4,346 research outputs found

    Internet of Texas Water Data: Use Cases for Flood, Drought, and Surface Water – Groundwater Interactions

    Get PDF
    Experts representative of Texas’ water sectors identified critical water data needs and described the design of a comprehensive open access data system that facilitates use of public water data in Texas at the April 2018 Connecting Texas Water Data Workshop as reported in the Texas Water Journal. Participants described potential use cases to initiate work on the most critical data hubs for connecting Texas water data. This note is an update to work on the Internet of Texas Water Data initiative that describes progress on a flood dashboard by the Texas Water Development Board and development of use cases by workgroups of stakeholders with expertise in water data for drought and for surface water – groundwater interactions

    Establishing Processing Priorities: Recommendations from a 2017 Study of Practices in US Repositories

    Get PDF
    Building upon archival scholarship and previous solutions addressing backlog collections, this study seeks to identify a comprehensive, integrated, and effective strategy to establish and maintain processing priorities. This study is based on supporting research, which includes the results of a survey of archivists and the findings of five focus group discussions about processing priorities. Using these findings, the authors (a) consider whether this focus on an old problem has motivated archivists to find innovative solutions; (b) determine whether archivists are using these tools; (c) consider whether and how archivists have changed processing priority practices and policies; and (d) seek to clarify current metrics to establish overall processing priorities

    EcoGIS – GIS tools for ecosystem approaches to fisheries management

    Get PDF
    Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.

    Building a Texas Water Data Hub as a model for National Water Data Infrastructure

    Get PDF
    Findable, Accessible, Interoperable, Reusable (FAIR) water data is a buzz word in the industry for good reason (Making Public Data FAIR, 2018). Without these objectives, poor water data across the United States will continue to cripple the ability of decision makers to manage and develop sustainable practices (Building Data Infrastructure, 2022). In an effort to implement these standards, this research was designed to first understand the past and current water data infrastructure throughout Texas and the United States and then create a findable, accessable, interoperable, and reusable (FAIR) water data hub (Making Public Data FAIR, 2018). An important part of this effort was to include stakeholders and decision makers from the water data industry. This research provides an overview of initial data collection and follows with detailed updates to water categorization and standards, stakeholder engagement and best practices, the creation of the Texas Water Data Hub and finally, recommendations to expand this state effort to a national level. The discussion speaks to the complexity of organizing water data due to the overlapping needs of such a project. The conclusion points out the additional challenges to scaling up these procedures to a national level. All of these efforts are part of building FAIR water data and is essential in our increasing need and care of water

