follower relation during a manipulation of the visual information 

available to musicians: musicians faced 180 degrees away from the center (to prevent direct visual 

contact with each other). They showed that the influence of the leader on followers depended on 

visual contact, confirming that information flow is affected by a change in the available information.  

Beyond global descriptions of musician’s pattern of relationships, the complexity of these kinds of 

scenario could also be exploited to distinguish and evaluate the existence of multiple channels of 

communication as well as their respective role in efficient coordination. In previous studies, one 

representative kinematic parameter was used to extract global coordination (D’Ausilio et al. 2012; 

Badino et al. 2014; Chang et al. 2017). However, we know that movements of different body parts 

may convey substantially different types of information. For instance arm movements in violinists 

directly control the sound output (i.e., instrumental gestures), whereas complementary torso 

oscillations may serve a secondary communicative purpose (ancillary gestures (Wanderley 2002; 

D’Ausilio, Novembre, et al. 2015)). More importantly, movements of different body parts may act as 

different channels of communication, possibly with different roles depending on the specific 

communication mode. For example, within a quartet (Badino et al. 2014; Chang et al. 2017), 

musicians have specific roles while in orchestras, musicians generally play in distinct sections (e.g. 

sections of violinists). This means that in the orchestra scenario, different modes of communication 

coexist: a complementary coordination with the conductor and other musicians, in parallel with the 

synchronization with musicians of the same group. 

In the present study, we aimed at understanding how these different modes are co-regulated during 

natural interaction and whether these dynamics are associated to different channels of 

communication. We had a full orchestra playing music while we recorded bow and head kinematics 

(instrumental and ancillary movements) of a first and second section of violinists (four violinists in 

each section) as well as the hand and head kinematics of two different conductors. In one experimental 

condition we applied a perturbation to the orchestra sensorimotor information flow. The perturbation 

consisted in half-turn rotation of the first section of violinists so that they faced the second section 

and couldn’t see the conductor anymore. This perturbation modifies the perceptuo-motor context of 
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the first section of violinists, placing also the second section and the conductor into a novel playing 

situation. By doing so, we analyzed musicians to musicians and musicians to conductor inter-group 

coordination as well as intra-group synchronization (modes of communication), through different 

channels of communication (instrumental and ancillary movements) during different playing 

situations (normal and perturbed).  

We hypothesized a co-regulation of the different modes of communication to adapt to the different 

situations. In the perturbed context, we expected a general increase of the influence of the second 

section on other musicians and conductor, together with a decrease of the influence of the first section. 

In parallel, the second section may decrease intra-group synchronization strength to focus on 

communication with the first section and conductor. On the contrary, the first section may need to 

rely more on his own and increase intra-group synchronicity. Finally, the two channels of 

communication should exhibit different modulations across groups, modes and conditions. For 

instance, information channeled through arm movements, essential for playing, may be less affected 

by the perturbation than the ancillary channel. 

 

(b) Materials and Methods 

Subjects 

A full orchestra consisting of 8 violinists (2 sections of four violinists: S1 and S2) and 10 

instrumentalists participated in the study along with two professional conductors (C1 and C2). Data 

were collected from the two violinists’ sections and conductors. Each violinists section counted four 

players. The study was approved by the SIEMPRE Project Management Committee and adhered to 

the standards laid down in the Declaration of Helsinki. All participants gave written informed consent 

before participating. The synchronized multimodal recordings of the musicians obtained for this 

experiment as well as the details of the SIEMPRE platform for multimodal recordings are made 

available to the research community from the EU ICT FET SIEMPRE web pages 

(http://www.siempre.infomus.org). 

Procedure  

The two conductors and the orchestra executed two pieces of music selected from their repertoire so 

that their performance could already be at plateau and thus showing no learning during the 

experiment. The music pieces were excerpts from the ouverture of "Signor Bruschino" by Rossini 

and the Vivaldiana, terzo movimento by Malipiero (lasting around five minutes each). Two 

experimental conditions were tested (Figure 19A), which only differ by the way one section 

(henceforth, first section, S1) interacts with the conductor and the other section (henceforth, second 

http://www.siempre.infomus.org/
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section, S2). In one condition (normal condition, Norm; Figure 19 in blue), S1 violinists - lined in a 

single row - were able to see C, but not S2 violinists. This condition kept the standard position of the 

musicians. In the second condition (perturbed condition; Figure 19 in red) S1 violinists - still lined in 

a single row - were able to see S2 violinists, but not C (since they were facing backwards with respect 

to him). This condition altered the standard position of the musicians. The two pieces were repeated 

six times (three times with C1 and three other times with C2) in each experimental condition (normal 

versus perturbed). In total, 24 trials were recorded.  

 

 

Figure 19: Orchestra musicians’ position and associated computations. 

The section in the middle represents the respective position of musicians in the orchestra: conductor 

(C), first section of violinists (S1; 4 violinists: V1, V2, V3 and V4) and second section of violinists 

(S2; 4 violinists: V5, V6, V7 and V8). In the normal condition (Norm; blue), S1 faces the conductor. 

In the perturbed condition (Pert; red), S1 rotates 180° facing S2. For each participant we recorded 

head (black dot) and hand (grey dot) kinematics. We extracted the pattern of communication at the 

group-level (between S1, S2 and C) using conditional Granger Causality (G) as shown in the top of 

the figure. Additionally, intra-group coordination, as described in the lower part of the figure, was 

computed via principal component analysis (%PC1) and an index of predictability of the conductor 

behavior (using the goodness of fit of the associated auto-regressive model; ARfit). 
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Apparatus and set-up  

Movement data were collected (1000Hz) by using a Qualisys motion capture system equipped with 

7 cameras, integrated with the EyesWeb XMI platform: http://www.infomus.org/eyesweb_ita.php 

(Volpe, Alborno, et al. 2016), including audio and physiological signals (not used here). Each violinist 

was equipped with passive markers of the Qualisys motion capture system. More specifically, for 

each player and conductor one marker was placed on the head and two markers were placed above 

the eyebrows. An additional marker was placed on the bows of the players and on the baton of the 

conductors. After data tracking by using the Qualysis Track Manager software, the data was exported 

and analyzed in MATLAB. 

