4,672 research outputs found

    Separating decision tree complexity from subcube partition complexity

    Get PDF
    The subcube partition model of computation is at least as powerful as decision trees but no separation between these models was known. We show that there exists a function whose deterministic subcube partition complexity is asymptotically smaller than its randomized decision tree complexity, resolving an open problem of Friedgut, Kahn, and Wigderson (2002). Our lower bound is based on the information-theoretic techniques first introduced to lower bound the randomized decision tree complexity of the recursive majority function. We also show that the public-coin partition bound, the best known lower bound method for randomized decision tree complexity subsuming other general techniques such as block sensitivity, approximate degree, randomized certificate complexity, and the classical adversary bound, also lower bounds randomized subcube partition complexity. This shows that all these lower bound techniques cannot prove optimal lower bounds for randomized decision tree complexity, which answers an open question of Jain and Klauck (2010) and Jain, Lee, and Vishnoi (2014).Comment: 16 pages, 1 figur

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200

    Fixed-Parameter Algorithms for Computing Kemeny Scores - Theory and Practice

    Full text link
    The central problem in this work is to compute a ranking of a set of elements which is "closest to" a given set of input rankings of the elements. We define "closest to" in an established way as having the minimum sum of Kendall-Tau distances to each input ranking. Unfortunately, the resulting problem Kemeny consensus is NP-hard for instances with n input rankings, n being an even integer greater than three. Nevertheless this problem plays a central role in many rank aggregation problems. It was shown that one can compute the corresponding Kemeny consensus list in f(k) + poly(n) time, being f(k) a computable function in one of the parameters "score of the consensus", "maximum distance between two input rankings", "number of candidates" and "average pairwise Kendall-Tau distance" and poly(n) a polynomial in the input size. This work will demonstrate the practical usefulness of the corresponding algorithms by applying them to randomly generated and several real-world data. Thus, we show that these fixed-parameter algorithms are not only of theoretical interest. In a more theoretical part of this work we will develop an improved fixed-parameter algorithm for the parameter "score of the consensus" having a better upper bound for the running time than previous algorithms.Comment: Studienarbei

    On the Computational Power of Radio Channels

    Get PDF
    Radio networks can be a challenging platform for which to develop distributed algorithms, because the network nodes must contend for a shared channel. In some cases, though, the shared medium is an advantage rather than a disadvantage: for example, many radio network algorithms cleverly use the shared channel to approximate the degree of a node, or estimate the contention. In this paper we ask how far the inherent power of a shared radio channel goes, and whether it can efficiently compute "classicaly hard" functions such as Majority, Approximate Sum, and Parity. Using techniques from circuit complexity, we show that in many cases, the answer is "no". We show that simple radio channels, such as the beeping model or the channel with collision-detection, can be approximated by a low-degree polynomial, which makes them subject to known lower bounds on functions such as Parity and Majority; we obtain round lower bounds of the form Omega(n^{delta}) on these functions, for delta in (0,1). Next, we use the technique of random restrictions, used to prove AC^0 lower bounds, to prove a tight lower bound of Omega(1/epsilon^2) on computing a (1 +/- epsilon)-approximation to the sum of the nodes\u27 inputs. Our techniques are general, and apply to many types of radio channels studied in the literature

    An Improved Distributed Algorithm for Maximal Independent Set

    Full text link
    The Maximal Independent Set (MIS) problem is one of the basics in the study of locality in distributed graph algorithms. This paper presents an extremely simple randomized algorithm providing a near-optimal local complexity for this problem, which incidentally, when combined with some recent techniques, also leads to a near-optimal global complexity. Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86] provide the global complexity guarantee that, with high probability, all nodes terminate after O(logn)O(\log n) rounds. In contrast, our initial focus is on the local complexity, and our main contribution is to provide a very simple algorithm guaranteeing that each particular node vv terminates after O(logdeg(v)+log1/ϵ)O(\log \mathsf{deg}(v)+\log 1/\epsilon) rounds, with probability at least 1ϵ1-\epsilon. The guarantee holds even if the randomness outside 22-hops neighborhood of vv is determined adversarially. This degree-dependency is optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Interestingly, this local complexity smoothly transitions to a global complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider [FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high probability global complexity of O(logΔ)+2O(loglogn)O(\log \Delta) + 2^{O(\sqrt{\log \log n})}, where Δ\Delta denotes the maximum degree. This improves over the O(log2Δ)+2O(loglogn)O(\log^2 \Delta) + 2^{O(\sqrt{\log \log n})} result of Barenboim et al., and gets close to the Ω(min{logΔ,logn})\Omega(\min\{\log \Delta, \sqrt{\log n}\}) lower bound of Kuhn et al. Corollaries include improved algorithms for MIS in graphs of upper-bounded arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local Computation Algorithms (LCA) model, and a faster distributed algorithm for the Lov\'asz Local Lemma
    corecore