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Abstract

Localization is of great importance for several fields such as healthcare and secu-
rity. To achieve localization, GPS technologies are common for outdoor localiza-
tion but are insufficient for indoor localization. This is because the accuracy and
precision of the users’ indoor locations are influenced by many factors (e.g., multi-
path signal propagations). As a result, the methodologies and technologies for in-
door localization services need to remain continuously under development. A re-
lated challenge is the time complexity of the methodologies which impacts the per-
formance of the mobile phones’ limited resources. To address these challenges, a
new set of fingerprinting algorithms called Fingerprinting Line-Based Nearest Neigh-
bor (FLBNN) is proposed. Furthermore, the new set is compared to other existing
Nearest Neighbor-based algorithms. When the deployment of four access points is
considered, the FLBNN algorithms outperform several algorithms in terms of ac-
curacy such as Nearest Neighbor version 2, Nearest Neighbor version 4, and Soft-
Range-Limited KNN by approximately 17.1%, 7.8%, and 24.1%; respectively. With
regards to precision, the new set of algorithms outperforms Path-Loss-Based Fin-
gerprint Localization (PFL) and Dual-Scanned Fingerprint Localization (DFL) by
approximately 7.0% and 60.9%; respectively. Moreover, the FLBNN algorithms have
a time complexity of O(t * p) where the term t is the number of deployed centroids
and the term p is the number of Path Loss exponents. In addition, the new set
of algorithms achieves faster run time compared to those for PFL and DFL. As a
result, this Thesis improves the cost and reliability of the indoor location services.

Keywords: Indoor Location Services (ILSs), Fingerprinting, Wi-Fi, Path Loss ex-
ponent (PLe), and K-Nearest Neighbor (KNN).
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Chapter 1

Introduction

The ability to calculate a user’s location indoors is gaining increased attention and

demand because of the ubiquity of mobile devices and indoor wireless networks [1].

Indoor localization is a growing research area for engineers and researchers since there

are several fields including healthcare, emergency/disaster management, surveillance,

security, and industry that benefits from this research area [1] [2]. An example of

this research area is the application of locating a patient within a hospital or nursing

home [1]. Currently, elderly patients with Alzheimer’s or Dementia may have difficulty

navigating the indoor environment and may be disoriented and lost. Determining the

patient’s location by a caregiver is considered vital in order to monitor the individual

and to prevent any injuries from occurring [3]. This situation is expected to be an

increasing issue within society as patients with Alzheimer’s consist of 10% of the

population over the age of 65 [4]. An estimation shows that by 2050, elderly people

will consist of 21% of the world population [5].

Traditionally, technologies such as GPS are used to determine the location of a

user outdoors. However, due to the complexity of indoor environments (e.g., walls

and ceilings), these technologies are not sufficient to localize a user indoors [6]. His-

torically, researchers propose the use of indoor localization technologies such as a

security camera system in order to track people [3]. However, the use of a camera

may be prohibited due to privacy concerns [3]. A second solution for people within a

hospital or nursing home advocates for the use of technology such as RFID tags and
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wireless receivers in order to track the person’s location [3]. For people within their

own homes, caregivers may help to monitor their conditions, but camera monitoring

is required on a continuous basis which causes a loss in productivity and is not a

cost-effective solution for those with the responsibility of monitoring the person [5].

An alternative strategy for monitoring people with a potential illness is the implemen-

tation of a home monitoring system using infra-red motion sensors, however, these

systems are often intrusive and expensive [5].

New and promising indoor localization systems are based on a Wireless Local

Area Network (WLAN) or a Wireless Sensor Network (WSN) [7]. A WLAN is a

LAN which utilizes wireless technologies. Whereas, a WSN is a network that consists

of sensors that detect wireless signals emanating from a device [7]. In most cases,

a Wi-Fi access point or Bluetooth beacon are often used for location-based services

indoors. Using access points or beacons, signals from various sources are collected by

a target device at a particular indoor location. Based on the signal characteristics,

the location of the target device is estimated. Therefore, people may be monitored

with a mobile device such as a smart watch and Wi-Fi signals to determine their

location indoors, technology which has been implemented [5].

1.1 Problem Background and Motivation

With regards to locating users indoors, there are many challenges to developing an

indoor localization system. These challenges include infrastructure cost, reliability,

and the ability for the system to adapt to many different environments [8]. The

construction of the system is based on various technologies such as Wi-Fi, Bluetooth,

Ultra-Wide Band, RFID, and Zigbee in order to estimate the location of a device

indoors [9] [10]. The motivation for using Wi-Fi over other technologies is that it

is widely deployed for indoor localization due to its low infrastructure cost and high

reliability indoors [10] [11]. Upon receiving the signal, different techniques based on

the signal’s characteristics are used to estimate the user’s location. These techniques
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include the Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of

Arrival (AoA), and the Receive Signal Strength Indicator (RSSI) [2] [12].

ToA represents the time it takes for a signal to be transmitted from a signal

transmitter such as a Wi-Fi access point or a Bluetooth beacon to the user’s device

[12]. TDoA is a measurement which involves finding the difference in signal arrival

time between a pair of access points [2] [13]. Finally, AoA is a measurement that

represents the angle of a signal’s arrival at an access point transmitted from the

target device [12]. However, the problem with using ToA, AoA, and TDoA is that

they require additional hardware (i.e., ToA and TDoA require at least three access

points and AoA requires two access points) [2] [12]. In addition, the user’s device

requires a high frequency Analog to Digital Converter (ADC) in order to process the

ToA and TDoA signal characteristics which is considered costly [14] [15]. The AoA

signals are also highly susceptible to angle multipath, which is common for indoor

environments [12].

RSSI represents the strength of a signal that has been transmitted from an ac-

cess point to the target device. RSSI is a measurement used more frequently than

ToA, TDoA, and AoA primarily because of its lower hardware cost and lower power

consumption on mobile devices [10]. However, RSSI is still susceptible to multipath

fading and noise [7]. As a result, when processing raw RSSI measurements, there is a

possibility for “noisy” signals through interference caused by the complex indoor en-

vironment [10]. In order to effectively manage “noisy” RSSI measurements, a Kalman

filter is used to smooth the RSSI measurements [16].

The indoor localization techniques that use RSSIs include ranging and fingerprint-

ing [9]. Ranging is a technique which involves trilateration [9]. Trilateration involves

using three or more access points, which send signals to the target device [10]. How-

ever, trilateration is not suitable for indoor localization due to the high complexity of

indoor environments [17]. In order for trilateration to be effective, the indoor space

must be less spatially diverse and wireless signals should be filtered [9].

Another approach, known as position fingerprinting, is used to improve the indoor

localization of a device and functions more effectively within indoor environments
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that are more spatially diverse [9]. Compared to non-RSSI techniques (e.g., ToA,

TDoA, AoA), fingerprinting is not as susceptible to angle multipath and achieves

high accuracy without an ADC and clock synchronization among the target device

and the access points [1] [2] [11] [12] [13] [14] [15] [18]. The fingerprinting technique

consists of two stages known as the offline and online stages [17]. The offline stage

involves the collection of RSSI measurements at a grid point in the indoor environment

to construct a radio map [10] [17]. This process is repeated for every grid point in

the offline stage. The online stage involves the collection of RSSI measurements in

real-time and comparing them to those collected in the offline stage at each grid point

[19].

One of the first approaches to take advantage of fingerprinting is the RADAR

system, which utilizes the Nearest Neighbor algorithm (NN), the K-Nearest Neighbor

algorithm (KNN), and Wi-Fi signals in order to estimate the indoor location of a user

[20] [21]. However, the average accuracy of the system is approximately 3 m, which

is not ideal for accurately estimating indoor locations [20] [21] [22].

Another version of the KNN algorithm referred to as Weighted KNN (WKNN) is

based on Statistical Learning Theory [21] [22]. The algorithm calculates the weighted

average of RSSI-based distances between a set of selected grid points and the current

location [21] [22]. This approach improves the accuracy from 3.12 m to 3.06 m,

however, the accuracy is still relatively low [22]. In addition, the accuracy of the

approach has not been statistically verified [22]. To improve the accuracy metric,

a new weighted fusion fingerprinting algorithm is proposed [23]. With the proposed

algorithm, the accuracy has been improved to approximately 1.5 m [23]. However, the

precision metric was not considered in the performance evaluation of the algorithm.

Another work by Zhang et al. [24] implements the Path-Loss-Based Fingerprint

Localization algorithm (PFL) and Dual-Scanned Fingerprint Localization algorithm

(DFL) in order to improve the accuracy and precision of indoor localization [24].

However, the time complexities of these algorithms were not considered [17] [24].

A more recent work discusses the use of a Soft-Range-Limited KNN algorithm

(SRL-KNN) in order to address both the time complexity and accuracy [21]. The
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conducted experiment demonstrates that the SRL-KNN algorithm achieves an accu-

racy of 0.66 m on average, which is improved compared to that for KNN with the

same time complexity [21]. While the work demonstrates that the algorithm achieves

a high accuracy, the precision of the algorithm has not been evaluated. Therefore, all

these challenges define the following problems:

1. How to achieve high accuracy?

2. How to achieve high precision?

3. How to lower time complexity?

1.2 Research Question

Does the line-based shifting of the grid points improve the indoor localization metrics?

With regards to indoor localization, there are three key metrics to consider. First,

the accuracy metric refers to the distance error between the estimated location and

the actual location of a target device. By improving the accuracy, the algorithm

more effectively localizes the location of the target device in indoor environments.

