358 research outputs found

    V-Model Role Engineering

    Get PDF
    The paper focuses on role engineering which is an important topic in the development of access control system, particularly when considering Role Based Access Control – RBAC models. Despite the wide use of RBAC in various applications, the role engineering process is not a standardized approach. The paper aims to define a methodology and a process model for role engineeringInformation security, access control systems, role based access control systems – RBAC, engineering methodologies, security policies, access control models

    Security hardened remote terminal units for SCADA networks.

    Get PDF
    Remote terminal units (RTUs) are perimeter supervisory control and data acquisition (SCADA) devices that measure and control actual physical devices. Cyber security was largely ignored in SCADA for many years, and the cyber security issues that now face SCADA and DCS, specifically RTU security, are investigated in this research. This dissertation presents a new role based access control model designed specifically for RTUs and process control. The model is developed around the process control specific data element called a point, and point operations. The model includes: assignment constraints that limit the RTU operations that a specific role can be assigned and activation constraints that allow a security administrator to specify conditions when specific RTU roles or RTU permissions cannot be used. RTU enforcement of the new access control model depends on, and is supported by, the protection provided by an RTU\u27s operating system. This dissertation investigates two approaches for using minimal kernels to reduce potential vulnerabilities in RTU protection enforcement and create a security hardened RTU capable of supporting the new RTU access control model. The first approach is to reduce a commercial OS kernel to only those components needed by the RTU, removing any known or unknown vulnerabilities contained in the eliminated code and significantly reducing the size of the kernel. The second approach proposes using a microkernel that supports partitioning as the basis for an RTU specific operating system which isolates network related RTU software, the RTU attack surface, from critical RTU operational software such as control algorithms and analog and digital input and output. In experimental analysis of a prototype hardened RTU connected to real SCADA hardware, a reduction of over 50% was obtained in reducing a 2.4 Linux kernel to run on actual RTU hardware. Functional testing demonstrated that different users were able to carryout assigned tasks with the limited set of permissions provided by the security hardened RTU and a series of simulated insider attacks were prevented by the RTU role based access control system. Analysis of communication times indicated response times would be acceptable for many SCADA and DCS application areas. Investigation of a partitioning microkernel for an RTU identified the L4 microkernel as an excellent candidate. Experimental evaluation of L4 on real hardware found the IPC overhead for simulated critical RTU operations protected by L4 partitioning to be sufficiently small to warrant continued investigation of the approach

    The Proviado Access Control Model for Business Process Monitoring Components

    Get PDF
    Integrated process support is highly desirable in environments where data related to a particular business process are scattered over distributed, heterogeneous information systems. A business process monitoring component is a much-needed module in order to provide an integrated view on all these process data. Regarding process visualization and process data integration, access control (AC) issues are very important but also quite complex to be addressed. A major problem arises from the fact that the involved information systems are usually based on heterogeneous AC components. For several reasons, the only feasible way to tackle the problem of AC at the process monitoring level is to define access rights for the process monitoring component, hence getting rid of the burden to map access rights from the information system level. This paper presents the Proviado process visualization framework and discusses requirements for AC in process monitoring, which we derived from our case studies in the automotive domain. It then presents alternative approaches for AC: the view-based and the object-based approach. The latter is retained, and a core AC model is proposed for the definition of access rights that meet the derived requirements. AC mechanisms provided within the core model are key ingredients for the definition of model extensions

    RBAC Attack Exposure Auditor. Tracking User Risk Exposure per Role-Based Access Control Permissions