Data pre-processing and analysis 

Data pre-processing and Granger causality analysis. We first used the spline method to handle the 

missing data in the 3D trajectories. The spline method interpolates missing data with continuous third 

order derivatives. We then computed the magnitude of the acceleration from each 3D trajectory (as 

done in (D’Ausilio et al. 2012)). Each musician time-series on each trial was normalized (to z-scores) 

and outliers values (>6std) were set as absent values (NaN) and interpolated when the gap was smaller 

than 200 frames (i.e. 2sec).  

Inter-group communication: Granger causality analysis. Granger causality analysis was then carried 

out on the preprocessed acceleration waveforms. According to Granger formalism, a signal X 

Granger-causes (or G-causes) a signal Y if the past values of X contains information that helps predict 

Y above and beyond the information contained in the past values of Y alone. Thus, a Granger-

causality score (gca) was defined between each pair of musicians as the log-likelihood ratio of the 

degree to which the prior time series of a musician X (causing variable) contributes to predict the 

current status of a musician Y (dependent variable), over and above the degree to which it is predicted 

by its own prior time series while conditional on the remaining musicians time-series (conditional 

variables). The use of conditional allow to take into account the influence of musicians out of the 

tested pair to avoid misinterpretation due to multiple sources of information (D’Ausilio et al. 2012; 

Chang et al. 2017). Gca was evaluated (pairwise), every 500 milliseconds on 3-s sliding windows 

using the “Granger Causality connectivity analysis” Matlab toolbox (Seth 2010). Windows 

containing more than one third (i.e. 166ms) of absent values were not used in the analysis (less than 

5% of the total windows number). The Granger Causality computation is similar to the one used in 

(Badino et al. 2014; D’Ausilio et al. 2012). From this point, we will represent gca of X on Y by the 

notations GX->Y or X->Y.  

http://www.infomus.org/eyesweb_ita.php
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We were interested in the causality relations between the conductor and each section of violinists (S1 

and S2). This analysis is illustrated in Figure 19 (upper panel). We performed three different types of 

Conditional Granger causality computations: (1) Causality between each conductor and violinists of 

S1 (taken separately): defining as causing variable the conductor, as dependent variable each S1 

violinist separately and the other way around [conditional variable: musicians in S2 - taken 

separately]. (2) Causality between each conductor and violinists of S2 (taken separately): defining as 

causing variable the conductor, as dependent variable each S2 violinist separately and the other way 

around [conditional variable: musicians in S1 - taken separately]. (3) Causality between the violinists 

of S1 and S2 (taken separately): defining as causing variable each S1 violinist separately, as 

dependent variable S2 violinists separately and the other way around [conditional variable: the 

conductor]. In these three analyses, we computed gca between each pair of musicians on each 3s 

window. When the causality between the two variables was significant, we kept the gca value 

otherwise this value was set to 0. Finally, gca values were averaged across conditional variables and 

musicians of same section, to get one value per group (i.e. C->S1, S1->C, C->S2, S2->C, S1->S2, 

S2->S1). Thus, for each experimental condition, the output matrix consisted of 6 columns (the number 

of causal relation) and thousands of lines (the number of considered windows). 

Intra-section synchronization: Principal Component Analysis. To evaluate the level of 

synchronization between violinists’ movements of each section of violinists (playing the same score), 

we used a principal component analysis (PCA (Jolliffe 2002)). PCA is a standard statistical technique 

generally used to extract a low-dimensional structure from a high-dimensional dataset. 

Dimensionality reduction method are classically used in the motor synergies field to extract 

invariant/similar features across time between muscle or kinematic parameters. In particular, PCA 

has been used to characterize the degree of covariance across time of different body segments in 

whole-body movements (e.g. locomotion (Hicheur, Terekhov, and Berthoz 2007); reaching (Berret 

et al. 2009)). Here, PCA was performed on the acceleration profiles of the four violinists of each 

section (Figure 19, lower panel), windowed and pre-processed in the same way as Granger Causality 

analysis. Mathematically, the method involves the eigenvalue decomposition of a dataset covariance 

matrix in order to find the principal directions in the high-dimensional space. For each of the 

windows, we considered an input matrix composed of 300 rows (temporal frames) and 4 columns 

(the acceleration profiles of the four violinists in each section) to which we applied the Matlab 

princomp function, after a zscore normalization of the input matrix. The PCA gives four principal 

components (PC) each written as a linear combination of the initial waveforms (the four violinists’ 

acceleration profile). The variance accounted for (VAF) by the first principal component (noted 

PC1%) is defined as the ratio between the first eigenvalue and the sum of all the eigenvalues. The 
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VAF represents the degree to which the linear combination associated to each PC is able to 

approximate the initial dataset. A high PC1% value means that the trajectory in the space of angles is 

close to a straight line (i.e., all angles were linearly correlated together) while, a low PC1% value 

indicates that one principal component is not sufficient to describe precisely the trajectories.  

Conductor behavior predictability: auto-regressive model’s fitting. We evaluated the level of 

predictability of conductors’ behavior (Figure 19, lower panel) as goodness of fit of the linear 

autoregressive model computed on the conductor acceleration profile extracted from hand and head 

data separately. We modelled the conductor acceleration profile via a linear autoregressive model in 

the same way we computed it for Granger Causality analysis and on the same sliding windows 

parameters. The optimal order of the model was determined via the Akaike’s information criterion 

and the goodness-of-fit (ARfit) was measured as the sum of squares of the residuals, for each sliding 

window. 

