2,139 research outputs found

    Proactive Empirical Assessment of New Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default Methods

    Full text link
    Programming languages and platforms improve over time, sometimes resulting in new language features that offer many benefits. However, despite these benefits, developers may not always be willing to adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess the adoption of a particular new language feature. Studying how developers use (or do not use) new language features is important in programming language research and engineering because it gives designers insight into the usability of the language to create meaning programs in that language. This knowledge, in turn, can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to contain (instance) method implementations. Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach and a novel technique, situations where developers found these constructs useful and where they did not, and the reasons for each. Although several studies center around assessing new language features, to the best of our knowledge, this kind of construct has not been previously considered. Despite their benefits, we found that developers did not adopt default methods in all situations. Our study consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java projects without altering original program semantics. This novel assessment technique is proactive in that the adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and integrate the feature themselves. In this way, we set forth best practices and patterns of using the language feature effectively earlier rather than later and are able to possibly guide (near) future language evolution. We foresee this technique to be useful in assessing other new language features, design patterns, and other programming idioms

    Topic-based integrator matching for pull request

    Get PDF
    Pull Request (PR) is the main method for code contributions from the external contributors in GitHub. PR review is an essential part of open source software developments to maintain the quality of software. Matching a new PR for an appropriate integrator will make the PR reviewing more effective. However, PR and integrator matching are now organized manually in GitHub. To make this process more efficient, we propose a Topic-based Integrator Matching Algorithm (TIMA) to predict highly relevant collaborators(the core developers) as the integrator to incoming PRs . TIMA takes full advantage of the textual semantics of PRs. To define the relationships between topics and collaborators, TIMA builds a relation matrix about topic and collaborators. According to the relevance between topics and collaborators, TIMA matches the suitable collaborators as the PR integrator

    The effects of change decomposition on code review -- a controlled experiment

    Get PDF
    Background: Code review is a cognitively demanding and time-consuming process. Previous qualitative studies hinted at how decomposing change sets into multiple yet internally coherent ones would improve the reviewing process. So far, literature provided no quantitative analysis of this hypothesis. Aims: (1) Quantitatively measure the effects of change decomposition on the outcome of code review (in terms of number of found defects, wrongly reported issues, suggested improvements, time, and understanding); (2) Qualitatively analyze how subjects approach the review and navigate the code, building knowledge and addressing existing issues, in large vs. decomposed changes. Method: Controlled experiment using the pull-based development model involving 28 software developers among professionals and graduate students. Results: Change decomposition leads to fewer wrongly reported issues, influences how subjects approach and conduct the review activity (by increasing context-seeking), yet impacts neither understanding the change rationale nor the number of found defects. Conclusions: Change decomposition reduces the noise for subsequent data analyses but also significantly supports the tasks of the developers in charge of reviewing the changes. As such, commits belonging to different concepts should be separated, adopting this as a best practice in software engineering
    • …
    corecore