1,412 research outputs found

    An improved k-NN algorithm for localization in multipath environments

    Get PDF

    Location-free Spectrum Cartography

    Get PDF
    Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps relies on features of these positioning signals rather than on location estimates. Specific learning algorithms are built upon this approach and offer a markedly improved estimation performance than existing approaches relying on localization, as demonstrated by simulation studies in indoor scenarios.Comment: 14 pages, 12 figures, 1 table. Submitted to IEEE Transactions on Signal Processin

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Wireless Localization for mmWave Networks in Urban Environments

    Full text link
    Millimeter wave (mmWave) technology is expected to be a major component of 5G wireless networks. Ultra-wide bandwidths of mmWave signals and the possibility of utilizing large number of antennas at the transmitter and the receiver allow accurate identification of multipath components in temporal and angular domains, making mmWave systems advantageous for localization applications. In this paper, we analyze the performance of a two-step mmWave localization approach that can utilize time-of-arrival, angle-of-arrival, and angle-of-departure from multiple nodes in an urban environment with both line-of-sight (LOS) and non-LOS (NLOS) links. Networks with/without radio-environmental mapping (REM) are considered, where a network with REM is able to localize nearby scatterers. Estimation of a UE location is challenging due to large numbers of local optima in the likelihood function. To address this problem, a gradient-assisted particle filter (GAPF) estimator is proposed to accurately estimate a user equipment (UE) location as well as the locations of nearby scatterers. Monte Carlo simulations show that the GAPF estimator performance matches the Cramer-Rao bound (CRB). The estimator is also used to create an REM. It is seen that significant localization gains can be achieved by increasing beam directionality or by utilizing REM

    A New Set of Wi-Fi Dynamic Line-Based Localization Algorithms for Indoor Environments

    Get PDF
    Localization is of great importance for several fields such as healthcare and security. To achieve localization, GPS technologies are common for outdoor localization but are insufficient for indoor localization. This is because the accuracy and precision of the users’ indoor locations are influenced by many factors (e.g., multipath signal propagations). As a result, the methodologies and technologies for indoor localization services need to remain continuously under development. A related challenge is the time complexity of the methodologies which impacts the performance of the mobile phones’ limited resources. To address these challenges, a new set of fingerprinting algorithms called Fingerprinting Line-Based Nearest Neighbor (FLBNN) is proposed. Furthermore, the new set is compared to other existing Nearest Neighbor-based algorithms. When the deployment of four access points is considered, the FLBNN algorithms outperform several algorithms in terms of accuracy such as Nearest Neighbor version 2, Nearest Neighbor version 4, and Soft-Range-Limited KNN by approximately 17.1%, 7.8%, and 24.1%; respectively. With regards to precision, the new set of algorithms outperforms Path-Loss-Based Fingerprint Localization (PFL) and Dual-Scanned Fingerprint Localization (DFL) by approximately 7.0% and 60.9%; respectively. Moreover, the FLBNN algorithms have a time complexity of O(t * p) where the term t is the number of deployed centroids and the term p is the number of Path Loss exponents. In addition, the new set of algorithms achieves faster run time compared to those for PFL and DFL. As a result, this Thesis improves the cost and reliability of the indoor location services

    Device Free Localisation Techniques in Indoor Environments

    Get PDF
    The location estimation of a target for a long period was performed only by device based localisation technique which is difficult in applications where target especially human is non-cooperative. A target was detected by equipping a device using global positioning systems, radio frequency systems, ultrasonic frequency systems, etc. Device free localisation (DFL) is an upcoming technology in automated localisation in which target need not equip any device for identifying its position by the user. For achieving this objective, the wireless sensor network is a better choice due to its growing popularity. This paper describes the possible categorisation of recently developed DFL techniques using wireless sensor network. The scope of each category of techniques is analysed by comparing their potential benefits and drawbacks. Finally, future scope and research directions in this field are also summarised

    Machine Learning Tools for Radio Map Estimation in Fading-Impaired Channels

    Get PDF
    In spectrum cartography, also known as radio map estimation, one constructs maps that provide the value of a given channel metric such as as the received power, power spectral density (PSD), electromagnetic absorption, or channel-gain for every spatial location in the geographic area of interest. The main idea is to deploy sensors and measure the target channel metric at a set of locations and interpolate or extrapolate the measurements. Radio maps nd a myriad of applications in wireless communications such as network planning, interference coordination, power control, spectrum management, resource allocation, handoff optimization, dynamic spectrum access, and cognitive radio. More recently, radio maps have been widely recognized as an enabling technology for unmanned aerial vehicle (UAV) communications because they allow autonomous UAVs to account for communication constraints when planning a mission. Additional use cases include radio tomography and source localization.publishedVersio
    • …
    corecore