2,953 research outputs found

    Auro: Adaptive Unicast Routing Framework for Vehicular Ad Hoc Network

    Get PDF
    A special type of Mobile Ad hoc network (MANET) is Vehicular Ad hoc Network (VANET) and it provides exchange of messages between vehicles. VANET encourages researchers to create safety and comfort applications that will lead to Intelligent Transport Systems (ITS). Link failure in the routing path occurs due to frequent change in the network topology of VANET. To handle this situation, the routing protocol has to initiate either a local repair of route or find a route by broadcasting control overhead packets. This increases the network bandwidth utilization of the VANET. When the number of vehicles increase in VANET, broadcasting of redundant route repair packets increases the collisions in the medium leading to broadcasting storm problem. This paper proposes an Adaptive Unicast ROuting (AURO) framework to address frequent disconnections and broadcast storm problems in VANET. This framework selects suitable protocol from the three unicast routing protocols namely On-demand Proactive with Route Maintenance Protocol (ORPM), Efficient Reactive routing Protocol (ERP) and Stable Routing Protocol (SRP) from the network context and the user requirements. The proposed AURO framework is implemented using NS2 and SUMO simulators. The performance of these protocols were thoroughly analyzed and compared with existing popular protocols

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Qualitative Based Comparison of Routing Protocols for VANET

    Get PDF
    Vehicular ad hoc network is one of the most promising applications of MANET that an inter communication system. In VANET nodes which are vehicles can move safety with high speed and generally must communicate quickly reliably. When an accident occurs in a road or highway, alarm messages must be disseminated, instead of ad hoc routed, to inform all other vehicles. Vehicular ad hoc network architecture and cellular technology to achieve intelligent communication and improve road traffic safety and efficiency .To organize their in vehicle computing system, vehicle to vehicle ad hoc networks, hybrid architecture with special properties such as high mobility, network portioning and constrained topology .there is a lot of research about VANET for driving services, traffic information services, user communication and information services. VANET can perform effective communication by utilizing routing information. Some researchers are contributed a lots in the area of VANET. In this articles mainly focusing on significant features, performance improvement in comparisons of routing protocol for vehicular ad hoc network (VANET). Keywords: VANET, Routing Protocol, PBR, CAR, CBR etc

    Stochastic R-Tuple Estimation for Unicast Routing Protocol in VANET

    Get PDF
    Vehicular Ad hoc NETwork (VANET) is a latest technology that enables vehicles to communicate with infrastructure and with vehicle. It comes under the sub class of Mobile Ad hoc NETwork (MANET). In VANET all participating nodes are highly moving. VANET has two type of communication vehicle to infrastructure (V2I) and vehicle to vehicle (V2V). Each vehicle equipped with on board unit (OBUs) that gives the service of communicating with road side unit (RSUs). Main motivation behind VANET is to provide safety from accident and avoid the accident To manage the traffic VANETs play an important role for Intelligent Transportation Systems (ITS). VANET has high mobility compare to MANET. Due to high mobility, routing is biggest challenge. In this paper, reliability tuple estimation protocol (RTEP) is proposed for unicast routing protocol in VANET. R-Tuple plays a vital role in selecting reliable route between source and target vehicle. R-Tuple has three parameter range, direction and speed of the vehicle. Reliable route is selected based on these parameters

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    DEMO: Simulation of Realistic Mobility Model and Implementation of 802.11p (DSRC) for Vehicular Networks (VANET)

    Full text link
    An ad hoc network of vehicles (VANET) consists of vehicles that exchange information via radio in order to improve road safety, traffic management and do better distribution of traffic load in time and space. Along with this it allows Internet access for passengers and users of vehicles. A significant characteristic while studying VANETs is the requirement of having a mobility model that gives aspects of real vehicular traffic. These scenarios play an important role in performance of VANETs. In our paper we have demonstration and description of generating realistic mobility model using various tools such as eWorld, OpenStreetMap, SUMO and TraNS. Generated mobility scenario is added to NS-2.34 (Network Simulator) for analysis of DSR and AODV routing protocol under 802.11p (DSRC/WAVE) and 802.11a. Results after analysis shows 802.11p is more suitable than 802.11a for VANET.Comment: 4 pages, 6 figures, International Journal of Computer Applicatio
    • …
    corecore