Accuracy is important to consider as it represents how close the predicted location

measurement is to the actual location of the target. Accuracy is calculated using the

Euclidean Distance, which represents the distance between two points in a grid space.

Another metric is precision, which refers to the distance errors (i.e., Euclidean dis-

tances) calculated between the localized and actual positions. Improving the precision

means that the calculated positions are more concentrated around a particular area

rather than more greatly distributed in an indoor space. Precision is determined by

the standard deviation of all the Euclidean Distance values between each calculated

location to a particular test location in an indoor space.

Time complexity refers to the run time complexity of an algorithm. The Big

O Notation, which is a common metric that computes time complexity, must be

considered for fingerprinting algorithms because of the limited resources of mobile

devices such as the lifetime battery.
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The method of indoor localization using the line-based shifting method is captured

in the Fingerprinting Line-Based Nearest Neighbor algorithm (FLBNN). Similar to

other fingerprinting algorithms, the FLBNN algorithm requires a radio map con-

structed in the offline phase. This stage of fingerprinting involves collecting RSSI

measurements at each grid point in order to create a radio map. During the online

phase of fingerprinting, the new algorithm calculates the distance between each grid

point measured on the radio map and the target location. The algorithm then selects

the Point S (i.e., grid point or centroid) based on the least distance towards the loca-

tion of the target. The Point S has four surrounding grid points where two of the grid

points, G1 and G2, are selected since they are the closest to the target. A Midpoint

M is then calculated between these two closest grid points (e.g., Grid Point G1 and

Grid Point G2). The algorithm shifts the closest Grid Point G1 or G2, Midpoint M,

or Point S closer to each other. As a result, the Centroid Q is calculated between

these three points (Point S, Midpoint M, and the closest Grid Point G1 or G2) and

is considered the localized position for the target device.

Given the research question, we propose three possible answers. For the ‘Yes’

answer, a possible explanation is mentioned as follows. The accuracy improves due

to the ability of the algorithm to shift the calculated location possibly closer to the

target location. In comparison, the precision improves because the distance errors

from the target location to the calculated locations are found to be within the same

region of space in the indoor environment. Therefore, there are low variations in

distance errors. Finally, the time complexity improves because the algorithm selects

a subset of grid points from the super set of grid points than scanning all of the grid

points.

For the ‘No’ answer, a possible explanation is mentioned as follows. The accuracy

does not improve because the estimated location is possibly shifted away from the

target location by the algorithm. The precision does not improve because the fluctua-

tion of RSSI values cause the distance errors to be calculated within different regions

of the indoor environment. Finally, time complexity increases because the algorithm

checks all the grid points instead of a subset of them.
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For the ‘Yes, Sometimes’ or ‘No, Sometimes’ answer, a possible explanation is as

follows. The complexity of the indoor environment (e.g., signal obstruction, multipath

fading) results in fluctuations of RSSI values [7]. As a consequence, the variation

in RSSI values impacts the calculation of the localized positions and thus impacts

accuracy and precision.

1.3 Contribution Overview

The methodology proposed for the Thesis is a quantitative research approach which

involves modifying K-Nearest Neighbor (KNN) and comparing the algorithm with

other fingerprinting-based algorithms. The contributions of this work are listed as

follows.

1. The Fingerprinting Line-Based Nearest Neighbor (FLBNN) algorithm improves

accuracy compared to Nearest Neighbor version 4 (NNv4), Nearest Neighbor

version 2 (NNv2), Dual-Scanned Fingerprint Localization (DFL), and Soft-

Range-Limited KNN (SRL-KNN) when all four Access Points (APs) are used.

FLBNN also improves accuracy compared to NNv2, NNv4, Path-Loss-Based

Fingerprint Localization (PFL), and the DFL algorithms when a subset of APs

are used. Accuracy is a critical metric because it represents the proximity of

the location measurement to the actual location. Achieving high accuracy is

crucial for several applications such as emergency applications for finding a user

in a specific room [25].

2. The FLBNN algorithm improves precision compared to PFL and DFL when

all four APs or a subset of APs are used. Additionally, FLBNN also achieves

similar precision to NNv4 and SRL-KNN when all APs are used or a subset of

APs are used. Precision must be considered because it represents a continuous

evaluation of any localization algorithm [10]. In other words, the algorithm

will be able to reliably calculate the estimated locations within a region over a

period of time.
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3. The FLBNN algorithm improves time complexity compared to several existing

algorithms including PFL and DFL. Complexity is important because low time

complexity is necessary to reduce energy consumption for mobile devices [26].

1.4 Thesis Organization

This Thesis is organized as follows. For Chapter 2, we review existing localization

approaches along with some preliminaries. In Chapter 3, a new localization algorithm

is proposed. Chapter 4 lists the findings of the research and analyzes the data collected

regarding the FLBNN algorithm. Finally, we summarize the Thesis, draw out some

conclusions, and provide some future research avenues.
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Chapter 2

Literature Review

In this chapter, we discuss existing technologies and techniques related to indoor

localization. First, we introduce some preliminaries as a background for the existing

work and the proposed work. Additionally, we mention some existing techniques and

technologies for indoor localization.

2.1 Preliminaries

2.1.1 Technologies

Wi-Fi, Bluetooth, UWB, RFID, Li-Fi, and Zigbee are some types of technologies that

can be used to estimate indoor locations [9] [10]. Among these technologies, Wi-Fi

is a common technology for indoor localization due to its low infrastructure cost and

high reliability indoors [10] [11]. Another key motivation for using Wi-Fi is that the

technology has been already implemented in existing infrastructures [10] [11].

2.1.2 Methodologies

There are two types of features that exist for indoor localization that include Re-

ceive Signal Strength Indicator (RSSI) measurements and Path Loss exponent (PLe).

These RSSI measurements are used to find the strength of a signal from an Ac-

cess Point (AP). Furthermore, those indicators are commonly measured in decibel-
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milliwatts (dBm). Often, the farther from the AP the target is, the lower the RSSI

value is [27]. RSSI-based algorithms are used more frequently than ToA, TDoA, and

AoA because of their low hardware cost and lower power consumption on mobile

devices [10].

Compared to RSSI, a path-loss model can also be used to estimate the distance

values between each AP and the target node for estimating the target location [9]

[28]. A model commonly used to calculate this distance is the Log Distance Path Loss

model (LDPL) [9] [28] [29] [30]. The model is described by the following equation:

PL(d) = PL(d0)–10nlog(
d

d0
) +X0 (2.1)

From the above formula, the term PL(d) represents the Path Loss or alternatively,

the RSSI calculated at an arbitrary distance d [9] [28]. The term PL(d0) is the average

Path Loss or RSSI value previously calculated at a known distance d0 (d0 is usually

one meter) [9] [30]. The term n represents the Path Loss exponent [9] [28]. The

Path Loss exponent value often ranges from 2 to 4 for indoor environments but can

be selected empirically [29] [31]. Finally, the term X0 is a gaussian random variable

representing shadow fading [9] [28] [32].

2.1.3 Fingerprinting Stages

Using the measurements such as RSSI or path loss, one method of calculating the

estimated location is fingerprinting. The fingerprinting technique consists of offline

and online stages. The offline phase involves the collection of signal information at

a known grid point in the indoor environment. RSSI measurements are collected at

each grid point to construct a radio map (see figure 2-1). Each grid point has a set

of RSSI values RSSIj = (RSSI1, RSSI2, . . . RSSIn) where j is the AP index and

n is the number of RSSI measurements collected at each grid point during the offline

phase.

The online stage involves the calculation of RSSI measurements in real-time and

comparing them to the offline stage RSSI measurements at each grid point [19]. Al-
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Figure 2-1: Offline Stage Grid Point Map.

though we focus on RSSI-based algorithms in this work, we explore several other

techniques for indoor localization including non-RSSI-based techniques in order to

cover the breadth of the localization area.

2.1.4 Metrics

Once fingerprinting is used to calculate the estimated location, the metrics used to

evaluate the indoor localization capabilities of these algorithms are accuracy, preci-

sion, and time complexity. For the first metric, accuracy is the distance error between

the location estimated and the actual location. Accuracy is computed using the Eu-

clidean Distance formula in 2D:

E(error) =
√

(x− xi)2 + (y − yi)2 (2.2)

From the above formula, the pair (xi, yi) is the estimated position, and (x, y) is

the actual target location. Another metric to consider is precision, which refers to

the distribution of the estimated locations and the relative distances between them.

Precision is calculated by taking the standard deviation of the accuracy. The formula

for precision is as follows:

precision =

√∑n
i=1(ai − a)2

n− 1
(2.3)
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Figure 2-2: Angle of Arrival Technique.

From the above formula, the term ai is the accuracy of a particular point estima-

tion, the term n is the number of test values collected in the online stage, and the

term a is the average accuracy.

2.2 Non-Receive Signal Strength Indicator Tech-

niques

2.2.1 Angle of Arrival

The first non-RSSI technique is Angle of Arrival (AoA). This technique involves the

computation of the angle that a signal arrives at the receiver from a target device using

antenna arrays [2] [18]. Two APs at a minimum are required to use this technique

[2]. Using two incident signal waveforms that are approaching an AP, AoA can

calculate the Angle θ of the signal’s arrival (see figure 2-2) [1] [2]. When the angle is

calculated, a line originating from the AP to an intersection point between the lines

of the other APs and in the calculated angle of the signal’s arrival can be drawn [2].

