805 research outputs found

    A novel approach for breast ultrasound classification using two-dimensional empirical mode decomposition and multiple features

    Get PDF
    Aim: Breast cancer stands as a prominent cause of female mortality on a global scale, underscoring the critical need for precise and efficient diagnostic techniques. This research significantly enriches the body of knowledge pertaining to breast cancer classification, especially when employing breast ultrasound images, by introducing a novel method rooted in the two dimensional empirical mode decomposition (biEMD) method. In this study, an evaluation of the classification performance is proposed based on various texture features of breast ultrasound images and their corresponding biEMD subbands. Methods: A total of 437 benign and 210 malignant breast ultrasound images were analyzed, preprocessed, and decomposed into three biEMD sub-bands. A variety of features, including the Gray Level Co-occurrence Matrix (GLCM), Local Binary Patterns (LBP), and Histogram of Oriented Gradient (HOG), were extracted, and a feature selection process was performed using the least absolute shrinkage and selection operator method. The study employed GLCM, LBP and HOG, and machine learning techniques, including artificial neural networks (ANN), k-nearest neighbors (kNN), the ensemble method, and statistical discriminant analysis, to classify benign and malignant cases. The classification performance, measured through Area Under the Curve (AUC), accuracy, and F1 score, was evaluated using a 10-fold cross-validation approach. Results: The study showed that using the ANN method and hybrid features (GLCM+LBP+HOG) from BUS images' biEMD sub-bands led to excellent performance, with an AUC of 0.9945, an accuracy of 0.9644, and an F1 score of 0.9668. This has revealed the effectiveness of the biEMD method for classifying breast tumor types from ultrasound images. Conclusion: The obtained results have revealed the effectiveness of the biEMD method for classifying breast tumor types from ultrasound images, demonstrating high-performance classification using the proposed approach

    A survey, review, and future trends of skin lesion segmentation and classification

    Get PDF
    The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis

    Deep Learning in Single-Cell Analysis

    Full text link
    Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.Comment: 77 pages, 11 figures, 15 tables, deep learning, single-cell analysi

    Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review.

    Get PDF
    Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to retrieve articles reporting the application of AI in HCC detection and characterization. A total of 27 articles were included and analyzed with our composite score for the evaluation of the quality of the publications. The contingency table reported a statistically significant constant improvement over the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology. Our systematic approach has shown that previous works in HCC detection and characterization have assessed the comparability of conventional interpretation with machine learning using US, CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent need for data sharing in collaborative data repositories to minimize unnecessary repetition and wastage of resources

    Automatic Segmentation and Classification of Red and White Blood cells in Thin Blood Smear Slides

    Get PDF
    In this work we develop a system for automatic detection and classification of cytological images which plays an increasing important role in medical diagnosis. A primary aim of this work is the accurate segmentation of cytological images of blood smears and subsequent feature extraction, along with studying related classification problems such as the identification and counting of peripheral blood smear particles, and classification of white blood cell into types five. Our proposed approach benefits from powerful image processing techniques to perform complete blood count (CBC) without human intervention. The general framework in this blood smear analysis research is as follows. Firstly, a digital blood smear image is de-noised using optimized Bayesian non-local means filter to design a dependable cell counting system that may be used under different image capture conditions. Then an edge preservation technique with Kuwahara filter is used to recover degraded and blurred white blood cell boundaries in blood smear images while reducing the residual negative effect of noise in images. After denoising and edge enhancement, the next step is binarization using combination of Otsu and Niblack to separate the cells and stained background. Cells separation and counting is achieved by granulometry, advanced active contours without edges, and morphological operators with watershed algorithm. Following this is the recognition of different types of white blood cells (WBCs), and also red blood cells (RBCs) segmentation. Using three main types of features: shape, intensity, and texture invariant features in combination with a variety of classifiers is next step. The following features are used in this work: intensity histogram features, invariant moments, the relative area, co-occurrence and run-length matrices, dual tree complex wavelet transform features, Haralick and Tamura features. Next, different statistical approaches involving correlation, distribution and redundancy are used to measure of the dependency between a set of features and to select feature variables on the white blood cell classification. A global sensitivity analysis with random sampling-high dimensional model representation (RS-HDMR) which can deal with independent and dependent input feature variables is used to assess dominate discriminatory power and the reliability of feature which leads to an efficient feature selection. These feature selection results are compared in experiments with branch and bound method and with sequential forward selection (SFS), respectively. This work examines support vector machine (SVM) and Convolutional Neural Networks (LeNet5) in connection with white blood cell classification. Finally, white blood cell classification system is validated in experiments conducted on cytological images of normal poor quality blood smears. These experimental results are also assessed with ground truth manually obtained from medical experts

    Deep learning for image-based liver analysis — A comprehensive review focusing on malignant lesions

    Get PDF
    Deep learning-based methods, in particular, convolutional neural networks and fully convolutional networks are now widely used in the medical image analysis domain. The scope of this review focuses on the analysis using deep learning of focal liver lesions, with a special interest in hepatocellular carcinoma and metastatic cancer; and structures like the parenchyma or the vascular system. Here, we address several neural network architectures used for analyzing the anatomical structures and lesions in the liver from various imaging modalities such as computed tomography, magnetic resonance imaging and ultrasound. Image analysis tasks like segmentation, object detection and classification for the liver, liver vessels and liver lesions are discussed. Based on the qualitative search, 91 papers were filtered out for the survey, including journal publications and conference proceedings. The papers reviewed in this work are grouped into eight categories based on the methodologies used. By comparing the evaluation metrics, hybrid models performed better for both the liver and the lesion segmentation tasks, ensemble classifiers performed better for the vessel segmentation tasks and combined approach performed better for both the lesion classification and detection tasks. The performance was measured based on the Dice score for the segmentation, and accuracy for the classification and detection tasks, which are the most commonly used metrics.publishedVersio

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications
    corecore