6 research outputs found

    An integrated framework for verifying multiple care pathways

    Get PDF
    Common chronic conditions are routinely treated following standardised procedures known as clinical pathways. For patients suffering from two or more chronic conditions, referred to as multimorbidities, several pathways have to be applied simultaneously. However, since pathways rarely consider the presence of comorbidities, applying several pathways may lead to potentially harmful (medication) conflicts. This paper proposes an automated framework to detect, highlight and resolve conflicts in the treatments used for patients with multimorbidites. We use BPMN as a modelling language for capturing care guidelines. A BPMN model is transformed into an intermediate formal model capturing the possible unfoldings of the pathway. Through a combination of the constraint solver Z3 and the theorem prover Isabelle, we check the correctness of combined treatment plans. We illustrate the approach with an example from the medical domain and discuss future work.Postprin

    A framework for automated conflict detection and resolution in medical guidelines

    Get PDF
    This research is supported by the MRC-funded UK Research and Innovation grant MR/S003819/1 and by EPSRC grant EP/M014290/1.Common chronic conditions are routinely treated following standardised procedures known as clinical guidelines. For patients suffering from two or more chronic conditions, known as multimorbidity, several guidelines have to be applied simultaneously, which may lead to severe adverse effects when the combined recommendations and prescribed medications are inconsistent or incomplete. This paper presents an automated formal framework to detect, highlight and resolve conflicts in the treatments used for patients with multimorbidities focusing on medications. The presented extended framework has a front-end which takes guidelines captured in a standard modelling language and returns the visualisation of the detected conflicts as well as suggested alternative treatments. Internally, the guidelines are transformed into formal models capturing the possible unfoldings of the guidelines. The back-end takes the formal models associated with multiple guidelines and checks their correctness with a theorem prover, and inherent inconsistencies with a constraint solver. Key to our approach is the use of an optimising constraint solver which enables us to search for the best solution that resolves/minimises conflicts according to medication efficacy and the degree of severity in case of harmful combinations, also taking into account their temporal overlapping. The approach is illustrated throughout with a real medical example.Publisher PDFPeer reviewe

    Modified Needleman-Wunsch algorithm for clinical pathway clustering

    Get PDF
    Clinical pathways are used to guide clinicians to provide a standardised delivery of care. Because of their standardisation, the aim of clinical pathways is to reduce variation in both care process and patient outcomes. When learning clinical pathways from data through data mining, it is common practice to represent each patient pathway as a string corresponding to their movements through activities. Clustering techniques are popular methods for pathway mining, and therefore this paper focuses on distance metrics applied to string data for k-medoids clustering. The two main aims are to firstly, develop a technique that seamlessly integrates expert information with data and secondly, to develop a string distance metric for the purpose of process data. The overall goal was to allow for more meaningful clustering results to be found by adding context into the string similarity calculation. Eight common distance metrics and their applicability are discussed. These distance metrics prove to give an arbitrary distance, without consideration for context, and each produce different results. As a result, this paper describes the development of a new distance metric, the modified Needleman–Wunsch algorithm, that allows for expert interaction with the calculation by assigning groupings and rankings to activities, which provide context to the strings. This algorithm has been developed in partnership with UK’s National Health Service (NHS) with the focus on a lung cancer pathway, however the handling of the data and algorithm allows for application to any disease type. This method is contained within Sim.Pro.Flow, a publicly available decision support tool

    Clinical pathway modelling: A literature review

    Get PDF
    Hospital information systems are increasingly used as part of decision support tools for planning at strategic, tactical and operational decision levels. Clinical pathways are an effective and efficient approach in standardising the progression of treatment, to support patient care and facilitate clinical decision making. This literature review proposes a taxonomy of problems related to clinical pathways and explores the intersection between Information Systems (IS), Operational Research (OR) and industrial engineering. A structured search identified 175 papers included in the taxonomy and analysed in this review. The findings suggest that future work should consider industrial engineering integrated with OR techniques, with an aim to improving the handling of multiple scopes within one model, while encouraging interaction between the disjoint care levels and with a more direct focus on patient outcomes. Achieving this would continue to bridge the gap between OR, IS and industrial engineering, for clinical pathways to aid decision support
    corecore