Statistical analyses 

Inter-group and intra-group data did not follow a normal distribution according to normality tests 

(Kolmogorov–Smirnov) and the variances were also not homogeneous according to statistical tests 

(Levene). We, therefore, used a two-tail independent samples Welch's t-test (already used on same 

type of data in (Badino et al. 2014)). In the Welch's t-test the assumption of normality is not critical 

for large samples (Geary 1947) as it is the case for our data set. More importantly, Welch developed 

an approximation method for comparing the means of two independent populations when their 

variances are not necessarily equal (Welch 1947). Because Welch's modified t-test is not derived 

under the assumption of equal variances, it allows the comparison of two populations without first 

having to test for equality of variance.  

Based on the data extracted in the “inter group interactions”, we made three different set of 

comparisons, repeated twice (once for head data, once for wand data). (1) For the normal condition, 

we ran 5 comparisons: C->S1 vs S1->C, C->S2 vs S2->C, S1->S2 vs S2->S1, C->S1 vs C->S2, S1-

>C vs S2->C. The other possible comparisons were not performed because they were not informative 

for the study (e.g. C->S1 vs S2->C) or comparing elements of different nature (e.g. C->S1 vs S2-

>S1). (2) For the perturbed condition, we ran the same 5 comparisons as in (1). (3) Across the two 

experimental conditions, we ran 6 comparisons: C->S1NORM vs C->S1PERT, C->S2NORM vs C->S2PERT, 

S1->CNORM vs S1->CPERT, S2->CNORM vs S2->CPERT, S1->S2NORM vs S1->S2PERT, S2->S1NORM vs S2-

>S1PERT. 

Based on the data extracted in “intra-section synchronization”, we made four comparisons by 

kinematic parameters: %PC1S1 NORM vs %PC1S1 PERT, %PC1S2 NORM vs %PC1S2 PERT, %PC1S1 NORM vs 

%PC1S2 NORM, %PC1S1 PERT vs %PC1S2 PERT. Finally, based on the data extracted in “conductor 
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behavior predictability”, we made two comparisons by kinematic parameters: ARfit NORM vs ARfit 

PERT. 

In all these analyses, the p-level was corrected for multiple comparisons with the Benjamini and 

Hochberg false discovery rate procedure. We reported in the results part the corrected p-value, and 

the value of the test statistic. We considered as marginally significant the statistical comparison for 

which the p-value before correction was inferior to 0.05. All analyses were conducted using the 

Matlab Statistics toolbox (Mathworks Inc.). 

 

(c) Results 

Inter-group communication (Granger causality analysis) 

Hand data. (1) In the normal condition, C G-caused S1 and S2 more than the other way around 

(Figure 20A, left panel; C<->S1: p<0.001, t=6.08; C<->S2: p<0.001, t=4.34). The gca of S1 on S2 

was larger than the gca of S2 on S1 (p<0.05, t=2.63). No other significant differences appeared in 

Norm. (2) The pattern was the same in the perturbed condition (Figure 20A, right panel). C G-caused 

S1 and S2 more than the other way around (C<->S1: p<0.001, t=11.55; C<->S2: p<0.001, t=6.72). 

The gca of S1 on S2 was larger than the gca of S2 on S1 (p<0.01; t=3.31). In addition, the gca of S1 

on the conductor was significantly smaller than the gca of S2 on the conductor (p<0.01, t=-3.17). No 

other significant differences appeared in Perturbed. (3) A significant decrease from Norm to Pert 

appeared in the gca of S1 on C (p<0.05, t=2.73). We found no additional significant change between 

the two conditions (Figure 20A, lower blue rectangle). 

Head data. (1) In the normal condition, no significant difference appeared between the gca of C on 

S1 and S2 compared to the inverse relation (Figure 20B, left panel; C<->S1: p=0.29; C<->S2: 

p=0.40). A significant difference was found between the gca of S1 on S2 and S2 on S1: GS1->S2 being 

higher than GS2->S1 (p<0.001; t=3.72). In addition, the gca of C on S1 was larger than C on S2 

(p<0.001; t=3.69). No other significant difference appeared in Norm. (2) In the perturbed condition 

(Figure 20B, right panel), C G-caused S1 significantly more than the inverse (p<0.001; t=5.64). In 

addition, the significant difference between the gca of S1 on S2 and S2 on S1 changed of direction 

compared to Norm: GS1->S2 being smaller than GS2->S1 (p<0.01; t=-2.69). Additionally, the gca of S2 

on C was larger than the one of S1 on C (p<0.001; t=-7.89). No other significant differences appeared 

in Pert. (3) Comparing the two experimental conditions (Figure 20B, lower blue rectangle), we found 

a significant increase of GC->S2 (p<0.001; t=-4.32) and GS2->C (p<0.001; t=-3.87) and a significant 

decrease of GS1->C (p<0.001; t=6.47) and GS1->S2 (p<0.001; t=5.90) in Pert compared to Norm. 
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Figure 20: Inter-group coordination (gca). 

Values extracted from Hand (A) and Head (B) acceleration profiles are shown for the normal (left 

side) and perturbed conditions (right side). Statistical differences within each condition are marked 

by colored lines on the top of each histogram. Statistical differences between conditions (Norm vs 

Pert) are represented by black lines under each histogram. 

 

Intra-section synchronization (Principal component analysis) 

Hand data. The %PC1 increased from Norm to Pert for S1 (Figure 21B, left panel; p<0.01; t=-3.22) 

while decreased for S2 (p<0.001; t=4.03). In addition, %PC1 was larger for S1 compared to S2 in the 

two experimental conditions (Norm: p<0.001; t=7.11; Pert: p<0.001; t=12.97). 