    Get PDF
    Access control models and implementation guidelines for determining, provisioning, and de-provisioning user permissions are challenging due to the differing approaches, unique for each organization, the lack of information provided by case studies concerning the organization’s security policies, and no standard means of implementation procedures or best practices. Although there are multiple access control models, one stands out, role-based access control (RBAC). RBAC simplifies maintenance by enabling administrators to group users with similar permissions. This approach to managing user permissions supports the principle of least privilege and separation of duties, which are needed to ensure an organization maintains acceptable user access security requirements. However, if not properly maintained, RBAC produces the problem of role explosion. What happens when security administrations cannot maintain the increasing number of roles and their assigned permissions provisioned to the organization users? This paper attempts to solve this problem by implementing a scalable RBAC system and assigning each permission a risk value score determined by the severity of risk it would expose the organization to if someone had unauthorized access to that permission. Using RBAC’s role and permission design, each user will be assigned a risk value score determined by the summation of their roles’ risk based on permission values. This method allows security administrators to view the users and roles with the highest level of risk, therefore prioritizing the highest risk users and roles when maintaining user roles and permissions

    Privacy Preserving Enforcement of Sensitive Policies in Outsourced and Distributed Environments

    Get PDF
    The enforcement of sensitive policies in untrusted environments is still an open challenge for policy-based systems. On the one hand, taking any appropriate security decision requires access to these policies. On the other hand, if such access is allowed in an untrusted environment then confidential information might be leaked by the policies. The key challenge is how to enforce sensitive policies and protect content in untrusted environments. In the context of untrusted environments, we mainly distinguish between outsourced and distributed environments. The most attractive paradigms concerning outsourced and distributed environments are cloud computing and opportunistic networks, respectively. In this dissertation, we present the design, technical and implementation details of our proposed policy-based access control mechanisms for untrusted environments. First of all, we provide full confidentiality of access policies in outsourced environments, where service providers do not learn private information about policies. We support expressive policies and take into account contextual information. The system entities do not share any encryption keys. For complex user management, we offer the full-fledged Role-Based Access Control (RBAC) policies. In opportunistic networks, we protect content by specifying expressive policies. In our proposed approach, brokers match subscriptions against policies associated with content without compromising privacy of subscribers. As a result, unauthorised brokers neither gain access to content nor learn policies and authorised nodes gain access only if they satisfy policies specified by publishers. Our proposed system provides scalable key management in which loosely-coupled publishers and subscribers communicate without any prior contact. Finally, we have developed a prototype of the system that runs on real smartphones and analysed its performance.Comment: Ph.D. Dissertation. http://eprints-phd.biblio.unitn.it/1124

    ESPOONERBAC_{{ERBAC}}: Enforcing Security Policies In Outsourced Environments

    Full text link
    Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality. There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments. However, such solutions do not support access policies to regulate access to a particular subset of the stored data. For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access decisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposing \textbf{ESPOONERBAC\mathit{ESPOON_{ERBAC}}} for enforcing RBAC policies in outsourced environments. ESPOONERBAC\mathit{ESPOON_{ERBAC}} enforces RBAC policies in an encrypted manner where a curious service provider may learn a very limited information about RBAC policies. We have implemented ESPOONERBAC\mathit{ESPOON_{ERBAC}} and provided its performance evaluation showing a limited overhead, thus confirming viability of our approach.Comment: The final version of this paper has been accepted for publication in Elsevier Computers & Security 2013. arXiv admin note: text overlap with arXiv:1306.482

    Advanced Access Control to Information Systems: Requirements, Compliance and Future Directives

    Get PDF
    The swift cadence of Information and Communication Technologies (ICT) is at the origin of a new generation of open, ubiquitous, large-scale, complex, and heterogeneous information systems (IS). Inextricably linked with this evolution, a number of technical, administrative, and social challenges should be urgently addressed. Security and privacy in critical IS are recognized as crucial issues. The access control is well adopted as a typical solution for securing sensitive resources and ensuring authorized interactions within IS. The chapter deals mainly with the thematic of advanced access control to IS and particularly to relational databases. We present a synthesis of the state of the art of access control that encloses a study of research advancements and challenges. We introduce and discuss requirements and main characteristics for deploying advanced access control infrastructures. Then, we discuss the problem of the conformity of concrete access control infrastructures, and we propose a conformity management scheme for monitoring the compliance between low-level and high-level policies. Finally, we provide and discuss proposals and directives to enhance provably secure and compliant access control schemes as a main characteristic of future IS
    • 

    corecore