Once the lines are created, the user’s location can be estimated by the intersection

of the lines from every AP [2] [18]. The algorithms used to calculate AoA include

Conventional Beamformer and Multiple Signal Classification (MUSIC) [33] [34]. An

array of antennas for one AP are separated at an even distance from each other. The

formula shown can then be used to calculate the Angle θ [1].
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A recent research work regarding AoA is performed by Zheng et al. [34]. The

work involves using a weighted AoA approach that assigns a weight to each AoA

measurement based on the accuracy of the angle estimation. The motivation is the in-

vestigation of varying accuracies of angle calculations in the traditional AoA methods

and the application of a weight to the angle using asymptotic variance. The weighted

AoA method involves assigning a larger weight to the angle calculation which has

the lower asymptotic variance. The methodology for the research involves comparing

the algorithm with existing AoA approaches such as the traditional unweighted Least

Squares Method (LSM). The main contributions of this work involve the use of AoA,

ToA, and asymptotic variance to develop a weighted version of traditional LSM in

order to effectively use the accuracy of the angle measured when calculating a user’s

location indoors. The results of the simulation experiment with two antennae per

receiver demonstrate that the median localization error of the weighted AoA is 0.4

m compared to the unweighted LSM with 0.5 m. The weighted AoA method reduces

the estimation error by 20% compared to the unweighted method [34]. However, a

major flaw with AoA is the additional hardware requirements [1] [12]. For AoA to

achieve good accuracy, it must involve Line of Sight (LoS) conditions as it suffers

from angle multipath [12] [18].

2.2.2 Time of Arrival

Time of Arrival (ToA) is a technique for indoor localization that involves measuring

the travel time of a signal from a transmitter to a receiver [1]. Compared to AoA,

ToA does not require LoS conditions for high accuracy [18] [35]. In order to achieve

high accuracy for ToA, a minimum of three APs are used to estimate the location

[12]. The distance between the transmitter and receiver is calculated using the speed

of light and the propagation delay of the signal in NLoS conditions [35] [36] [37].

Figure 2-3 demonstrates the ToA technique with T1, T2, and T3 representing the

time each of the three signals spent travelling to each AP.

A work done by Lei et al. [38] proposes a single anchor node system which

measures ToA at a continuous rate. The motivation of the study is the use of distance
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Figure 2-3: Time of Arrival Technique.

lines from a target node to an anchor and the angle between two adjacent lines when

the target or anchor moves. Based on these measurements, the researchers were able

to devise a system that involves a single AP on a rotating blade to calculate ToA

over time while changing positions. As the AP is rotating, the distances between the

AP and the target are calculated and a graph representing those distances over time

is created as part of an offline stage. During the online stage, the target location is

calculated by identifying the change in time intervals for ToA measurements during

a rotation period. The change in angle of the target is then calculated using the

change in time intervals. In addition, the Support Vector Machine (SVM) classifier

is also used to reconstruct the angle between two adjacent distance measurements

when there is variation in the LoS conditions. The first experiment involves a LoS

scenario while the second experiment involves NLoS. The contributions provided by

the paper is that a single AP’s ToA calculation method based on UWB is proposed to

improve accuracy beyond traditional ToA techniques. Another contribution is the use

of SVM to reconstruct the angle estimation in more variable LoS conditions. In the

first experiment, the accuracy of the system is less than 0.3 m while the accuracy of

the system in the second experiment is less than 0.6 m [12] [38]. However, a flaw with

this method is that it requires additional resources such as a motor with a rotating

blade in order to accomplish high accuracy. Additionally, another issue is the lack of

requirements of at least three APs. Other than the flaws related to the study, the

26



Figure 2-4: Time Difference of Arrival Technique.

main issue with ToA is that the transmitter and the receiver nodes are required to

have precise clock synchronization [1] [11] [12] [18].

2.2.3 Time Difference of Arrival

Time Difference of Arrival (TDoA) is a measurement which involves finding the differ-

ence in signal arrival time between two APs [2] [13]. Unlike ToA, TDoA only requires

synchronization between the receivers [1] [11] [12]. Using the difference in signal time

arrival, the TDoA measurement defines a hyperbola between a pair of APs (see figure

2-4) [2]. Three hyperbolas are created, and the location of a user can be estimated

by finding the intersection between them [1] [2].

A recent work proposed by Xie et al. [11] shows a coarse estimation method for

indoor localization using TDoA in conjunction with RSSI to mitigate the effects of

multipath with Wi-Fi signals. The motivation is to examine the effects of multipath

and to create an indoor localization method that reduces its effects. The methodology

is focused on modification of the traditional TDoA technique using RSSI in addition

to testing the new method with a prototype application. The modified algorithm

first estimates the mobile node position using cross-correlation and quadratic filling

to determine the distance between an AP and the target for two APs. The algorithm

then uses RSSI to estimate the polarity of the proposed Multipath Signal Interference

(MPSI) metric used to measure the impact of multipath for each AP. MPSI is used to

compensate for the signals received by the receivers. Finally, the TDoA calculation

is performed using cross-correlation and quadratic filling again based on the compen-
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sated signals. The major contribution is that a new TDoA method is proposed to

effectively manage multipath interference compared to traditional TDoA methods.

In the experiment, the maximum position error of the proposed method is 0.3 m in

the 90th percentile compared to the traditional TDoA method which has 1.5 m ac-

curacy in the 90th percentile [11]. Similar to the flaws with the ToA method, TDoA

requires clock synchronization among receivers in order to calculate the difference in

time between the received signals [11] [18]. Additionally, the user’s device requires a

high frequency Analog to Digital Converter (ADC) in order to process the ToA and

TDoA signal data, which could be costly for a mobile device [14] [15].

2.3 Receive Signal Strength Indicator Techniques

This subsection focuses on the trilateration and fingerprinting techniques. The fin-

gerprinting technique includes algorithms such as Nearest Neighbor (NN), K-Nearest

Neighbor (KNN), Weighted K-Nearest Neighbor (WKNN), a weighted fusion-based

algorithm, Path-Loss-Based Fingerprint Localization (PFL), Dual-Scanned Finger-

print Localization (DFL), Nearest Neighbor version 2 (NNv2), Nearest Neighbor ver-

sion 3 (NNv3), Nearest Neighbor version 4 (NNv4), and the Soft-Range-Limited KNN

algorithm (SRL-KNN) [17] [21] [22] [23].

2.3.1 Trilateration

Trilateration is a technique which involves the use of three or more APs to send signals

to a mobile device [10]. Trilateration is based on RSSI, and therefore, does not require

clock synchronization or a high frequency ADC [10] [11] [14]. After the signals have

been received by the mobile device, the signal information may be used to calculate

the spatial distance between an AP and the target device (see figure 2-5). A circle

can be formed around each AP. The radius of the circle is the calculated distance

between the AP and the target. The intersection of the three circles are calculated

to be the estimated position [10]. Each distance value and the known coordinates of

each AP are used in the Euclidean Distance formula which results in the calculation
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Figure 2-5: Trilateration.

of the target location coordinates [28]. Trilateration uses the Log Distance Path Loss

model (LDPL) to calculate distance between each AP and the target node from RSSI

values [9] [28] [29] [30]. Figure 2-5 provides an illustration of trilateration with D1,

D2, and D3 representing the distances between the target node and each AP.

A recent work from Tong et al. [27] involves the use of a modified trilateration al-

gorithm to estimate locations. The motivation is to improve the relationship between

distance and RSSI by using LDPL and curve fitting in order to measure a distance

over time graph used by a modified version of trilateration. First, LDPL is used to

calculate the distance using RSSI. Afterwards, the distances are calculated as a curve

over time and are improved using curve fitting over a set of time slots on the curve.

The modified trilateration algorithm, known as Distance Ratio Location (DRL), is

based on the following information: four beacon nodes, the distances between them,

and their coordinates. The algorithm uses this information in order to determine a

vector based on a pair of beacons and the estimated target location in order to cre-

ate a continuous location curve. Finally, the Kalman filter optimizes the raw RSSIs.

The contributions of the work include curve fitting in order to correct the distance

between a target node and a beacon node and a modified version of trilateration to

better calculate indoor locations. DRL achieves an accuracy of 3.5 m indoors com-

pared to the Maximum Likelihood Estimation algorithm with an accuracy of 17 m

[27]. One of the flaws in the research is the low accuracy achieved by the system.

Another drawback in the algorithm is that it has increased time complexity for in-
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door localization. However, a major problem with trilateration is that the indoor

space must be less spatially diverse, and the wireless signals used for trilateration are

required to be robust [9]. Additionally, LoS conditions are necessary for trilateration

to achieve high accuracy [39]. When the distance between the target and an AP

according to RSSI is estimated, this distance is considered challenging to calculate

when the signal is affected by various obstructions (e.g., walls and ceilings) within

the indoor environment.

2.3.2 Fingerprinting-Based Algorithms

Fingerprinting is a method which is more effective for environments that are more

spatially diverse [9]. Compared to trilateration, it does not require LoS conditions

for high accuracy [39]. Fingerprinting collects the RSSI data at grid points within

an indoor space. Fingerprinting often involves Nearest Neighbor (NN) or K-Nearest

Neighbor (KNN). NN consists of an offline stage similar to fingerprinting [20]. The

online stage of NN selects the point from the list of grid points that has the minimum

distance to the location of the target using the Euclidean distance [20]. However, the

performance of NN depends on the number of points from the list of grid points [17].

