622 research outputs found

    Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases

    Get PDF
    Chronic obstructive pulmonary disease (COPD) concerns the serious decline of human lung functions. These have emerged as one of the most concerning health conditions over the last two decades, after cancer around the world. The early diagnosis of COPD, particularly of lung function degradation, together with monitoring the condition by physicians, and predicting the likelihood of exacerbation events in individual patients, remains an important challenge to overcome. The requirements for achieving scalable deployments of data-driven methods using artificial intelligence for meeting such a challenge in modern COPD healthcare have become of paramount and critical importance. In this study, we have established the experimental foundations for acquiring and indeed generating biomedical observation data, for good performance signal analysis and machine learning that will lead us to the intelligent diagnosis and monitoring of COPD conditions for individual patients. Further, we investigated on the multi-resolution analysis and compression of lung audio signals, while we performed their machine classification under two distinct experiments. These respectively refer to conditions involving (1) “Healthy” or “COPD” and (2) “Healthy”, “COPD”, or “Pneumonia” classes. Signal reconstruction with the extracted features for machine learning and testing was also performed for securing the integrity of the original audio recordings. These showed high levels of accuracy together with the performances of the selected machine learning-based classifiers using diverse metrics. Our study shows promising levels of accuracy in classifying Healthy and COPD and also Healthy, COPD, and Pneumonia conditions. Further work in this study will be imminently extended to new experiments using multi-modal sensing hardware and data fusion techniques for the development of the next generation diagnosis systems for COPD healthcare of the future

    Hardware-software design of embedded systems for intelligent sensing applications

    Get PDF
    This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    The Biometric Evolution of Sound and Space

    Get PDF
    Auditoria in the late 20th and 21st centuries have evolved into a series of spatial conventions that are an established and accepted norm. The relationship between space and music now exists in a decoupled condition, and music is no longer reliant on volumetric and material conditions to define its form (Glantz 2000). This thesis looks at a series of novel approaches to investigate how the links between music and space can be reconnected though evolutionary computation, parametric modelling, virtual acoustics and biometric sensing. The thesis describes in detail the experiments undertaken in developing methodologies in linking music, space and the body. The thesis will show how it is possible to develop new form finding and musical generation tools that allow new room shapes and acoustic measures to inform how new acoustic and musical forms can be developed unconsciously and objectively by a listener, in response to sound and site

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    • …
    corecore