803 research outputs found

    Virtual reality as a potential tool to face frailty challenges

    Get PDF
    The aging population and the corresponding increase in age-related diseases present scientific community and public health authorities with imminent challenges. One of these challenges deals with a deeper understanding of functional status of elderly in order to prevent and/or delay the onset of late-life disability (Rodr\uedguez-Artalejo and Rodr\uedguez-Ma\uf1as, 2014). The syndrome of \u201cfrailty\u201d has been recently introduced in literature to specifically characterize the health of older individuals who deserve special attention because of their increased vulnerability to adverse health outcomes (Afilalo et al., 2010). Although there is not a unique definition of frailty (Morley et al., 2013), the majority of studies refers to the five operational criteria (Fried et al., 2001): decreased gait speed, reduced grip strength, prolonged and unmotivated exhaustion, low physical activity, unintended weight loss. The problem of different definitions leads also to a large variation in reported prevalence rates, which range approximately from 5 to 60% (Collard et al., 2012). However, this multifaceted decline in different physiological systems make frail older individuals progressively more exposed to stressors (Clegg et al., 2013), making urgent the need for better care intervention

    Role of Kinematics Assessment and Multimodal Sensorimotor Training for Motion Deficits in Breast Cancer Chemotherapy-Induced Polyneuropathy: A Perspective on Virtual Reality Avatars

    Get PDF
    Chemotherapy-induced polyneuropathy (CIPN), one of the most severe and incapacitating side effects of chemotherapeutic drugs, is a serious concern in breast cancer therapy leading to dose diminution, delay, or cessation. The reversibility of CIPN is of increasing importance since active chemotherapies prolong survival. Clinical assessment tools show that patients experiencing sensorimotor CIPN symptoms not only do they have to cope with loss in autonomy and life quality, but CIPN has become a key restricting factor in treatment. CIPN incidence poses a clinical challenge and has lacked established and efficient therapeutic options up to now. Complementary, non-opioid therapies are sought for both prevention and management of CIPN. In this perspective, we explore the potential that digital interventions have for sensorimotor CIPN rehabilitation in breast cancer patients. Our primary goal is to emphasize the benefits and impact that Virtual Reality (VR) avatars and Machine Learning have in combination in a digital intervention aiming at (1) assessing the complete kinematics of deficits through learning underlying patient sensorimotor parameters, and (2) parameterize a multimodal VR simulation to drive personalized deficit compensation. We support our perspective by evaluating sensorimotor effects of chemotherapy, the metrics to assess sensorimotor deficits, and relevant clinical studies. We subsequently analyse the neurological substrate of VR sensorimotor rehabilitation, with multisensory integration acting as a key element. Finally, we propose a closed-loop patient-centered design recommendation for CIPN sensorimotor rehabilitation. Our aim is to provoke the scientific community toward the development and use of such digital interventions for more efficient and targeted rehabilitation

    Unilateral spatial neglect after stroke: Current insights

    Get PDF
    INTRODUCTION: Unilateral spatial neglect (USN) is a disorder of contralesional space awareness which often follows unilateral brain lesion. Since USN impairs awareness of contralesional space/body and often of concomitant motor disorders, its presence represents a negative prognostic factor of functional recovery. Thus, the disorder needs to be carefully diagnosed and treated. Here, we attempted to present a clear and concise picture of current insights in the comprehension and rehabilitation of USN. METHODS: We first provided an updated overview of USN clinical and neuroanatomical features and then highlighted recent progresses in the diagnosis and rehabilitation of the disease. In relation to USN rehabilitation, we conducted a MEDLINE literature research on three of the most promising interventions for USN rehabilitation: prismatic adaptation (PA), non-invasive brain stimulation (NIBS), and virtual reality (VR). The identified studies were classified according to the strength of their methods. RESULTS: The last years have witnessed a relative decrement of interest in the study of neuropsychological disorders of spatial awareness in USN, but a relative increase in the study of potential interventions for its rehabilitation. Although optimal protocols still need to be defined, high-quality studies have demonstrated the efficacy of PA, TMS and tDCS interventions for the treatment of USN. In addition, preliminary investigations are suggesting the potentials of GVS and VR approaches for USN rehabilitation. CONCLUSION: Advancing neuropsychological and neuroscience tools to investigate USN pathophysiology is a necessary step to identify effective rehabilitation treatments and to foster our understanding of neurofunctional bases of spatial cognition in the healthy brain

    Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging

    Get PDF
    Along with deficits in spatial cognition, a decline in body-related information is observed in aging and is thought to contribute to impairments in navigation, memory, and space perception. According to the embodied cognition theories, bodily and environmental information play a crucial role in defining cognitive representations. Thanks to the possibility to involve body-related information, manipulate environmental stimuli, and add multisensory cues, virtual reality is one of the best candidates for spatial memory rehabilitation in aging for its embodied potential. However, current virtual neurorehabilitation solutions for aging and neurodegenerative diseases are in their infancy. Here, we discuss three concepts that could be used to improve embodied representations of the space with virtual reality. The virtual bodily representation is the combination of idiothetic information involved during virtual navigation thanks to input/output devices; the spatial affordances are environmental or symbolic elements used by the individual to act in the virtual environment; finally, the virtual enactment effect is the enhancement on spatial memory provided by actively (cognitively and/or bodily) interacting with the virtual space and its elements. Theoretical and empirical findings will be presented to propose innovative rehabilitative solutions in aging for spatial memory and navigation
    corecore