23,554 research outputs found

    Quantum Logic and the Histories Approach to Quantum Theory

    Full text link
    An extended analysis is made of the Gell-Mann and Hartle axioms for a generalised `histories' approach to quantum theory. Emphasis is placed on finding equivalents of the lattice structure that is employed in standard quantum logic. Particular attention is given to `quasi-temporal' theories in which the notion of time-evolution is less rigid than in conventional Hamiltonian physics; theories of this type are expected to arise naturally in the context of quantum gravity and quantum field theory in a curved space-time. The quasi-temporal structure is coded in a partial semi-group of `temporal supports' that underpins the lattice of history propositions. Non-trivial examples include quantum field theory on a non globally-hyperbolic spacetime, and a simple cobordism approach to a theory of quantum topology. It is shown how the set of history propositions in standard quantum theory can be realised in such a way that each history proposition is represented by a genuine projection operator. This provides valuable insight into the possible lattice structure in general history theories, and also provides a number of potential models for theories of this type.Comment: TP/92-93/39 36 pages + one page of diagrams (I could email Apple laser printer postscript file for anyone who is especially keen

    Extreme value analysis for the sample autocovariance matrices of heavy-tailed multivariate time series

    Full text link
    We provide some asymptotic theory for the largest eigenvalues of a sample covariance matrix of a p-dimensional time series where the dimension p = p_n converges to infinity when the sample size n increases. We give a short overview of the literature on the topic both in the light- and heavy-tailed cases when the data have finite (infinite) fourth moment, respectively. Our main focus is on the heavytailed case. In this case, one has a theory for the point process of the normalized eigenvalues of the sample covariance matrix in the iid case but also when rows and columns of the data are linearly dependent. We provide limit results for the weak convergence of these point processes to Poisson or cluster Poisson processes. Based on this convergence we can also derive the limit laws of various function als of the ordered eigenvalues such as the joint convergence of a finite number of the largest order statistics, the joint limit law of the largest eigenvalue and the trace, limit laws for successive ratios of ordered eigenvalues, etc. We also develop some limit theory for the singular values of the sample autocovariance matrices and their sums of squares. The theory is illustrated for simulated data and for the components of the S&P 500 stock index.Comment: in Extremes; Statistical Theory and Applications in Science, Engineering and Economics; ISSN 1386-1999; (2016

    Kinematic Diffraction from a Mathematical Viewpoint

    Full text link
    Mathematical diffraction theory is concerned with the analysis of the diffraction image of a given structure and the corresponding inverse problem of structure determination. In recent years, the understanding of systems with continuous and mixed spectra has improved considerably. Simultaneously, their relevance has grown in practice as well. In this context, the phenomenon of homometry shows various unexpected new facets. This is particularly so for systems with stochastic components. After the introduction to the mathematical tools, we briefly discuss pure point spectra, based on the Poisson summation formula for lattice Dirac combs. This provides an elegant approach to the diffraction formulas of infinite crystals and quasicrystals. We continue by considering classic deterministic examples with singular or absolutely continuous diffraction spectra. In particular, we recall an isospectral family of structures with continuously varying entropy. We close with a summary of more recent results on the diffraction of dynamical systems of algebraic or stochastic origin.Comment: 30 pages, invited revie

    Teaching programming with computational and informational thinking

    Get PDF
    Computers are the dominant technology of the early 21st century: pretty well all aspects of economic, social and personal life are now unthinkable without them. In turn, computer hardware is controlled by software, that is, codes written in programming languages. Programming, the construction of software, is thus a fundamental activity, in which millions of people are engaged worldwide, and the teaching of programming is long established in international secondary and higher education. Yet, going on 70 years after the first computers were built, there is no well-established pedagogy for teaching programming. There has certainly been no shortage of approaches. However, these have often been driven by fashion, an enthusiastic amateurism or a wish to follow best industrial practice, which, while appropriate for mature professionals, is poorly suited to novice programmers. Much of the difficulty lies in the very close relationship between problem solving and programming. Once a problem is well characterised it is relatively straightforward to realise a solution in software. However, teaching problem solving is, if anything, less well understood than teaching programming. Problem solving seems to be a creative, holistic, dialectical, multi-dimensional, iterative process. While there are well established techniques for analysing problems, arbitrary problems cannot be solved by rote, by mechanically applying techniques in some prescribed linear order. Furthermore, historically, approaches to teaching programming have failed to account for this complexity in problem solving, focusing strongly on programming itself and, if at all, only partially and superficially exploring problem solving. Recently, an integrated approach to problem solving and programming called Computational Thinking (CT) (Wing, 2006) has gained considerable currency. CT has the enormous advantage over prior approaches of strongly emphasising problem solving and of making explicit core techniques. Nonetheless, there is still a tendency to view CT as prescriptive rather than creative, engendering scholastic arguments about the nature and status of CT techniques. Programming at heart is concerned with processing information but many accounts of CT emphasise processing over information rather than seeing then as intimately related. In this paper, while acknowledging and building on the strengths of CT, I argue that understanding the form and structure of information should be primary in any pedagogy of programming

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe
    • 

    corecore