KNN calculates an estimated centroid point between K selected grid points [20] [40]

[41]. However, both algorithms can lead to inaccuracies due to multipath interference

associated with RSSI and can impact the grid point selection process [17].

a. RADAR System

The NN and KNN algorithms are adopted by the RADAR system, one of the first

systems to take advantage of fingerprinting. The motivation of the system is that Bahl

and Padmanabhan [20] explored the use of radio frequency networks over infrared

to address range, scalability, and deployment. The main contribution is a system

that can take radio frequency signals and estimate a location using NN or KNN.

Their approach uses the NN algorithm. Their first experiment involves the use of an

empirical method in which one test location is selected at random. The empirical
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method shows a 2.94 m error rate at the 50th percentile. They also applied the

KNN algorithm to the empirical approach in another experiment. KNN (with 2-4

nearest neighbors averaged) has an accuracy of 2.13 m in the 50th percentile [20].

The accuracy of the system is not substantial for indoor localization.

b. Weighted K-Nearest Neighbor

To improve the accuracy of RADAR, another study focuses on the use of Statistical

Learning Theory (SLT) applied to indoor localization to determine functional depen-

dencies between signal strength and position. The focus of the study is the discovery

of a strong statistical dependence between signal strength and position. The study

is also motivated by certain factors such as the passive measurement of RSSI, the

lack of additional equipment other than APs and a mobile device, and ensuring the

offline stage is conducted as fast as possible. The fingerprinting algorithm used in the

paper is Weighted KNN (WKNN) [22], which involves selecting the K-nearest neigh-

bors and calculating the estimated location by taking the average of the K neighbor’s

locations. The average is then weighted with the inverse of the distance between two

signal strength values (the signal strength value from the offline stage of a neighbor

and the online stage RSSI value). The time complexity of WKNN is O(r *(a + d))

offline and O(r * a * log(k) + d) online where the term r refers to the number of

observations, the term a is the number of APs, the term d is the number of physical

dimensions, and the term k is the number of nearest neighbors [22]. The primary con-

tributions include using a SLT technique to determine a user’s location and the use

of WKNN to improve upon the KNN algorithm used in RADAR. Compared to KNN

with an accuracy of 3.12 m, the WKNN algorithm has an accuracy of 3.06 m [22].

The primary flaw in the work is that the accuracy and time complexity of WKNN is

not statically significant compared to KNN. Precision was also not mentioned within

the work.

A more recent study by Ninh et al. [42] also evaluates the WKNN algorithm in a

controlled environment. The study demonstrates that the WKNN algorithm has an

average accuracy of 1.5 m under those conditions [42].
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c. Weighted Fusion Algorithm

In order to improve accuracy, Ma et al. [23] proposes a new fingerprinting algorithm

based on weighted fusion. The motivation is to improve accuracy by combining an

improved Euclidean Distance calculation and a joint probability calculation using

weighted fusion. The offline stage of the algorithm involves collecting Wi-Fi signals

at given grid points and processing the original signal information depending on the

presence of different types of errors. Afterwards, each grid point is fingerprinted with

the average value of the original signals, the standard deviation of the original signals,

and the average value of the processed signals. In the online phase, the fingerprints are

first filtered based on the MAC addresses of the APs with a stronger signal strength

than the average signal strength of all APs within the target node area. Then,

using the filtered grid points, the improved Euclidean Distance involves calculating a

temporary set of coordinates using the averages of the processed signals and standard

deviation values of the original signals. After the first coordinates are computed, the

second coordinates are calculated using a joint probability algorithm. The algorithm

utilizes the average and standard deviation of the original signal strength values for

the target and grid points. Finally, a weighted fusion algorithm is used along with the

lowest Euclidean distance, the highest joint probability value, and the two coordinates

in order to estimate the target location [23].

The major contribution is improving accuracy and time complexity using the

weighted fusion algorithm compared to WKNN and joint probability. The proposed

algorithm has a 1.54 m accuracy while the WKNN algorithm has a 1.66 m accuracy

[23]. However, the improved accuracy of the proposed algorithm was not statistically

verified and the precision was not considered in the algorithm.

d. Path-Loss-Based Fingerprint Localization and Dual-Scanned Finger-

print Localization

To consider precision, Zhang et al. [24] introduces the Path-Loss-Based Fingerprint

Localization (PFL) algorithm and the Dual-Scanned Fingerprint Localization (DFL)
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algorithm [24]. The motivation is to improve precision in a resource limited envi-

ronment compared to existing algorithms using fewer signal sources with PFL. The

motivation also includes DFL in order to improve accuracy. PFL takes into account

of the transmission and receiver gains, the standard deviance of signal fading, and

the distance between a particular grid point and an AP in order to provide a more

substantial fingerprint map. During the offline stage, the RSSI values are processed

into PLe values, which act as the main feature for the grid points. In this case,

the NN algorithm is used to calculate the estimated position during the online stage

using PLe values instead of raw RSSIs. DFL calculates a distance threshold and a

received signal strength threshold in order to filter the grid points for selecting the

nearest neighbor in the online stage. The main contribution of the work is PFL,

which improves precision using a path loss factor in a limited signal source environ-

ment. Another contribution is DFL, which has a higher accuracy than PFL. The

results have demonstrated that PFL and DFL improve the precision of locating a

user compared to NN and KNN. When using six APs, PFL has shown to have 68%

of the samples with a precision of less than 5 m. DFL has 78% of samples showing

precision under 5 m. Based on the cumulative distribution function used to examine

accuracy, the PFL algorithm achieves a localization error of around 4 m in the 50th

percentile while the accuracy of DFL achieves a localization error of around 3 m in

the 50th percentile when using six APs [24]. However, the accuracy of the algorithms

needs to be improved, especially PFL since it is susceptible to outliers. Additionally,

time complexity is a factor which was not considered in the work.

e. Nearest Neighbor version 2, 3, and 4

To examine time complexity and improve accuracy, El Salti et al. [17] propose the

NNv2, NNv3, and NNv4 algorithms [17]. The motivation is to improve accuracy

compared to PFL, DFL, NN, and KNN. The NNv2 algorithm chooses the closest

centroid of four grid points in the online stage (see figure 2-6). The complexity of

NNv2 is O(t * m), where the term t refers to the number of deployed centroids and

the term m refers to the number of RSSIs collected in the offline phase. Also, t
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Figure 2-6: Nearest Neighbor Version 2.

Figure 2-7: Nearest Neighbor Version 3.

= (l - 1) * n where the term l refers to the rows (i.e., number of rows) that hold

some grid points and the term n refers to the centroids (i.e., number of centroids)

between consecutive rows. The NNv3 algorithm in its online stage chooses the four

nearest grid points to the target node (see figure 2-7). If there exists equal distances

to the target, the centroid of the grid points is the calculated location. Otherwise,

the algorithm chooses the two closest grid points and the Centroid S of the four grid

points to calculate the location. If the distances of the two closest grid points are

identical, then the algorithm calculates the Centroid Y between the two grid points

and S as the estimated location. Otherwise, a midpoint between the two grid points

is calculated. The Centroid Q between Centroid Y, the closest grid point, and the

midpoint is calculated to be the localized point. NNv4 is similar to NNv3, but the

algorithm selects the nearest centroid first with its four nearest grid points instead of

four grid points anywhere in the space.

The contributions of the study are three new Bluetooth fingerprinting algorithms

that improve both accuracy and precision. The study also compares the algorithms

in terms of complexity. The NN, KNN, PFL, NNv2, NNv3, and NNv4 algorithms are
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compared. NNv4 achieves the highest accuracy with less than 3 m. NNv2 and NNv4

have higher accuracy compared to PFL, NN, and KNN. NNv4 achieves the highest

precision of less than 1 m while NNv2, NNv3, and NNv4 achieve better precision

than both PFL and NN [17]. However, the accuracy of indoor localization can be

improved, as well as the complexity of NNv4.

f. Soft-Range-Limited K-Nearest Neighbor

A more recent work by Hoang et al. [21] proposes a Soft-Range-Limited KNN al-

gorithm (SRL-KNN) [21]. The motivation is to address existing issues with KNN

such as the similarities between fingerprints and the variation in RSSI. SRL-KNN

utilizes the user’s previously calculated position to consider the speed of the user

while moving. A circle can be formed around the previous location and the neighbors

near that location are more likely to be selected as a K-nearest neighbor. The user’s

location is then determined through a weighted average of the selected neighbors.

The contribution is an algorithm that achieves high accuracy while the target device

is stationary and moving. While the target device is stationary, the SRL-KNN al-

gorithm has an accuracy of 0.60 m compared to RADAR, KNN, and WKNN which

have accuracies lower than 1.20 m. Another experiment has been performed where

the movement of the target device is considered. The authors describe the use of

an RSSI histogram algorithm in order to achieve a 0.66 m accuracy with SRL-KNN.

The proposed algorithm also has the same time complexity as KNN [21]. A major

flaw is that precision was not captured in their work. SRL-KNN is not effective if the

previous location calculated is inaccurate. Additionally, a recent study by Zhang et

al. [43] demonstrates that even though the SRL-KNN algorithm has high accuracy,

the same numerical difference in RSSI fingerprint values between two grid points may

not equal the same geometric difference compared to another similar set of two grid

points [43]. This is because the radio map for the SRL-KNN algorithm uses the mean

RSSI and mean difference in RSSI for fingerprinting features. The experimenters

worked with an RSSI histogram to smooth the RSSI values. However, RSSI values
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for fingerprints can fluctuate, and thus, the fingerprinting values between two grid

points may be similar to each other [21].

