4,641 research outputs found

    Automating Requirements Traceability: Two Decades of Learning from KDD

    Full text link
    This paper summarizes our experience with using Knowledge Discovery in Data (KDD) methodology for automated requirements tracing, and discusses our insights.Comment: The work of the second author has been supported in part by NSF grants CCF-1511117 and CICI 1642134; 4 pages; in Proceedings of IEEE Requirements Engineering 201

    Numerical Key Performance Indicators for the Validation of PHM Health Indicators with Application to a Hydraulic Actuation System

    Get PDF
    In order to perform Prognostic and Health Management (PHM) of a given system, it is necessary to define some relevant variables sensitive to the different degradation modes of the system. Those variables are named Health Indicators (HI) and they are the keystone of PHM. However, they are subject to a lot of uncertainties when computed in real time and the stochastic nature of PHM makes it hard to evaluate the efficiency of a HI set before the extraction algorithm is implemented. This document introduces Numerical Key Performance Indicators (NKPI) for the validation of HI computed only from data provided by numerical models in the upstream stages of a PHM system development process. In order to match as good as possible the reality, the multiple sources of uncertainties are quantified and propagated into the model. After having introduced the issue of uncertain systems modeling, the different NKPI are defined and eventually an application is performed on a hydraulic actuation system of an aircraft engine

    An open dataset for research on audio field recording archives: freefield1010

    Full text link
    We introduce a free and open dataset of 7690 audio clips sampled from the field-recording tag in the Freesound audio archive. The dataset is designed for use in research related to data mining in audio archives of field recordings / soundscapes. Audio is standardised, and audio and metadata are Creative Commons licensed. We describe the data preparation process, characterise the dataset descriptively, and illustrate its use through an auto-tagging experiment

    PCA 4 DCA: The Application Of Principal Component Analysis To The Dendritic Cell Algorithm

    Get PDF
    As one of the newest members in the field of artificial immune systems (AIS), the Dendritic Cell Algorithm (DCA) is based on behavioural models of natural dendritic cells (DCs). Unlike other AIS, the DCA does not rely on training data, instead domain or expert knowledge is required to predetermine the mapping between input signals from a particular instance to the three categories used by the DCA. This data preprocessing phase has received the criticism of having manually over-?tted the data to the algorithm, which is undesirable. Therefore, in this paper we have attempted to ascertain if it is possible to use principal component analysis (PCA) techniques to automatically categorise input data while still generating useful and accurate classication results. The integrated system is tested with a biometrics dataset for the stress recognition of automobile drivers. The experimental results have shown the application of PCA to the DCA for the purpose of automated data preprocessing is successful.Comment: 6 pages, 4 figures, 3 tables, (UKCI 2009

    Tversky loss function for image segmentation using 3D fully convolutional deep networks

    Full text link
    Fully convolutional deep neural networks carry out excellent potential for fast and accurate image segmentation. One of the main challenges in training these networks is data imbalance, which is particularly problematic in medical imaging applications such as lesion segmentation where the number of lesion voxels is often much lower than the number of non-lesion voxels. Training with unbalanced data can lead to predictions that are severely biased towards high precision but low recall (sensitivity), which is undesired especially in medical applications where false negatives are much less tolerable than false positives. Several methods have been proposed to deal with this problem including balanced sampling, two step training, sample re-weighting, and similarity loss functions. In this paper, we propose a generalized loss function based on the Tversky index to address the issue of data imbalance and achieve much better trade-off between precision and recall in training 3D fully convolutional deep neural networks. Experimental results in multiple sclerosis lesion segmentation on magnetic resonance images show improved F2 score, Dice coefficient, and the area under the precision-recall curve in test data. Based on these results we suggest Tversky loss function as a generalized framework to effectively train deep neural networks

    Noise-robust detection of peak-clipping in decoded speech

    Get PDF

    Dynamic Mutant Subsumption Analysis using LittleDarwin

    Full text link
    Many academic studies in the field of software testing rely on mutation testing to use as their comparison criteria. However, recent studies have shown that redundant mutants have a significant effect on the accuracy of their results. One solution to this problem is to use mutant subsumption to detect redundant mutants. Therefore, in order to facilitate research in this field, a mutation testing tool that is capable of detecting redundant mutants is needed. In this paper, we describe how we improved our tool, LittleDarwin, to fulfill this requirement
    corecore