11,843 research outputs found

    College of Engineering

    Full text link
    Cornell University Courses of Study Vol. 94 2002/200

    Aerospace engineering educational program

    Get PDF
    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Designing experiments using digital fabrication in structural dynamics

    Get PDF
    In engineering, traditional approaches aimed at teaching concepts of dynamics to engineering students include the study of a dense yet sequential theoretical development of proofs and exercises. Structural dynamics are seldom taught experimentally in laboratories since these facilities should be provided with expensive equipment such as wave generators, data-acquisition systems, and heavily wired deployments with sensors. In this paper, the design of an experimental experience in the classroom based upon digital fabrication and modeling tools related to structural dynamics is presented. In particular, all experimental deployments are conceived with low-cost, open-source equipment. The hardware includes Arduino-based open-source electronics whereas the software is based upon object-oriented open-source codes for the development of physical simulations. The set of experiments and the physical simulations are reproducible and scalable in classroom-based environments.Peer ReviewedPostprint (author's final draft

    Teaching Modeling to Engineers in an Undergraduate Simulation Course

    Get PDF
    A significant challenge in teaching simulation to undergraduate students is to find a way to allow them to model a real world referent system within time and student skill constraints. Several research sources highlight not only the important challenge of model development (Garcia and Ceneno, 2009, Tako, 2011) but also the increased need for model development instruction among engineers (Grasas et. al., 2013, Saltzman and Roeder, 2013). One approach to this challenge is to use a general purpose discrete event simulation software package within the course, but this presents two challenges. Teaching the package to the students takes significant time, and the package introduces limitations which may restrict their ability to model certain real-world referents, particularly in the engineering domain. A conceptual approach to solving this problem is to use a model development paradigm that abstracts away the interface to the simulation infrastructure while still allowing the students to use the full expressive nature of a programming language. Two undergraduate courses at the United States Military Academy employed this strategy via the Discrete Events Specification System – Distributed Modeling Framework (DEVS-DMF) (Kewley et. al, 2016). The DEVS abstraction allowed students to think about their model as a simple state change function with defined inputs and outputs, and DMF allowed them to program in a cloud-based Jupyter Notebook using the Python language. Students in a combat modeling course employed a variety of models to understand drone jamming, and students in an engineering capstone project employed models to account for human factors in rifle marksmanship. The effectiveness of this approach was assessed through student grades, exit-interviews, and course-end surveys. These assessments showed an increased understanding of the model development process, and students also reported greater ownership of their models. However, this experiment also highlighted some weaknesses in their understanding of underlying methodologies and programming skills
    • …
    corecore