Head data. A similar pattern of results was found for head data. The %PC1 increased from Norm to 

Pert for S1 (Figure 21B, right panel; p<0.001; t=-5.35) while decreased for S2 (p<0.01; t=3.25). In 
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addition, %PC1 was larger for S1 compared to S2 in the two experimental conditions (Norm: 

p<0.001; t=4.42; DoF=5450; Pert: p<0.001; t=12.03). 

 

 

Figure 21: Intra-group synchronization (ARfjt and PCA). 

(A) Predictability of the conductor behavior (ARfit). The autoregressive model was computed on the 

conductors, from hand and head data separately for the two experimental conditions normal (black) 

and perturbed (white). (B) Intra-section synchronization as indexed by the percentage of 

reconstruction of the first principal component (%PC1). PCA analysis was run on hand (middle 

panel) and head (right panel) acceleration profiles of the four violinists of each section (S1 and S2). 

Statistical differences are represented by black lines on the top of each histogram. 

 

Conductor behavior predictability: auto-regressive model’s fitting 

Hand data. The goodness of fit of the autoregressive model for the hand data was not different in the 

two conditions Norm and Pert (p=0.81; t: 0.25; Figure 21A). 

Head data. The goodness of fit of the autoregressive model for the head data was significantly smaller 

in Norm compared to Pert (p<0.001; t=-14.95; Figure 21A). 

 

(d) Discussion 

Social interaction requires mastering the integration of multimodal sources of information to achieve 

efficient interpersonal coordination. Behavioral adaptation and synchronization are fundamentally 

based on predictive mechanisms and on the ability to use previous experience and context to guide 

perceptual processes while interaction unfolds (Donnarumma et al. 2017). Recently, an important 

resurgence of interest has emerged towards the exploration of human cognition in its true context, 

which is fundamentally interactive (Schilbach et al. 2013; Hari et al. 2015). Within this stream, 

ensemble musicians have been described as a powerful model to investigate complex non-verbal 

communication (D’Ausilio, Novembre, et al. 2015). The analysis of multi-agent kinematics via the 
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Granger Causality method has shown important promise (D’Ausilio et al. 2012). For instance, in 

orchestra, this method allowed the extraction of group-level information flow (D’Ausilio et al. 2012) 

which is associated to the quality of the musical output. Furthermore, by applying perturbations to 

the communication flow in quartets, subsequent studies showed rapid ensemble adaptation to 

sensorimotor information exchange (Badino et al. 2014; Chang et al. 2017). The present study tackled 

two fundamental scientific questions that had not been explored in previous experiments: whether 

different channels of communication exist and carry information differentially within the group (e.g. 

inter-group coordination and intra-group synchronization). 

Regarding the different channels of communication, successful interaction generally requires that 

participants send and receive subtle messages in the form of various motor gestures. Musician’s 

movements may generally be separated into instrumental and ancillary. In violinists, upper limbs 

movements are directly linked to the production of a music while head and trunk oscillation may 

carry additional information at the phrase level (Poggi 2011; Gritten and King 2011). For instance, 

subjective evaluation of conductors’ faces movements were rated higher in expressivity, whereas 

arms movements were judged higher in amount of musical information (Wöllner 2008). Our results 

demonstrate that the pattern of sensorimotor information carried by two body parts (head and hand) 

are distinct (see Figures 22 for a schematic representation of main inter-group results). Hand 

kinematics exhibit a robust leader-follower relationship between the conductor and the two violinists’ 

sections. This pattern is substantially not affected by the experimental manipulation of the 

sensorimotor information flow (perturbed condition) except for a decrease in communication between 

the first section and the conductor. The fact that the perturbation did not dramatically alter the 

information exchanged via instrumental movements suggests that an important role of memory, score 

reading and residual sensory cues. Indeed, musicians train for several hours and may rely on rehearsal 

memory to cope with the perturbation, at least for what concern pure instrumental execution. At the 

same time, there is also a clear directionality of the information flow from conductor to musicians, 

which confirms the idea of a predominant role of the conductor in the group management (Atik 1994).  

In head data, the perturbation produced clear alteration of the communication pattern. 

Communication between the first section and the conductor or the second section was reduced. At 

the same time, the bidirectional communication between the second section and the conductor 

increased, potentially as a compensatory strategy. In fact, the first section provided larger causal drive 

towards the second section, which, in the perturbed case, was transformed into a significant leadership 

of the second section over the first. During the perturbation, the first section no longer had visual 

contact with the conductor, significantly reducing his role in leading orchestra dynamics. At the same 

time, although violinists of the second section did not actually change their position, they are the only 
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ones establishing direct face-to-face communication with both first section and conductor. 

Correspondingly, our results suggest that S2 musicians were implicitly invested with far more 

centrality in orchestra coordination dynamics. In general, the distinct modulation of head versus hand 

kinematic parameters provides a demonstration of the multi-level complexity of musicians’ 

coordination.  

 

Figure 22: Schematic representation of inter-group coordination results. 

Schematic representation of the main results for inter-group Granger-Causality analysis (i.e. inter-

group coordination) across the conductor (C) and the two sections of violinists (S1 and S2). Results 

associated to the two channels, hand and head, are displayed respectively in the upper and lower 

panel. Directional arrows illustrate inter-group coordination (C, S1 and S2), in the normal (blue) 

and perturbed (red) condition. Arrows thickness represents the interaction’s strength. A bidirectional 

arrow indicates similar gca values for the two directions (i.e. group 1 G-causes group 2, as much as 

group 2 G-causes group 1). On the opposite, a unidirectional arrow indicates the direction of the 

larger gca value (e.g. group 1 G-causes more group 2, than the inverse). 

 

In the orchestra scenario an important aspect is played by the co-regulation of inter-group and intra-

group communication (see Figures 23 for a schematic representation of main intra-group results). 

