22,815 research outputs found

    Fuzzy neural networks with genetic algorithm-based learning method

    Get PDF
    This thesis is on the reasoning of artificial neural networks based on granules for both crisp and uncertain data. However, understanding the data in this way is difficult when the data is so complex. Reducing the complexity of the problems that these networks are attempting to learn as well as decreasing the cost of the learning processes are desired for a better prediction. A suitable prediction in artificial neural networks depends on an in-depth understanding of data and fine tracking of relations between data points. Inaccuracies of the prediction are caused by complexity of data set and the complexity is caused by uncertainty and quantity of data. Uncertainties can be represented in granules, and the reasoning based on granules is known as granular computing. This thesis proposed an improvement of granular neural networks to reach an outcome from uncertain and crisp data. Two methods based on genetic algorithms (GAs) are proposed. Firstly, GA-based fuzzy granular neural networks are improved by GA-based fuzzy artificial neural networks. They consist of two parts: granulation using fuzzy c-mean clustering (FCM), and reasoning by GAbased fuzzy artificial neural networks. In order to extract granular rules, a granulation method is proposed. The method has three stages: construction of all possible granular rules, pruning the repetition, and crossing out granular rules. Secondly, the two-phase GA-based fuzzy artificial neural networks are improved by GA-based fuzzy artificial neural networks. They are designed in two phases. In this case, the improvement is based on alpha cuts of fuzzy weight in the network connections. In the first phase, the optimal values of alpha cuts zero and one are obtained to define the place of a fuzzy weight for a network connection. Then, in the second phase, the optimal values of middle alpha cuts are obtained to define the shape of a fuzzy weight. The experiments for the two improved networks are performed in terms of generated error and execution time. The results tested were based on available rule/data sets in University of California Irvine (UCI) machine learning repository. Data sets were used for GA-based fuzzy granular neural networks, and rule sets were used for GA-based fuzzy artificial neural networks. The rule sets used were customer satisfaction, uranium, and the datasets used were wine, iris, servo, concrete compressive strength, and uranium. The results for the two-phase networks revealed the improvements of these methods over the conventional onephase networks. The two-phase GA-based fuzzy artificial neural networks improved 35% and 98% for execution time, and 27% and 26% for the generated error. The results for GA-based granular neural networks were revealed in comparison with GA-based crisp artificial neural networks. The comparison with other related granular computing methods were done using the iris benchmark data set. The results for these networks showed an average performance of 82.1%. The results from the proposed methods were analyzed in terms of statistical measurements for rule strengths and classifier performance using benchmark medical datasets. Therefore, this thesis has shown GA-based fuzzy granular neural networks, and GA-based fuzzy artificial neural networks are capable of reasoning based on granules for both crisp and uncertain data in artificial neural networks

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction

    Get PDF
    This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Fuzzy heterogeneous neural networks for signal forecasting

    Get PDF
    Fuzzy heterogeneous neural networks are recently introduced models based on neurons accepting heterogeneous inputs (i.e. mixtures of numerical and non-numerical information possibly with missing data) with either crisp or imprecise character, which can be coupled with classical neurons. This paper compares the effectiveness of this kind of networks with time-delay and recurrent architectures that use classical neuron models and training algorithms in a signal forecasting problem, in the context of finding models of the central nervous system controllers.Peer ReviewedPostprint (author's final draft
    corecore