2.4 Summary

The non-Receive Signal Strength Indicator (RSSI) techniques include Time of Arrival

(ToA), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA). The AoA

technique involves the calculation of a signal’s arrival angle in order to estimate the

user’s location but suffers from additional hardware requirements and angle multipath

[1] [2] [12] [18]. ToA involves measuring the travel time of a signal from a transmitter

to a receiver but requires additional resources and precise time synchronization be-

tween the two devices [1] [11] [12] [18]. TDoA involves finding the difference in signal

arrival time between two Access Points (APs) but requires a high frequency Analog

to Digital Converter (ADC) to process the signal [2] [13] [14] [15].

The RSSI-based techniques include trilateration and fingerprinting [10]. Due to

the advantages of RSSI-based algorithms, including its low hardware cost and lower

power consumption, this research focuses on these algorithms [10]. Trilateration uses

three APs and creates circles around them to find the intersection point but requires

additional infrastructure and is not effective in spatially diverse environments [9] [10].

Fingerprinting is an effective technique for indoor localization. Compared to non-

RSSI techniques, it is not as susceptible to angle multipath and can achieve higher

accuracy without an ADC and clock synchronization [11] [12] [14] [18]. Compared

to trilateration, the fingerprinting technique is more suited for the spatially diverse

indoor environments [9] [10] [17]. Among the fingerprinting techniques, the NN and

KNN algorithms suffer from multipath interference [17]. RADAR and WKNN do

not have sufficient accuracy while WKNN has high time complexity [20] [22]. The

weighted fusion algorithm does not consider precision [23]. PFL and DFL have rela-

tively low accuracy [24]. NNv2, NNv3, and NNv4 can be improved in terms of their

accuracy [17]. Finally, SRL-KNN has potential inaccuracies in locations calculated

in previous runs [21].
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The fingerprinting algorithms are displayed in Table 2.1 with their accuracy, pre-

cision, and time complexity. Time complexity represents the run time complexity of

an algorithm and is measured using the Big O Notation. As shown in the table, the

time complexity of NN, KNN, and SRL-KNN is O(g * m) where the term g refers

to the number of grid points and the term m is the number of RSSI values collected

offline [17] [20] [21] [44]. The numbers in the table may change depending on the

environments and practices used for Indoor Location Services. Based on these chal-

lenges, we propose and efficient algorithm that improves the accuracy and precision

for indoor localization in order to effectively estimate the location of a target indoors.

The time complexities for PFL and DFL [24] were not considered in their respective

research, and therefore, the run time of these two algorithms are evaluated in our

study. In addition, the precision of WKNN and SRL-KNN are also investigated in

our study as they were not mentioned in their original research [21] [22].

Table 2.1: Fingerprinting-Based Algorithms
Algorithm Accuracy Precision Time Complexity

NN Around 2.94m - 4m [17] [20] Around 2m [17] O(g * m) [20] [44].

KNN 2.13m, 3.12m, and 3.25m [17] [20] [22] Around 1.3m [17] O(g * m) [20] [44].

WKNN 1.66m - 3.06m [22] [23] X O(r *(a + d)) offline and

O(r * a * log(k) + d) online

where r is the number of observations,

a is the number of APs,

d is the number of physical dimensions,

and k is the number of nearest neighbors [22].

Weighted Fusion 1.54m [23] X X

PFL Around 3.5m-4m [17] [24] Under 5m [17] [24] X

DFL Around 3m [24] Under 5m [24] X

NNv2 Around 3m [17] Around 1.3m [17] O(t * m) where t refers to the centroids

and m refers to the RSSIs [17].

NNv3 Around 3.75m [17] Around 1.9m [17] O(l * n * m + l * m)

where l refers to the rows

and n refers to the centroids between consecutive rows [17].

NNv4 Around 2.75m [17] Around 0.9m [17] O(t * m) where t refers to the centroids

and m refers to the RSSIs [17].

SRL-KNN 0.60m [21] X O(g * m) [21].

X:Unknown
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Chapter 3

Methodology

In this chapter, a new indoor localization algorithm is proposed. Our proposed algo-

rithm and its properties are discussed. Furthermore, a simulation model is designed

and used to compare the proposed algorithm against existing Nearest Neighbor-based

algorithms [17] [21] [22] [24]. Our proposed algorithm and simulation model are im-

plemented in the next chapter.

3.1 The Fingerprinting Line-Based Nearest Neigh-

bor Algorithm

Essentially, the Fingerprinting Line-Based Nearest Neighbor (FLBNN) algorithm is

an extension of the K-Nearest Neighbor (KNN) algorithm. In order to implement

the FLBNN algorithm, an offline stage needs to be performed. The offline stage

involves the measurement of Receive Signal Strength Indicator (RSSI) measurements

at known positions or grid points in the indoor environment. This establishes a radio

map. At the online phase, FLBNN is executed. Algorithm 1 lists the detailed steps of

the FLBNN algorithm in the online stage. From Lines 1 to 8, the FLBNN algorithm

first chooses the nearest Centroid S among all the deployed centroids (see figure 3-1).

In figure 3-1, the algorithm chooses the nearest Centroid S when the target point T

is localized.
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Figure 3-1: FLBNN Step 1.

Figure 3-2: FLBNN Step 2.

After the nearest Centroid S is chosen, in Line 9, the algorithm then chooses the

two closest grid points where the constructed line between the grid points does not

intersect the Centroid S (see figure 3-2). The algorithm calculates the Midpoint M

between the two closest grid points and chooses the nearest grid point (e.g., Grid

Point G1).

Despite the similarities between FLBNN and Nearest Neighbor version 4 (NNv4),

the following steps of FLBNN demonstrate its unique properties. Once the midpoint

is calculated, between the nearest Grid Point G1, Centroid S, and Midpoint M, the

algorithm has the ability to displace one or two of these points towards either G1, S,

or M by a certain percentage. For example, the algorithm can displace G1 towards S

or the algorithm can displace M and S towards G1. If Grid Point G1 is displaced by

100% towards Centroid S, Grid Point G1 is directly shifted to the same coordinates

as Centroid S. Another example is that Grid Point G1 can be shifted halfway towards

Midpoint M when the displacement percentage is equal to 50%.

From Line 10, the algorithm demonstrates the calculation of a set of points N,

which has the nearest Grid Point G1, the Centroid S, and the Midpoint M, with

one or two of those points displaced by a certain percentage amount (see figure 3-
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Figure 3-3: FLBNN Step 3.

3). Essentially, the term s represents a set of points that is shifted by a percentage.

The set of points s can include S, M, or G1. The set of points specified in s are

shifted towards the point r where this point does not equal the point(s) s. The term

r represents either G1, S, or M. As a result, the set of points N is formed to have the

updated points. Finally, at Line 11, the algorithm will calculate the Centroid Q as

the estimated location between the shifted point(s) and the other fixed point(s). In

figure 3-3 for example, Centroid S is shifted by 50% towards the nearest grid point,

which is represented by point S’.

The time complexity of FLBNN is represented by O(t * p) where the term t refers

to the number of deployed centroids and the term p refers to the number of every

Path Loss exponents (PLe) calculated from the RSSI measurements during the offline

stage.

Algorithm 1: Fingerprinting Line-Based Nearest Neighbor
Input : c - the number of centroids in the grid point space, n - the number of access points, T - the

target node at an unknown coordinate, s - a set of one or two points to shift (either Centroid S,
Midpoint M, or the closest Grid Point G), r - the point that s will be shifted towards, and dp -
the displacement percentage. Each centroid is surrounded by four Grid Points G 1, G 2, G 3,
and G 4.

Output: Q - the estimated location coordinates.
1 let minDistance = 0;
2 foreach i of c do
3 dist[i] = Distance(T, i);
4 if minDistance > dist[i] then
5 minDistance = dist[i];
6 S = i;

7 end if

8 end foreach
/* Gi is the first closest grid point and Gj is the second closest. */

9 M = MidDistance(Gi, Gj);
/* N represents a set of three points [Gi, S, and M] after the points in s are shifted. */

10 N = ShiftPoint(s, r, dp);
11 Q = Centroid(N);
12 Return Q;
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FLBNN has some significant properties. We mention them along with their pos-

sible explanations as follows.

1. Hypothesis 3.1: The FLBNN algorithm has higher accuracy compared to those

for some existing localization algorithms (i.e., Nearest Neighbor-based algo-

rithms), because the algorithm shifts the closest grid point, the midpoint, or

Centroid S possibly closer to the target node. The assumption made here is

that the target is not located at a grid point, centroid, or at a midpoint. The

algorithm chooses the Centroid S that is the closest to the target and the two

closest grid points. In one case, the algorithm shifts the Centroid S towards

one of the two grid points where the grid points are closer to the target than

the Centroid S. In another case, the algorithm shifts the nearest one of the two

grid points closer to Centroid S where S is closer to the target than both grid

points. Therefore, the calculated Centroid Q is closer to the target, and thus,

the accuracy of the algorithm is improved.

2. Hypothesis 3.2: The FLBNN algorithm has higher precision compared to those

for some existing localization algorithms (i.e., Nearest Neighbor-based algo-

rithms) because the algorithm calculates the estimated locations within a par-

ticular area of the space (i.e., triangle). The Centroid Q is calculated within a

smaller area between the closest grid point, the midpoint, and the Centroid S

after displacement. Thus, the distance errors are calculated within that area.