Indeed, each violinist must exchange information with other musicians of the same section (playing 

the same musical score) and with other participants (playing different parts). We used PCA to 

complement inter-group Gca analysis with an estimation of intra-section synchrony. Both kinematic 

parameters highlighted similar pattern of results. Due to the lack of communication with the 
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conductor, the first section became more synchronous, in the probable attempt to maximize 

performance accuracy. On the contrary, the second section that was endowed with the central role of 

being the communication hub, reduced intra-group coordination. This may be driven by a need to 

gain the necessary degrees of freedom to lead communication with S1 and be the sole interlocutor of 

the conductor. Therefore, here we show that to modulate inter-group dynamics, violinists had to 

penalize synchronization at the intra-group level.  

 

 

Figure 23: Schematic representation of intra-group synchronization results. 

Schematic representation of the main results for intra-group analysis. Results associated to the two 

channels, hand and head, are displayed respectively in the upper and lower panel. Circular arrows 

displayed in the left panel represent the strength of conductor predictability (ARfit). Middle and right 

panels represent the intra-group synchronization’s (%PC1) for both sections of violinists. Thickness 

of the arrow represent the strength of the effect in each experimental condition: normal (blue) and 

perturbed (red). 

 

In general, any complex human interaction may require a mixture of action synchronization and 

imitation (Keller, Novembre, and Hove 2014) together with coordination in complementary actions 

(Sebanz, Bekkering, and Knoblich 2006). Although these two modes of interaction may naturally co-

occur, it is difficult to explore them together in an experimentally controlled environment. Using the 

specificity of the orchestra scenario we explored here the interaction of intra-group dynamics 
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(dominated by synchronous behaviors) and inter-group dynamics (characterized by complementary 

action coordination). 

Furthermore, we found an increase in conductor predictability following the perturbation, on head 

data only. Increasing behavioral predictability is a strategy already described for leaders in dyadic 

interaction (D’Ausilio, Badino, et al. 2015; Vesper et al. 2011). It may be an implicit coordination 

strategy helping the follower to build up a reliable internal model of the partners’ behavior. Indeed, 

predictive models, built through practice and previous experiences, may guide individual action into 

an efficient coordination with peers (Wolpert, Doya, and Kawato 2003; Novembre et al. 2014; Sebanz 

and Knoblich 2009; Ramnani and Miall 2004). Behavioral predictions are confronted with sensorial 

feedbacks (Kilner and Frith 2007; Friston, Kilner, and Harrison 2006) and may help to coordinate 

actions requiring fast and precise temporal coordination (Knoblich, Butterfill, and Sebanz 2011), in 

which information can be sampled only intermittently. In professional musicians, extensive training 

may allow the construction of a detailed model of the piece and associated interactions. This model 

may, in turn, allow a good performance even in sub-optimal conditions, such as the one designed 

here. Indeed, extensive musical training has been associated with anatomo-functional changes 

(Münte, Altenmüller, and Jäncke 2002; Zatorre, Chen, and Penhune 2007) paralleled by enhanced 

ability to discriminate subtle changes in others' performance via predictive action simulation 

(D’Ausilio et al. 2010; Candidi et al. 2014).  

In conclusion, our work highlights the multidimensionality of group coordination by evidencing 

different channels of communication (ancillary versus instrumental movements), affecting 

coordination at different levels (inter-group versus intra-group) tapping into different modes of 

cooperation (complementary versus synchronous). The co-regulation of these elements is the key 

musicians use to flexibly adapt to perturbation of the normal information flow and that is potentially 

shared with other non-musical complex ecological interaction.  
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General discussion 

Perceiving another individual’s movement recruits similar motor activations in the observer’s brain. 

This empirical observation has substantiated the claim that engagement of the motor system may be 

essential in supporting other’s action discrimination (Rizzolatti and Craighero 2004). At the same 

time, this process appears essential in supporting joint action, especially when imitative behaviors are 

critical. However, to simply imitate another person’s action/s in many situations may not be an 

effective nor required response. Indeed, successful interaction often requires complementary rather 

than emulative behavior. In this PhD work, we first question a strict version of the direct matching 

hypothesis (simulative account) by using a series of single-subjects action observation protocols. In 

a second step, by means of multi-agent tasks, we investigated how visual cues affect various forms 

of complementary human-to-human interactions. 

 

In the first study, we evaluated, side-by-side, motor evoked potential (MEPs) and TMS-evoked 

kinematics parameters (MEKs) to characterize action observation effects in humans. The 

experimental protocol consisted in a classical action observation task (Gangitano, Mottaghy, and 

Pascual-Leone 2001), involving reaching-grasping towards either one of two objects with different 

sizes (thus affording power or precision grip). We observed a critical modulation related to the grip 

type (precision vs. power grip): larger responses for precision grip. However, our results showed a 

clear difference between the two kinds of measures. While MEPs increased only for finger extensors 

and only in one session, a significant MEKs modulation was found for the thumb elevation angle in 

both recording sessions. These results demonstrate that the use of TMS-evoked thumb kinematics 

provides a greater reproducibility of AOEs and acts thus as a more effective measure than MEPs in 

describing the motor activities triggered by action observation. 