    2017 DWH Long-Term Data Management Coordination Workshop Report

    Get PDF
    On June 7 and 8, 2017, the Coastal Response Research Center (CRRC)[1], NOAA Office of Response and Restoration (ORR) and NOAA National Marine Fisheries Service (NMFS) Restoration Center (RC), co-sponsored the Deepwater Horizon Oil Spill (DWH) Long Term Data Management (LTDM) workshop at the ORR Gulf of Mexico (GOM) Disaster Response Center (DRC) in Mobile, AL. There has been a focus on restoration planning, implementation and monitoring of the on-going DWH-related research in the wake of the DWH Natural Resource Damage Assessment (NRDA) settlement. This means that data management, accessibility, and distribution must be coordinated among various federal, state, local, non-governmental organizations (NGOs), academic, and private sector partners. The scope of DWH far exceeded any other spill in the U.S. with an immense amount of data (e.g., 100,000 environmental samples, 15 million publically available records) gathered during the response and damage assessment phases of the incident as well as data that continues to be produced from research and restoration efforts. The challenge with the influx in data is checking the quality, documenting data collection, storing data, integrating it into useful products, managing it and archiving it for long term use. In addition, data must be available to the public in an easily queried and accessible format. Answering questions regarding the success of the restoration efforts will be based on data generated for years to come. The data sets must be readily comparable, representative and complete; be collected using cross-cutting field protocols; be as interoperable as possible; meet standards for quality assurance/quality control (QA/QC); and be unhindered by conflicting or ambiguous terminology. During the data management process for the NOAA Natural Resource Damage Assessment (NRDA) for the DWH disaster, NOAA developed a data management warehouse and visualization system that will be used as a long term repository for accessing/archiving NRDA injury assessment data. This serves as a foundation for the restoration project planning and monitoring data for the next 15 or more years. The main impetus for this workshop was to facilitate public access to the DWH data collected and managed by all entities by developing linkages to or data exchanges among applicable GOM data management systems. There were 66 workshop participants (Appendix A) representing a variety of organizations who met at NOAA’s GOM Disaster Response Center (DRC) in order to determine the characteristics of a successful common operating picture for DWH data, to understand the systems that are currently in place to manage DWH data, and make the DWH data interoperable between data generators, users and managers. The external partners for these efforts include, but are not limited to the: RESTORE Council, Gulf of Mexico Research Initiative (GoMRI), Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), the National Academy of Sciences (NAS) Gulf Research Program, Gulf of Mexico Alliance (GOMA), and National Fish and Wildlife Foundation (NFWF). The workshop objectives were to: Foster collaboration among the GOM partners with respect to data management and integration for restoration planning, implementation and monitoring; Identify standards, protocols and guidance for LTDM being used by these partners for DWH NRDA, restoration, and public health efforts; Obtain feedback and identify next steps for the work completed by the Environmental Disasters Data Management (EDDM) Working Groups; and Work towards best practices on public distribution and access of this data. The workshop consisted of plenary presentations and breakout sessions. The workshop agenda (Appendix B) was developed by the organizing committee. The workshop presentations topics included: results of a pre-workshop survey, an overview of data generation, the uses of DWH long term data, an overview of LTDM, an overview of existing LTDM systems, an overview of data management standards/ protocols, results from the EDDM working groups, flow diagrams of existing data management systems, and a vision on managing big data. The breakout sessions included discussions of: issues/concerns for data stakeholders (e.g., data users, generators, managers), interoperability, ease of discovery/searchability, data access, data synthesis, data usability, and metadata/data documentation. [1] A list of acronyms is provided on Page 1 of this report

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Connecting Texas Water Data Workshop: Building an Internet for Water

    Get PDF
    The Connecting Texas Water Data Workshop brought together experts representative of Texas’ water sectors to engage in the identification of critical water data needs and discuss the design of a data system that facilitates access to and use of water data in Texas. Participants worked in facilitated sessions to identify, describe, and list 1) who needs, 2) what data, 3) in what form, 4) to inform what decisions about water in Texas. They also worked to identify key data gaps in Texas water data, attributes of a comprehensive open access water data information system capable of informing water management decisions, and use cases or pilot projects illustrating the value of an open access, interoperable water data system. The ideal form of data system is envisioned as consisting of several integrated data hubs specialized by water sector, with incentives for people to add new data and share existing data through the hubs. There should be adequate funding to sustain the data system over time.https://digitalcommons.tamusa.edu/water_books/1001/thumbnail.jp

    Advancing Water Resources Systems Modeling Cyberinfrastructure to Enable Systematic Data Analysis, Modeling, and Comparisons

    Get PDF
    Water resources systems models aid in managing water resources holistically considering water, economic, energy, and environmental needs, among others. Developing such models require data that represent a water system’s physical and operational characteristics such as inflows, demands, reservoir storage, and release rules. However, such data is stored and described in different formats, metadata, and terminology. Therefore, Existing tools to store, query, and visualize modeling data are model, location, and dataset-specific, and developing such tools is time-consuming and requires programming experience. This dissertation presents an architecture and three software tools to enable researchers to more readily and consistently prepare and reuse data to develop, compare, and synthesize results from multiple models in a study area: (1) a generalized database design for consistent organization and storage of water resources datasets independent of study area or model, (2) software to extract data out of and populate data for any study area into the Water Evaluation and Planning system, and (3) software tools to visualize online, compare, and publish water management networks and their data for many models and study areas. The software tools are demonstrated using dozens of example and diverse local, regional, and national datasets from three watersheds for four models; the Bear and Weber Rivers in the USA and the Monterrey River in Mexico
    • …
    corecore