As a result, there is less variation in distance errors.

In other words, one possibility of high precision is that one of the closest grid

points is shifted towards Centroid S. In one run of the algorithm, two closest

Grid Points G1 and G2 are chosen and the estimated Location Q is calculated.

In the next run of the algorithm, two different closest grid points are chosen

(e.g., G3 and G4) compared to G1 and G2 which were chosen in the previous

run of the algorithm. The estimated updated Location Q is then calculated. In

both runs, the algorithm can move one of these grid points (e.g., G1 or G2 in the

first run and G3 or G4 in the second run) closer to the Centroid S. Therefore,
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the estimated Location Q and the updated Location Q are closer to each other

since they are both near Centroid S.

Another possibility is that Centroid S is shifted closer to the closest Grid Point

G1. In certain cases, the second closest grid point is different in the next run of

the algorithm. For example, under the assumption that G1 is the closest grid

point in both runs of the algorithm, G2 is the second closest grid point in the

first run. The estimated Location Q is calculated in the first run. In the second

run of the algorithm, G3 is the second closest point and the estimated updated

Location Q is calculated. If that is the case, FLBNN shifts the Centroid S

towards the nearest Grid Point G1 each run. Therefore, the estimated Location

Q and the updated Location Q are closer to each other because they are close

to the nearest Grid Point G1. As a result, the precision of the algorithm is

improved.

3.2 Performance Evaluation

3.2.1 Simulation Model and Performance Metrics

The simulation model that is used to verify the important properties of the Finger-

printing Line-Based Nearest Neighbor (FLBNN) algorithm involves a Google Pixel

phone with four Wi-Fi Access Points (APs). The model is based on a 2.5 m by 12.5

m area with 12 grid points and 5 centroids in room S144 at the Sheridan Trafalgar

campus (see figure 3-4). The distance between each grid point is 2.5 m from each

other. The distance between each centroid is also 2.5 m. Each AP is distanced at least

22 feet or 6.71 meters away from each other. The design is based on the Cisco best

practices for AP spacing for indoor localization and based on the Sheridan/TELUS

project [45].

Existing RSSI datasets are collected on September 7th, 2019 and are used for the

offline and online stages. During the offline stage (see figure 3-5), the target device is

stationed at each grid point or centroid and collects 35 filtered RSSI measurements
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Figure 3-4: Simulation Model Map.

(i.e., Kalman filter). These 35 RSSI measurements for each of the four APs are used

to calculate a single PLe value for each AP. Therefore, each grid point (or centroid)

are fingerprinted with four PLe values [24].

There are two types of offline stages. The first type is based on the available four

APs. Whereas, the second type is based on an AP selection method. For this type,

a confusion matrix is used to find the best possible combination of APs that has the

highest accuracy. In other words, for the same deployment of grid points and cen-

troids, a number of zones has been created (see figure 3-4). In order to evaluate which

AP combination achieves the best accuracy, the grid point space is divided into 2.5

m by 2.5 m zones where each zone contains a centroid in the middle of it. For each

AP combination, the target device is stationed in the center of a zone (or each cen-

troid), and 35 RSSI values were measured in each zone to determine which zones the

algorithm predicted the target device to be in. The confusion matrix demonstrates

the percentage of correctly and incorrectly classified zones. The accuracy value cal-

culated refers to the percentage of correctly classified zones when the target device
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is standing in each zone. The work performed regarding these matrices is based on

results provided from the Sheridan/TELUS project.

In the online stage, the four randomized test locations (1.937, 3.5), (2.437, 9.5),

(2.937, 6.5), and (3.437, 12) are used to measure the accuracy and precision for the

following algorithms:

a. K-Nearest Neighbor (KNN) [17],

b. Weighted KNN (WKNN) [22],

c. NN version 2 (NNv2) [17],

d. NN version 3 (NNv3) [17],

e. NN version 4 (NNv4) [17],

f. Path-Loss-Based Fingerprint Localization (PFL) [24],

g. Dual-Scanned Fingerprint Localization (DFL) [24] and,

h. Soft-Range-Limited KNN (SRL-KNN) [21].

Additionally, the run time of the FLBNN algorithm is compared to PFL and DFL.

The online stage process is shown in figure 3-6. The reason for the comparison is be-

cause each algorithm is a Nearest Neighbor-based algorithm. During the online stage,

the Midpoint M is shifted by a percentage between 10% to 90% towards Centroid S

for the FLBNN algorithm. The FLBNN algorithm is evaluated nine times (one for

every 10% displacement up to 90%) for each of the four test locations.

Each of the existing and proposed algorithms are compared in terms of their

accuracy, precision, and run time. During the online stage, each algorithm runs

35 times for every test point, and consequently, the metric values for each run are

averaged. For the accuracy metric, it refers to the distance error between the location

estimated and the actual location. Moreover, precision refers to the distribution of

the estimated locations and the relative distances between them.
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Figure 3-5: Offline Stage Flow Chart.
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Figure 3-6: Online Stage Flow Chart.
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3.2.2 Analysis

The results are analyzed based on either parametric or non-parametric tests depend-

ing on the normality testing. In order to perform those tests, the Shapiro-Wilk test is

used to calculate the p-value of the normality test for all of the proposed and existing

algorithms in terms of accuracy and precision. To determine whether to use para-

metric or non-parametric tests, the p-value must be greater than α that is equal to

0.05 (i.e., 95% confidence level). If the accuracy or precision values do not follow the

normal distribution, a non-parameterized test (e.g., Wilcoxon Signed-Ranks Test) is

required to statistically analyze any significant differences between the FLBNN al-

gorithm and the existing algorithms. Otherwise, parameterized tests (e.g., T-Test

and ANOVA) are required to analyze the differences in those values. Lastly, for the

AP offline selection method, the zones based on subsets of APs are evaluated via the

confusion matrices in order to choose the matrix that has the highest accuracy.

48



Chapter 4

Findings (Analysis and Evaluation)

In this chapter, we explore the results of our experiments and answer our research

questions based on our findings. Our results demonstrate the comparisons between the

Fingerprinting Line-Based Nearest Neighbor (FLBNN) algorithm and the following

algorithms:

1. K-Nearest Neighbor (KNN) [17],

2. Weighted KNN (WKNN) [22],

3. NN version 2 (NNv2) [17],

4. NN version 3 (NNv3) [17],

5. NN version 4 (NNv4) [17],

6. Path-Loss-Based Fingerprint Localization (PFL) [24],

7. Dual-Scanned Fingerprint Localization (DFL) [24] and,

8. Soft-Range-Limited KNN (SRL-KNN) [21].

These comparisons are mainly in terms of accuracy and precision. We further eval-

uate the localization time for PFL, DFL, and FLBNN. In these results, the FLBNN

algorithm shifts the Midpoint M to the nearest Centroid S by a certain percentage

between 10% and 90% in these results.
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4.1 Results with All Access Points

The existing fingerprinting-based algorithms are first compared to FLBNN in terms

of the accuracy metric when all four Access Points (APs) are deployed (see figure

4-1). FLBNN with a displacement percentage of 30% achieves the highest accuracy

compared every other fingerprinting algorithm. KNN achieves the highest accuracy

among the existing fingerprinting-based algorithms but has a lower accuracy com-

pared to FLBNN. In addition, the DFL algorithm achieves the lowest accuracy. Both

FLBNN and KNN are statistically compared in terms of their accuracy by using

the Mann-Whitney U test for non-parametric data (see Table 4.1). From this ta-

ble, we observe whether the difference in accuracy values between two algorithms

are statistically significant or not (signified by ’Yes’ or ’No’ respectively) with a p-

value determined from the test. Based on the table, the accuracies of all versions

of FLBNN are not significantly different from the accuracy values of KNN, WKNN,

and NNv3. The accuracy values of the FLBNN algorithm when the displacement

percentage is at 80% and 90% are also not significantly different to the accuracy of

the PFL algorithm. However, FLBNN does achieve significantly improved accuracy

than NNv4, NNv2, DFL, and SRL-KNN. In addition, the FLBNN algorithm with

displacement percentage values between 10% and 70% is more accurate compared to

PFL. Therefore, Hypothesis 3.1 is adequately verified when FLBNN (i.e., displace-

ment percentage from 10% to 90%) is compared to NNv4, NNv2, DFL, SRL-KNN.

Figure 4-1: The Accuracies for The Fingerprinting-Based Algorithms.
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In addition, the hypothesis is adequately verified when FLBNN (i.e., displacement

percentage from 10% to 70%) is compared to PFL.

Table 4.1: The p-Values Related to The Accuracies
Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

KNN 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No) 0.438 (No)

WKNN 0.199 (No) 0.199 (No) 0.199 (No) 0.199 (No) 0.199 (No) 0.199 (No) 0.171 (No) 0.171 (No) 0.171 (No)

NNv2 0.011 (Yes) 0.004 (Yes) 0.004 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

NNv3 0.074 (No) 0.074 (No) 0.177 (No) 0.177 (No) 0.231 (No) 0.231 (No) 0.315 (No) 0.252 (No) 0.252 (No)

NNv4 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.002 (Yes) 0.002 (Yes)

PFL 0.008 (Yes) 0.008 (Yes) 0.008 (Yes) 0.008 (Yes) 0.008 (Yes) 0.008 (Yes) 0.008 (Yes) 0.072 (No) 0.072 (No)

DFL 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes)

SRL-KNN 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

The fingerprinting-based algorithms are also compared to FLBNN in terms of

precision when all four APs are deployed (see figure 4-2). NNv3 achieves the highest

precision compared to every other fingerprinting algorithm. The DFL algorithm also

achieves the lowest precision. Each existing fingerprinting algorithm and FLBNN

are statistically compared in terms of their precision by using the Levene’s test for

data related to standard deviations (see Table 4.2). The precision values of the

FLBNN algorithm are not significantly different compared to NNv4 and SRL-KNN.