 

We propose that this greater consistency of MEKs compared to MEPs directly arise from the 

principles of modularity and redundancy of the human motor system. Due to technical limitations 

(e.g. finding stimulation intensity and optimal site of stimulation), most action observation TMS 

studies focused on the recording of very few muscles. However, in general (in a realistic scenario), 

little discriminative information about the executed movement can be extracted from the activity of 

one (or few) muscle(s)). Indeed, the same amount of EMG activity in one muscle is present in many 

different actions and is not necessarily predictive of the action goal. In particular, neural control of 

arm and hand movements is the consequence of many adjustments at the muscular level (Bernstein 

1967; Bizzi et al. 1984; Gribble 2003), following possibly a synergistic organization (D’Avella et al. 
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2006; Gentner and Classen 2006; Santello, Baud-Bovy, and Jörntell 2013; Leo et al. 2016). For 

example, finger extensors activation while lifting an object is in principle against the goal of applying 

forces onto an object, but it is necessary, via co-contraction with the flexors, to stabilize fingers and 

wrist joints. Therefore, recording from finger extensor only, would not allow to discriminate the act 

of opening or closing fingers. More importantly, similar kinematic patterns (and thus visual 

appearance) can be associated to different muscle recruitment over time and space. In this regard, 

redundancy and invariance principles in action execution (Guigon, Baraduc, and Desmurget 2007; 

Sporns and Edelman 1993; Flash and Hochner 2005), suggest that the functional kinematic output, 

more than the activities of (few) muscles, provides the best action goal description.  

 

Furthermore, this same fact (motor redundancy) challenges the theoretical idea of a direct match 

between the observed and executed action (Kilner 2012; D’Ausilio, Bartoli, and Maffongelli 2015b; 

Hilt et al. 2017). Indeed, a strict version of the direct-matching hypothesis (Rizzolatti, Fogassi, and 

Gallese 2001; Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 2016) can explain inferences 

when a direct relationship exists between muscle recruitment, movement kinematics and behavioral 

goals (e.g. simple finger movements). However, it is less clear how this proposal deals with the 

observation of complex movements (i.e. multi-joint movements) in which different joint 

configurations, as well as spatio-temporal patterns of muscle activity, can equally be used to reach 

the same behavioral goal (Bernstein 1967). At the execution level, the multiple degrees of freedom 

problem is solved by the use of a limited number of possible kinematic configurations of the 

biomechanical chain (e.g. “ankle” and “hip” strategies for postural control; Berret et al. 2009; Horak 

and Nashner 1986), although a handful of kinematic solutions are biomechanically valid. On the top 

of that, everyone carries his own robust and yet unique way of moving (Individual Motor Signature 

– IMS; Hilt et al. 2016; Słowiński et al. 2016).  

 

We suggest, in our second study, that these two properties of human motor control lead to a new one-

to-one mapping that is function of everyone own way of moving (individual motor strategy, IMS). 

To prove it, we combined an action execution and action observation task of a whole-body reaching 

action, naturally evoking different IMS. Our results demonstrated that in this type of multi-joint 

action, AOE cannot be summarized into a common standard pattern, but are instead subject-

dependent. CSE was modulated at the single subject level according to the “distance” between actors’ 

and observer’s IMS: large CSE modulations are associated with the observation of a different IMS. 

In agreement with the predictive coding account, these results evidenced that the sensorimotor system 

computes differences rather than similarities, while observing complex but perfectly common whole-
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body actions. In this model, prior motor knowledge provides critical top-down signals that are 

integrated with bottom-up sensory-based processing (Friston 2010b; Friston, Mattout, and Kilner 

2011). To do so, a comparison between predicted and observed kinematic information generates a 

prediction error signal that is used to update the representation of other’s action. 

 

In a third study, we pursued this idea in investigating sensorimotor recruitment during action error 

observation. If a direct matching between observer and actor exists (Rizzolatti, Fogassi, and Gallese 

2001; Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 2016), observation of an error should 

activate the same inhibitory mechanisms at play during error execution (Buch et al. 2010). 

Differently, the predictive coding hypothesis suggests that an error should produce a greater surprise 

and thus a larger difference between expected and observed action-related information (Kilner, 

Friston, and Frith 2007; Urgen and Miller 2015; Sartori et al. 2015). Greater mismatch should then 

translate into a greater activity of the AON at the moment in which an error is detected. To investigate 

the fine temporal dynamic of excitation/inhibition balance during action error processing, we used 

different TMS protocols (single pulse, short intracortical inhibition - sICI, and intracortical 

facilitation - ICF) over M1, at three different time points following the action error (+120, +180 and 

+240 ms). We demonstrated an early (120 ms) reduction of inhibition for the observation of a motor 

execution error, while the control error elicited a similar effect but with a longer latency (240 ms). 

Effects were observed for sICI but not for ICF, suggesting that the neural mechanisms involved in 

detecting action execution errors mainly consist in the modulation of intracortical inhibitory circuits 

only. These results show that observing erroneous actions does not elicit increased inhibition as it 

would be predicted by the classic view about motor mirroring of other’s action (direct matching). 

Instead, the release from inhibition could be explained by the greater mismatch with respect to the 

generated top-down predictions (predictive coding).  

 

Altogether, the first set of studies highlight the incongruences associated to a pure simulative account 

of action observation in humans. Instead, the predictive coding hypothesis might better to bridge the 

gap between the fields of motor control and action observation.  

 

However, everyday interactions are generally far more complex than a simple action observation. 

Thus, in a second part of this PhD, we investigated how sensory information and in particular vision 

are used by the interacting partners to efficiently coordinate with each other. 
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We first focused on the motor planning part and muscular anticipation during a dyadic non-verbal 

interaction. The interaction consisted of two individuals face to face. One individual (the carrier) 

holds a cylindric object in his left hand while the second individual (the partner) had to reach, grasp 

and lift this object with his right hand. Two conditions were added to manipulate visual information 

(the carrier had eyes closed or opened) and proprioceptive information (dyadic condition: the partner 

is another person, self condition: the partner is also the carrier) of the carrier. In such a context, the 

central nervous system anticipates movement consequences and produces anticipatory postural 

adjustments accordingly (APAs; Hugon, Massion, and Wiesendanger 1982; Massion et al. 1999). Our 

results showed that when participants performed the task themselves in full vision (Self, Eyes open), 

muscle activities of the carrier (wrist flexor and extensors) showed an early APAs (before the grasping 

onset). Without visual input (Self, Eyes closed), muscle activities changes on the load-bearing hand 

were significantly delayed (after the grasping onset), similarly to the classical APAs (Hugon, 

Massion, and Wiesendanger 1982; Dufossé, Hugon, and Massion 1985; Massion et al. 1999). 

