11 research outputs found

    Mobility-based Routing Overhead Management in Reconfigurable Wireless Ad hoc Networks

    Get PDF
    Mobility-Based Routing Overhead Management in Reconfigurable Wireless Ad Hoc Networks Routing Overheads are the non-data message packets whose roles are establishment and maintenance of routes for data packets as well as neighbourhood discovery and maintenance. They have to be broadcasted in the network either through flooding or other techniques that can ensure that a path exists before data packets can be sent to various destinations. They can be sent reactively or periodically to neighbours so as to keep nodes updated on their neighbourhoods. While we cannot do without these overhead packets, they occupy much of the limited wireless bandwidth available in wireless networks. In a reconfigurable wireless ad hoc network scenario, these packets have more negative effects, as links need to be confirmed more frequently than in traditional networks mainly because of the unpredictable behaviour of the ad hoc networks. We therefore need suitable algorithms that will manage these overheads so as to allow data packet to have more access to the wireless medium, save node energy for longer life of the network, increased efficiency, and scalability. Various protocols have been suggested in the research area. They mostly address routing overheads for suitability of particular protocols leading to lack of standardisation and inapplicability to other protocol classes. In this dissertation ways of ensuring that the routing overheads are kept low are investigated. The issue is addressed both at node and network levels with a common goal of improving efficiency and performance of ad hoc networks without dedicating ourselves to a particular class of routing protocol. At node level, a method hereby referred to as "link availability forecast", that minimises routing overheads used for maintenance of neighbourhood, is derived. The targeted packets are packets that are broadcasted periodically (e.g. hello messages). The basic idea in this method is collection of mobility parameters from the neighbours and predictions or forecasts of these parameters in future. Using these parameters in simple calculations helps in identifying link availabilities between nodes participating in maintenance of networks backbone. At the network level, various approaches have been suggested. The first approach is the cone flooding method that broadcasts route request messages through a predetermined cone shaped region. This region is determined through computation using last known mobility parameters of the destination. Another approach is what is hereby referred as "destination search reverse zone method". In this method, a node will keep routes to destinations for a long time and use these routes for tracing the destination. The destination will then initiate route search in a reverse manner, whereby the source selects the best route for next delivery. A modification to this method is for the source node to determine the zone of route search and define the boundaries within which the packet should be broadcasted. The later method has been used for simulation purposes. The protocol used for verification of the improvements offered by the schemes was the AODV. The link availability forecast scheme was implemented on the AODV and labelled AODV_LA while the network level implementation was labelled AODV_RO. A combination of the two schemes was labelled AODV_LARO

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    ACODV : Ant Colony Optimisation Distance Vector routing in ad hoc networks

    Get PDF
    A mobile ad hoc network is a collection of wireless mobile devices which dynamically form a temporary network, without using any existing network infrastructure or centralised administration. Each node in the network effectively becomes a router, and forwards packets towards the packet’s destination node. Ad hoc networks are characterized by frequently changing network topology, multi-hop wireless connections and the need for dynamic, efficient routing protocols. The overarching requirement for low power consumption, as battery powered sensors may be required to operate for years without battery replacement; An emphasis on reliable communication as opposed to real-time communication, it is more important for packets to arrive reliably than to arrive quickly; and Very scarce processing and memory resources, as these sensors are often implemented on small low-power microprocessors. This work provides overviews of routing protocols in ad hoc networks, swarm intelligence, and swarm intelligence applied to ad hoc routing. Various mechanisms that are commonly encountered in ad hoc routing are experimentally evaluated under situations as close to real-life as possible. Where possible, enhancements to the mechanisms are suggested and evaluated. Finally, a routing protocol suitable for such low-power sensor networks is defined and benchmarked in various scenarios against the Ad hoc On-Demand Distance Vector (AODV) algorithm.Dissertation (MSc)--University of Pretoria, 2005.Computer ScienceUnrestricte

    An in-depth analysis of the effects of IMEP on TORA protocol

    No full text
    corecore