Therefore, Hypothesis 3.2 is adequately verified when the algorithm (i.e., shifting

percentage ranges from 10% to 90%) is compared to PFL and DFL. In addition,

FLBNN achieves a similar precision to NNv4 and SRL-KNN.

Although FLBNN runs in O(t * p), where t is the number of deployed centroids

and p is the number of every Path Loss exponent (PLe) values calculated using Receive

Figure 4-2: The Precision Values for The Fingerprinting-Based Algorithms.
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Table 4.2: The p-Values Related to The Precision Values
Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

KNN 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

WKNN 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

NNv2 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

NNv3 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

NNv4 0.080 (No) 0.092 (No) 0.114 (No) 0.148 (No) 0.202 (No) 0.282 (No) 0.395 (No) 0.545 (No) 0.733 (No)

PFL 0.004 (Yes) 0.004 (Yes) 0.005 (Yes) 0.006 (Yes) 0.008 (Yes) 0.011 (Yes) 0.016 (Yes) 0.024 (Yes) 0.036 (Yes)

DFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

SRL-KNN 0.701 (No) 0.656 (No) 0.583 (No) 0.487 (No) 0.380 (No) 0.274 (No) 0.181 (No) 0.108 (No) 0.059 (No)

Figure 4-3: The Localization Time Values for The Fingerprinting-Based Algorithms.

Signal Strength Indicator (RSSI) measurements during the offline stage, the run times

for PFL and DFL are unknown (see Table 2.1 from Chapter 2). Another goal from

this experiment is to check the impact of the number of APs on the performance of

the algorithms.

The PFL and DFL algorithms are compared to FLBNN in terms of run time when

all four APs are used (see figure 4-3). Each algorithm is statistically compared based

on their run time by using the Mann-Whitney U test for non-parametric data (see

Table 4.3). The run time values of each algorithm are all significantly different from

the run time values of each version of FLBNN. The FLBNN algorithm improves the

run time metric compared to PFL and DFL.

Table 4.3: The p-Values Related to The Localization Time Values

Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

PFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

DFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)
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4.2 Results Based on the Highest Correlated Ac-

cess Points

Another set of results demonstrate the deployment of only two of the four APs.

Essentially, selected combinations of the four APs are evaluated in terms of their

accuracy in order to determine which AP combination achieves the highest correlation

(see Table 4.4). Unlike the results demonstrated in Section 4.1, these results consider

any statistical dependence between APs. There are five zones in total. The accuracy

value here refers to the percentage of correctly classified zones when the target device

is standing in each zone (see Table 4.5). In Table 4.4, APs 2 and 3 achieve the best

average accuracy of 58.4% over 140 samples.

Table 4.4: Access Point Combination Accuracy Comparison
Algorithm Average Accuracy (%)

APs 2 and 3 0.58381

APs 1, 2, and 4 0.389206

APs 1 and 2 0.389206

APs 1, 2, 3, and 4 0.389206

APs 3 and 4 0.289206

APs 1 and 3 0.194603

APs 2, 3, and 4 0.194603

APs 1, 3, and 4 0.194603

APs 1, 2, and 3 0.194603

APs 1 and 4 0.194603

APs 2 and 4 0

Table 4.5: Access Point 2 and 3 Confusion Matrix
Actual Zone

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Predicted Zone

Zone 1 0 0 0 0 0

Zone 2 0.973016 0.973016 0 0.945238 0

Zone 3 0 0 0.973016 0.028571 0

Zone 4 0 0 0 0 0

Zone 5 0 0 0 0 0.973016

*All the confusion matrices can be provided upon request.

Every fingerprinting-based algorithm is compared to FLBNN in terms of accuracy

when only two of the four APs are used (see figure 4-4). FLBNN with a displacement

percentage of 50% achieves a higher accuracy compared to NNv2, NNv4, PFL, and

DFL. In addition, PFL achieves the lowest accuracy. Based on an analysis of the
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results (see Table 4.6), every accuracy value of each existing fingerprinting-based

algorithm is significantly different compared to the accuracy values of every version of

the FLBNN algorithm. Therefore, Hypothesis 3.1 is adequately verified when FLBNN

(i.e., displacement percentage from 10% to 90%) is compared to NNv4, NNv2, PFL,

and DFL.

Figure 4-4: Fingerprinting Algorithm Accuracy Comparison for Selected Access
Points.

Table 4.6: Fingerprinting Algorithm Accuracy Statistical Analysis for Best Access
Point Selection
Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

KNN 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

WKNN 0.000 (Yes) 0.000 (Yes) 0.017 (Yes) 0.017 (Yes) 0.017 (Yes) 0.017 (Yes) 0.017 (Yes) 0.011 (Yes) 0.011 (Yes)

NNv2 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes)

NNv3 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes)

NNv4 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

PFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

DFL 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes) 0.034 (Yes)

SRLKNN 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.001 (Yes) 0.001 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

While using only two of the four APs, the existing fingerprinting-based algorithms

are compared to FLBNN in terms of precision (see figure 4-5). The NNv3 algorithm

achives the highest precision while the DFL algorithm achieves the lowest precision.

Based on an analysis of the results (see Table 4.7), the precision values of the FLBNN

algorithm are not statistically significant when compared to NNv4 and SRL-KNN.

However, the precision values of FLBNN are significantly different compared to every

other fingerprinting-based algorithm. Therefore, Hypothesis 3.2 is adequately verified
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when FLBNN is compared to both PFL and DFL and as precise as the NNv4 and

SRL-KNN algorithms.

Figure 4-5: Fingerprinting Algorithm Precision Comparison for Selected Access
Points.

Table 4.7: Fingerprinting Algorithm Precision Statistical Analysis for Best Access
Point Selection
Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

KNN 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.001 (Yes) 0.002 (Yes) 0.003 (Yes) 0.004 (Yes) 0.007 (Yes) 0.013 (Yes)

WKNN 0.004 (Yes) 0.004 (Yes) 0.004 (Yes) 0.006 (Yes) 0.008 (Yes) 0.011 (Yes) 0.016 (Yes) 0.025 (Yes) 0.039 (Yes)

NNv2 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

NNv3 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.001 (Yes) 0.001 (Yes)

NNv4 0.421 (No) 0.437 (No) 0.469 (No) 0.519 (No) 0.589 (No) 0.679 (No) 0.790 (No) 0.919 (No) 0.938 (No)

PFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

DFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

SRLKNN 0.165 (No) 0.172 (No) 0.189 (No) 0.215 (No) 0.254 (No) 0.308 (No) 0.379 (No) 0.469 (No) 0.580 (No)

Figure 4-6: Fingerprinting Algorithm Localization Time Comparison for Selected
Access Points.
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Finally, the PFL and DFL algorithms are compared to FLBNN in terms of run

time using only two APs (see figure 4-6). The run time values of each algorithm are

all significantly different from the run time values of FLBNN (see Table 4.8). Thus,

the FLBNN algorithm has a faster run time compared to PFL and DFL.

Table 4.8: Fingerprinting Algorithm Localization Time Statistical Analysis for Best
Access Point Selection

Algorithm FLBNN 10% FLBNN 20% FLBNN 30% FLBNN 40% FLBNN 50% FLBNN 60% FLBNN 70% FLBNN 80% FLBNN 90%

PFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)

DFL 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes) 0.000 (Yes)
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Chapter 5

Discussion

In this chapter, we mention the possible explanations behind the results demonstrated

in Chapter 4 in terms of the accuracy, precision, and run time metrics. In addition,

we highlight the added values to the existing literature in the area of localization.

Furthermore, we mention the limitations and recommendations for future work.

5.1 The Deployment of All Access Points

The first major finding in this research is that our Fingerprinting Line-Based Nearest

Neighbor algorithm (FLBNN) achieves higher accuracy compared to those for all the

existing algorithms when all four Access Points (APs) are deployed. Our explanation

for these results follows Hypothesis 3.1 outlined in Chapter 3. To reiterate, FLBNN

has a higher accuracy compared to those for the Nearest Neighbor-based algorithms,

because the algorithm possibly shifts the Midpoint M closer to the target node, and

therefore, the computed centroid is closer to the actual location.

A more interesting observation to mention is that the FLBNN algorithm also

achieves higher precision compared to those for Path-Loss-Based Fingerprint Local-

ization (PFL), Dual-Scanned Fingerprint Localization (DFL), and is just as precise

as Nearest Neighbor version 4 (NNv4) and Soft-Range-Limited K-Nearest Neighbor

(SRL-KNN). Our explanation for why FLBNN achieves a greater precision follows

Hypothesis 3.2. In other words, FLBNN has a higher precision because the algorithm
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calculates the estimated locations within a particular area of the space (i.e., triangle).