Importantly, APAs were present in the joint action scenario, though significantly reduced by the lack 

of efference copy signal. Indeed, when the partner performed the unloading in full vision (Dyadic, 

Eyes open), the APA was present but significantly attenuated in amplitude, suggesting that motor 

predictions based on visual cues only requires the integration of the successive somatosensory 

feedback to fully deploy the appropriate postural response. This demonstrates that during haptic 

interaction, beside self-motor representations, individuals adapt the cooperation dynamics to the 

sensory signals coming from various sources. 

 

As shown here dyadic setups allow to study the mechanisms underlying fast inter-individual 

coordination. However, such dyadic context represents a very narrow part of daily life human 

interactions. For instance, during a conversation, information is sampled through multiple channels 

(e.g. vision, audition), sometimes in parallel (e.g. information in the foreground and information from 

the background) and at different temporo-spatial scales (e.g. slow whole-body movements versus fast 

lip motions). At the same time, different kinds of information may be conveyed in parallel through 

different channels. Therefore, proper quantification of group coordination is today one of the key 

missing elements to understand how humans manage to interact with others by efficiently selecting, 

processing and sending information. In this context, ensemble musicians have been proposed as an 

ideal model, by keeping the key multidimensional properties of natural sensorimotor interaction but 

allowing good experimental control. Few previous studies have started to model sensorimotor 

information flows across musicians, by relying on kinematic recordings.  
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However, none of them were able to quantify the existence of multiple channels of communication 

as well as their respective role in efficient coordination. To fill this gap, the last study of this PhD 

examined movement-based interaction dynamics in an orchestra (one conductor and two sections of 

violinists), adapting to a perturbation affecting their normal pattern of sensorimotor communication. 

Using Granger Causality and Principal Component analyses, we revealed the existence of different 

channels of communication (hand Vs. head kinematics) associated to different modes of interaction 

(inter-group coordination versus intra-group synchronization). The instrumental movements (hand 

kinematics) were substantially not affected by the perturbation, suggesting an important role of 

memory and score reading. On the contrary, within ancillary movements (head kinematics), we could 

observe how the perturbation reshaped the social architecture of the orchestra. Indeed, the role of the 

second line of violinists evolved and, through a parallel regulation of inter-group coordination and 

intra-group synchronization, achieved status of mediator between the conductor and the first line. 

 

Our results demonstrate that complex, multi-agent, non-verbal interaction is achieved via the co-

regulation of different modes of cooperation (complementary versus synchronous) through different 

channels of communication (ancillary versus instrumental movements) to flexibly adapt to contextual 

constraints. Beyond the context of orchestra, multi-layer sensorimotor communication seems to be 

the key humans use to flexibly communicate between each other in interactive sensorimotor tasks. 

 

In conclusion, this PhD aimed at introducing classical motor control techniques, tasks and ideas into 

the action observation field of research. The results we obtained, speak in favor of a predicting coding 

idea of how the motor system support others’ action perception, as opposed to a strict version of the 

classical direct matching hypothesis. At the same time, the computation of an accurate prediction and 

an associated error signal seem to be essential to allow effective and fast-paced interaction. In this 

regard, our interactive studies both showed that action observation is relevant but is only a small part 

of the coordination process. A successful investigation of this complexity should go through the 

analysis of multiple spatial and temporal scales, as we only started with the last orchestra study.  

 

I’d like to conclude by saying that I see classical passive action observation tasks extremely effective 

in evidencing the neural underpinnings of action discrimination. However, I’m aware that far greater 

complexity - and richness – awaits us behind the true context where action observation/execution 

deploy their true function. Here we just started to scratch the surface of this complexity by exporting 

the classical phenomena APA into a dyadic fast interaction scenario and by exploiting the known 

group coordination expertise demonstrated by ensemble musicians.   
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Additional works 

In parallel of the works presented above, I took part during my PhD in different projects presented 

below. 

 

1. The neural oscillatory markers of phonetic convergence during verbal interaction 

 

Abstract: During a conversation, the neural processes supporting speech production and perception 

over-lap in time and, based on context, expectations and the dynamics of interaction, they are also 

continuously modulated in real time. Recently, the growing interest in the neural dynamics underlying 

interactive tasks, in particular in the language domain, has mainly tackled the temporal aspects of 

turn-taking in dialogs. Besides temporal coordination, an under-investigated phenomenon is the 

implicit convergence of the speakers toward a shared phonetic space. Here, we used dual 

electroencephalography (dual-EEG) to record brain signals from subjects involved in a relatively 

constrained interactive task where they were asked to take turns in chaining words according to a 

phonetic rhyming rule. We quantified participants' initial phonetic finger prints and tracked their 

phonetic convergence during the interaction via a robust and automatic speaker verification 

technique. Results show that phonetic convergence is associated to left frontal alpha/low-beta 

desynchronization during speech preparation and by high-beta suppression before and during 

listening to speech in right centro-parietal and left frontal sectors, respectively. By this work, we 

provide evidence that mutual adaptation of speech phonetic tar-gets, correlates with specific alpha 

and beta oscillatory dynamics. Alpha and beta oscillatory dynamics may index the coordination of 

the “when” as well as the “how” speech interaction takes place, reinforcing the suggestion that 

perception and production processes are highly interdependent and co-constructed during a 

conversation. 

