4 research outputs found

    Modeling and Solving Project Portfolio and Contractor Selection Problem Based on Project Scheduling under Uncertainty

    Get PDF
    AbstractIn this paper a new formulation of the project portfolio selection problem based on the project schedules in uncertain circumstances have been proposed. The project portfolio selection models usually disregard the project scheduling, whereas is an element of the project selection process. We investigate a project portfolio selection problem based on the schedule of the projects, so that the minimum expected profit would be met in the shortest possible time period. Also due to uncertain nature of durations of the activities, this duration considered as the semi-trapezoidal fuzzy numbers. Finally, a fuzzy linear programming model is developed for the problem, where the results indicated the validity of the presented model

    MASISCo—Methodological Approach for the Selection of Information Security Controls

    Get PDF
    As cyber-attacks grow worldwide, companies have begun to realize the importance of being protected against malicious actions that seek to violate their systems and access their information assets. Faced with this scenario, organizations must carry out correct and efficient management of their information security, which implies that they must adopt a proactive attitude, implementing standards that allow them to reduce the risk of computer attacks. Unfortunately, the problem is not only implementing a standard but also determining the best way to do it, defining an implementation path that considers the particular objectives and conditions of the organization and its availability of resources. This paper proposes a methodological approach for selecting and planning security controls, standardizing and systematizing the process by modeling the situation (objectives and constraints), and applying optimization techniques. The work presents an evaluation of the proposal through a methodology adoption study. This study showed a tendency of the study subjects to adopt the proposal, perceiving it as a helpful element that adapts to their way of working. The main weakness of the proposal was centered on ease of use since the modeling and resolution of the problem require advanced knowledge of optimization techniques.This research was funded by Universidad de La Frontera, research direction, research project DIUFRO DI22-0043

    Use of genetic algorithms in multi-objective multi-project resource constrained project scheduling

    Get PDF
    Resource Constrained Project Scheduling Problem (RCPSP) has been studied extensively by researchers by considering limited renewable and non-renewable resources. Several exact and heuristic methods have been proposed. Some important extensions of RCPSP such as multi-mode RCPSP, multi-objective RCPSP and multi-project RCPSP have also been focused. In this study, we consider multi-project and multi-objective resource constrained project scheduling problem. As a solution method, non-dominated sorting genetic algorithm is adopted. By experimenting with different crossover and parent selection mechanisms, a detailed fine-tuning process is conducted, in which response surface optimization method is employed. In order to improve the solution quality, backward-forward pass procedure is proposed as both post-processing as well as for new population generation. Additionally, different divergence applications are proposed and one of them, which is based on entropy measure is studied in depth. The performance of the algorithm and CPU times are reported. In addition, a new method for generating multi-project test instances is proposed and the performance of the algorithm is evaluated through test instances generated through this method of data generation. The results show that backward-forward pass procedure is successful to improve the solution quality

    An integrated selection and scheduling for disjunctive network problems

    No full text
    In network optimization problems, the application of conventional integrated selection and scheduling solution methods becomes complicated when the size of the problems, such as real life project management, assembly and transportation problems, get bigger. These kinds of problems often consist of disjunctive networks with alternative subgraphs. Traditionally, in order to handle alternative subgraphs in a disjunctive network, researchers consider first selection and then solution (scheduling) of the problem sequentially. However, the use of traditional approaches result in the loss of the problem structural integrity. When the approach losses its integrated structure, the network problem also losses its integrity. Therefore, these two issues, i.e. selection and scheduling, have to be considered together. To provide a new approach to maintain the problem integrity, we proposed an integrated genetic algorithm for solving this selection and scheduling problems together using a multi-stage decision approach. In this study, two newly defined problems with different disjunctive networks and different characteristics, i.e. resource constrained multiple project scheduling (rc-mPSP) models with alternative projects and variable activity times, and U-shaped assembly line balancing (uALB) models with alternative subassemblies, have been solved using the proposed solution approach to highlight the applicability and performance of the proposed solution approach. (C) 2011 Elsevier Ltd. All rights reserved
    corecore