6,227 research outputs found

    Product Return Handling

    Get PDF
    In this article we focus on product return handling and warehousingissues. In some businesses return rates can be well over 20% andreturns can be especially costly when not handled properly. In spiteof this, many managers have handled returns extemporarily. The factthat quantitative methods barely exist to support return handlingdecisions adds to this. In this article we bridge those issues by 1)going over the key decisions related with return handling; 2)identifying quantitative models to support those decisions.Furthermore, we provide insights on directions for future research.reverse logistics;decision-making;quantitative models;retailing and warehousing

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A new management scheme to support reverse logistics processes in the agrifood distribution sector

    Get PDF
    During the last decades, reverse logistics and reuse of products have received growing attention as profitable and sustainable business strategies. Looking at the agrifood distribution sector, every day thousands of agrifood stores throw away large quantities of food product no longer suitable for sale. This "waste product", in the majority of cases, could still find new uses as animal feed or fertilizer. The return flow of food product is a typical problem of reverse logistics. This study proposes a new bi-modular scheme for managing the process of collection of "food waste" resulting from the agribusiness distribution sector and its subsequent distribution to livestock farms and collection centers located in the area of interest. The proposed management scheme consists of two modules: - module 1: to cluster the observed area into convenient collection sectors by means of clustering algorithms; - module 2: to identify optimal retrieval routes within each cluster by using Vehicle Routing models. The province of Cagliari in Sardinia (Italy) has been identified as test area. An extensive data collection process has been performed in order to collect the information necessary to portray the existing scenario. The following businesses have been recorded: grocery stores and supermarkets with at least 400 sqm of retail area, livestock farms with at least 200 heads of cattle, feed mills. A number of variables concerning location, type, size and demand data have been collected for each recorded unit.The management scheme has been implemented in a software platform and successfully applied in the test area. The outcome provides useful insights to stakeholders and suggests avenues for further research in the area in order to develop a more general and intuitive tool for managing reverse logistics processes in agrifood chains

    Design Principles for Closed Loop Supply Chains

    Get PDF
    In this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the literature. It appears that setting up closed loop supply chains requires some additional design principles because of sustainability requirements. At the same time however, we see that traditional principles also apply. Subsequently we look at a business situation at Honeywell. Here, only a subset of the relevant design principles is applied. The apparent low status of reverse logistics may provide an explanation for this. To some extent, the same mistakes are made again as were 20 years ago in, for instance, inbound logistics. Thus, obvious improvements can be made by applying traditional principles. Also new principles, which require a life cycle driven approach, need to be applied. This can be supported by advanced management tools such as LCA and LCC.reverse logistics;case-study;closed loop supply chains

    Solving the Integrated Bin Allocation and Collection Routing Problem for Municipal Solid Waste: a Benders Decomposition Approach

    Full text link
    The municipal solid waste system is a complex reverse logistic chain which comprises several optimisation problems. Although these problems are interdependent, i.e., the solution to one of the problems restricts the solution to the other, they are usually solved sequentially in the related literature because each is usually a computationally complex problem. We address two of the tactical planning problems in this chain by means of a Benders decomposition approach: determining the location and/or capacity of garbage accumulation points, and the design and schedule of collection routes for vehicles. Our approach manages to solve medium-sized real-world instances in the city of Bah\'{i}a Blanca, Argentina, showing smaller computing times than solving a full MIP model.Comment: 29 pages, 6 figure

    Product Return Handling

    Get PDF
    In this article we focus on product return handling and warehousing issues. In some businesses return rates can be well over 20% and returns can be especially costly when not handled properly. In spite of this, many managers have handled returns extemporarily. The fact that quantitative methods barely exist to support return handling decisions adds to this. In this article we bridge those issues by 1) going over the key decisions related with return handling; 2) identifying quantitative models to support those decisions. Furthermore, we provide insights on directions for future research

    Design of the Reverse Logistics System for Medical Waste Recycling Part II: Route Optimization with Case Study under COVID-19 Pandemic

    Full text link
    Medical waste recycling and treatment has gradually drawn concerns from the whole society, as the amount of medical waste generated is increasing dramatically, especially during the pandemic of COVID-19. To tackle the emerging challenges, this study designs a reverse logistics system architecture with three modules, i.e., medical waste classification & monitoring module, temporary storage & disposal site (disposal site for short) selection module, as well as route optimization module. This overall solution design won the Grand Prize of the "YUNFENG CUP" China National Contest on Green Supply and Reverse Logistics Design ranking 1st. This paper focuses on the design of the route optimization module. In this module, a route optimization problem is designed considering transportation costs and multiple risk costs (e.g., environment risk, population risk, property risk, and other accident-related risks). The Analytic Hierarchy Process is employed to determine the weights for each risk element, and a customized genetic algorithm is developed to solve the route optimization problem. A case study under the COVID-19 pandemic is further provided to verify the proposed model. Limited by length, detailed descriptions of the whole system and the other modules can be found at https://shorturl.at/cdY59.Comment: 6 pages, 4 figures, under review by the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023
    corecore