 

My contribution: data recording and paper writing 

 

This work was published in Human Brain Mapping: 

S Mukherjee, L Badino, PM Hilt, A Tomassini, A Inuggi, L Fadiga, N Nguyen and A D’Ausilio 

(2018). The neural oscillatory markers of phonetic convergence during verbal interaction. Human 

Brain Mapping. DOI: 10.1002/hbm.24364 
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2. Motor cortical inhibition during concurrent action execution and observation 

 

Abstract: Action Execution (AE) and Action Observation (AO) are intertwined in interaction and 

coordination. They are most often engaged at the same time to coordinate different plans of actions 

and recruit a common set of motor areas. The neurophysiological mechanisms allowing 

interindividual coordination during concurrent action execution and observation are however 

substantially unknown. To assess the effect of observed actions (i.e. performed by others’) on 

observer’s motor performance, we asked participants to perform hand opening and closing 

movements while observing the same or a different action (either hand opening and closure). By 

Transcranial Magnetic Stimulation we found that Cortical Silent Periods (CSP, measuring GABAB-

mediated cortical inhibitory strength), but not Corticospinal Excitability (CSE, measuring the effects 

of various inputs on the corticospinal neurons), showed a significant interaction between AE and AO. 

These results suggest that GABAB-mediated motor cortical inhibition may be an important 

component to adapt one’s motor execution to the contextual cues provided by other’s actions. 

 

My contribution: data recording and analysis and paper writing 

 

This work is currently submitted in Neuroimage:  

P Cardellicchio, E Dolfini, PM Hilt, L Fadiga and A D’Ausilio. Motor cortical inhibition during 

concurrent action execution and observation 
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3. Attentional bias on motor control: is motor inhibition influenced by attentional 

reorienting? 

 

Abstract: Motor inhibition and attentional processing are tightly linked. Recent neurophysiological 

studies have shown that both processes might rely on similar cognitive and neural mechanisms 

(Wessel and Aron 2017). However, it remains unclear whether attentional reorientation influences 

inhibition of a subsequent action. Therefore, we combined two tasks that are commonly used in the 

motor inhibition and visual attention reorientation field [respectively: the stop-signal task (Logan and 

Cowan 1984) and the Posner endogenous cueing paradigm (Posner 1980)] to investigate how 

different aspects of visual attention modulate subsequent voluntary inhibition. Our results showed an 

increase in stopping-reaction time after a reorientation of attention only. This suggests a specific 

impairment of inhibitory control when a reorientation of visual attention is needed. These findings 

support the idea of a selective influence of attention reorientation on subsequent motor inhibition 

(stop signal). This may be linked to the “circuit breaker” hypothesis, proposing that attention 

reorientation toward an unexpected event “resets” the ongoing processes to allow the analysis of the 

potentially behaviorally relevant visual events (Corbetta, Patel, and Shulman 2008). 

 

My Contribution: data analysis, results interpretation and manuscript writing 
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4. Space-by-time modular decomposition effectively describes whole-body muscle activity 

during upright reaching in various directions 

 

Abstract: The modular control hypothesis suggests that motor commands are built from precoded 

modules whose specific combined recruitment can allow the performance of virtually any motor task. 

Despite considerable experimental support, this hypothesis remains tentative as classical findings of 

reduced dimensionality in muscle activity may also result from other constraints (biomechanical 

couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness 

of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct 

point-to-point whole-body movements during which the activity of 30 muscles was recorded. To 

identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition 

of muscle activity that has been shown to encompass classical modularity models. To examine the 

decompositions, we focused not only on the amount of variance they explained but also on whether 

the task performed on each trial could be decoded from the single-trial activations of modules. For 

the sake of comparison, we confronted these scores to the scores obtained from alternative non-

modular descriptions of the muscle data. We found that the space-by-time decomposition was 

effective in terms of data approximation and task discrimination at comparable reduction of 

dimensionality. These findings show that few spatial and temporal modules give a compact yet 

approximate representation of muscle patterns carrying nearly all task-relevant information for a 

variety of whole-body reaching movements. 
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5. Deciphering the functional role of spatial and temporal muscle synergies in whole-body 

movements 

 

Abstract: Voluntary movement is hypothesized to rely on a limited number of muscle synergies, the 

recruitment of which translates task goals into effective muscle activity. In this study, we investigated 

how to analytically characterize the functional role of different types of muscle synergies in task 

performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety 

of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a 

space-by-time modularity model which encompasses the main types of synergies. We then used a 

task decoding and information theoretic analysis to probe the role of each synergy by mapping it to 

specific task features. We found that the temporal and spatial aspects of the movements were encoded 

by different temporal and spatial muscle synergies, respectively, consistent with the intuition that 

there should a correspondence between major attributes of movement and major features of synergies. 

This approach led to the development of a novel computational method for comparing muscle 

synergies from different participants according to their functional role. This functional similarity 

analysis yielded a small set of temporal and spatial synergies that describes the main features of 

whole-body reaching movements. 
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6. Shifts in Key Time Points and Strategies for a Multisegment Motor Task in Healthy 

Aging Subjects 

 

Abstract: In this study, we compared key temporal points in the whole body pointing movement of 

healthy aging and young subjects. During this movement, subject leans forward from a standing 

position to reach a target. As it involves forward inclination of the trunk, the movement creates a risk 

for falling. We examined two strategic time points during the task—first, the crossover point where 

the velocity of the center of mass (CoM) in the vertical dimension outstripped the velocity in the 

anteroposterior dimension and secondly, the time to peak of the CoM velocity profile. Transitions to 

stabilizing postures occur at these time points. They both occurred earlier in aging subjects. The 

crossover point also showed adjustments with target distance in aging subjects, while this was not 

observed in younger subjects. The shifts in these key time points could not be attributed to differences 

in movement duration between the two groups. Investigation with an optimal control model showed 

that the temporal adjustment as a function of target distance in the healthy aging subjects fits into a 

strategy that emphasized equilibrium maintenance rather than absolute work as a control strategy. 
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