This explanation also assists to demonstrate why NNv4 achieves a similar precision to

that for FLBNN. The reason as to why FLBNN achieves a higher precision compared

to those for PFL and DFL is because in PFL, the algorithm chooses the nearest grid

point. In comparison, FLBNN chooses the nearest centroid and then chooses the two

closest grid points. A small change in the Receive Signal Strength Indicator (RSSI)

measurements can significantly impact PFL, in which a small change causes PFL to

choose a new closest grid point that is 2.5 m away from the original. In comparison,

FLBNN chooses the nearest centroid. As a result, the centroids have more distinctive

feature values compared to grid points with all four APs, and as a result, FLBNN is

not susceptible to changes in RSSIs. In addition, DFL achieves the lowest precision

because the RSSI and distance thresholds only include the grid points that are within

the center of the grid point space. As a result, based on the RSSI measurements that

DFL reads, it cannot detect locations that are outside of the range of the thresholds.

This is usually the case for grid points that are at the far edges of the grid point

space. Therefore, DFL achieves the lowest precision. Moreover, SRL-KNN achieves a

higher precision compared to that for DFL. The reason for this behavior is that even

though SRL-KNN uses the previously calculated location as a threshold for choosing

grid points, this threshold is not calculated within the center of the room compared

to DFL.

In terms of run time, the FLBNN algorithm has a faster run time compared to

those for PFL and DFL. As mentioned in the previous chapter, the FLBNN algorithm

runs in O(t * p) where t is the number of deployed centroids and p is the number

of Path Loss exponent (PLe) values. However, the run times for PFL and DFL

are unknown (see Table 2.1 in Chapter 2). Therefore, the run time of the FLBNN

algorithm was compared to PFL and DFL using the wall clock time. The results

demonstrate that the FLBNN algorithm runs faster compared to those for the existing

algorithms. This is because FLBNN initially searches for the nearest centroid in the

grid point space, and then evaluates the four surrounding grid points to determine the

two closest grid points. In comparison, PFL evaluates every grid point in the space
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to determine the closest grid point as the localized position. Additionally, DFL has

a significantly slower run time compared to those for both FLBNN and PFL because

DFL focuses on the calculation of an RSSI threshold and a distance threshold. These

two thresholds only include the grid points in the space to be chosen as the localized

point before the calculation of the nearest grid point.

For precision, the K-Nearest Neighbor (KNN), Weighted KNN (WKNN), Near-

est Neighbor version 2 (NNv2), and Nearest Neighbor version 3 (NNv3) algorithms

achieve a higher precision compared to that for FLBNN. The reason as to why KNN

and consequently WKNN achieves the highest precision is because KNN chooses the

four closest grid points compared to that for FLBNN. The FLBNN algorithm chooses

the nearest centroid and then chooses the two closest grid points of the four sur-

rounding ones. With KNN, changes in RSSIs do not affect the algorithm as much

because the four closest grid points remain the same. The only difference is that one

of those four grid points might be closer to the target than another in a different run

of the algorithm. However, in all runs of KNN, the four closest grid points remain

the same, even though the closest grid point may change. In comparison, FLBNN

chooses the nearest centroid and then the two closest grid points. Even though the

nearest centroid does not change during several runs of FLBNN, a fluctuation in RSSI

measurements alters the choice of the two closest grid points. Thus, FLBNN achieves

a lower precision in comparison to KNN and WKNN. For NNv2, it achieves a higher

precision because it chooses the nearest centroid instead of additionally choosing the

two closest grid points. The change in RSSIs modifies the choice of the two nearest

grid points, and as a result, the precision of FLBNN is lowered compared to that

for NNv2. Finally, NNv3 achieves a higher precision compared to that for FLBNN.

Although the NNv3 algorithm relies on choosing two closest grid points after choosing

the four closest grid points, NNv3 can choose the two closest grid points where the

line between the points can intersect Centroid S. In comparison, FLBNN must choose

the two closest grid points where the line drawn between these points does not cross

Centroid S. As a result, when NNv3 changes its two closest grid points during con-

secutive runs, the localized point does not change as much. However, the localized
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Figure 5-1: Dual-Scanned Fingerprint Localization Thresholds.

points computed by FLBNN are farther away from each other in consecutive runs

because a change in one of the closest grid points changes the location of the triangle

where the localized point is calculated.

There are a couple of interesting observations beyond FLBNN’s performance. An

interesting observation is that DFL achieves lower accuracy compared to that for

PFL. The key reason for this is because the RSSI and distance thresholds filter the

grid points that are within the center of the grid point space (see figure 5-1). These

thresholds are often not calculated around the edges of the grid point space. As a

result, the DFL algorithm cannot accurately predict the location of a user that is

around the edges of a grid point space because the thresholds are calculated in the

center of the grid point space.

NNv3 achieves higher precision compared to that for NNv2, even though NNv2

chooses the nearest centroid only. This is hypothesized that a change in the closest

centroid during several runs of NNv2 can significantly impact the distance between

localized points. The distance between localized points are not influenced as much

in NNv3. If a change in RSSI measurements appears, the two closest grid points

may change. However, because the four closest grid points are often close together,

a change in the two closest grid points does not impact the distance between the

localized points. However, a change in the nearest centroid in NNv2 results in a
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distance of 2.5 m between localized points. Therefore, NNv3 has higher precision

compared to that for NNv2.

WKNN achieves a higher precision compared to that for KNN when all four APs

are deployed. This is because even though WKNN achieves a lower accuracy, the

weighted average calculation uses the distance between the grid point and the target.

Even though the localized position is not close to the target, the weighted average

mostly calculates the points to be closer to each other. In comparison, KNN calculates

the centroid between the four closest grid points without a weighted average. Thus,

KNN calculates the points to be farther away from each other and WKNN achieves

a higher precision in comparison.

Finally, when discussing WKNN, SRL-KNN, which is based on WKNN, achieves a

lower precision compared to that for WKNN. The reason for this is because SRL-KNN

chooses its four closest grid points based on a threshold surrounding the previous

localized point calculated. The threshold limits the choice of the four closest grid

points, and thus, a change in RSSI measurements significantly impacts the change in

the four closest grid points. In comparison, the four closest grid points in WKNN

do not change over consecutive runs compared to SRL-KNN because there are more

grid points to choose from when choosing the nearest four grid points in WKNN.

Therefore, SRL-KNN achieves a lower precision compared to WKNN.

5.2 Highest Correlated Access Points

The next major finding in this research is that FLBNN achieves a higher accuracy

compared to those for NNv2, NNv4, PFL, and DFL when only a chosen combination

of APs are used. Once again, our explanation for this result follows Hypothesis 3.1

outlined in Chapter 3. In addition, the FLBNN algorithm also achieves a greater

precision than PFL, greater precision than DFL, and is just as precise as NNv4 and

SRL-KNN. The explanation of this behavior follows the same explanation when all

four APs are deployed. As explained previously, when two of the four APs are used,

FLBNN also achieves a faster run time than PFL and DFL.
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However, the KNN, WKNN, NNv3, and SRL-KNN algorithms have higher ac-

curacy than FLBNN when only two APs are used. This is primarily because the

methodologies of these four algorithms involve calculating the four nearest grid points

in comparison to FLBNN. When only two APs are used, the fingerprints for each grid

point are reduced. As a result, some points may be more indistinguishable in the grid

point space when finding the nearest grid points. This is especially the case with

the centroids in the center of the room. However, the fingerprints of each grid point

are more distinguishable from each other. As a result, the initial centroid choice is

inaccurate compared to choosing four grid points. Therefore, the FLBNN algorithm

achieves a lower accuracy compared to those algorithms when only two of the four

APs are used.

There are various other observations beyond FLBNN’s performance when two

APs are used. First, DFL achieves a better accuracy compared to PFL when only

two APs are used. This is primarily because DFL is not affected as much by the AP

deployment. DFL still calculates the thresholds to be within the center of the room.

However, because the fingerprints of each grid point are limited, there are some grid

points that are similar to each other as a result. In the case of PFL, the fingerprints

between two grid points are less distinguishable than before when the four APs are

deployed. As a result, PFL chooses a different nearest grid point during different runs

of the algorithm. In comparison, because DFL only chooses grid points within the

thresholds calculated, some grid points with similar fingerprints are excluded from

these thresholds. As a result, DFL is not affected as much by the change in the

fingerprints of grid points. Therefore, DFL achieves a higher accuracy than PFL.

WKNN achieves a lower precision compared to KNN when only two APs are used

even though the four closest grid points do not change for both KNN and WKNN

in consecutive runs of the algorithms. With the updated distance values, WKNN’s

localized points can be possibly more varied compared to those for KNN because of

the weighted average calculation. A change in distance values between the target node

and a grid point in KNN does not significantly impact the calculation of the localized

point. Given that the distance values are less distinct due to less distinct fingerprints
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on grid points, those distance values are used in WKNN when the weighted average

between the chosen grid points is calculated. As a result, a change in RSSI values

can affect the localized points in WKNN more than in KNN, and thus, WKNN has

a lower precision.

SRL-KNN achieves a higher accuracy than WKNN when only two APs are used.

Initially, WKNN outperformed SRL-KNN with all four APs. To reiterate, SRL-KNN

has a low precision when all four APs are used due to the impact of the RSSIs changing

the four closest grid points in the threshold. However, within the threshold created

by the previously calculated location, the SRL-KNN algorithm is not impacted as

much by the change in RSSI values. As a result, SRL-KNN cannot localize points

that are more accurate over time, and therefore, it does not achieve the accuracy of

WKNN when all four APs are used. However, when two APs are used, SRL-KNN

achieves a higher accuracy. This is because the initial previous location calculated

when only two APs are used for both WKNN and SRL-KNN is accurate. As a

result, a fluctuation in RSSI values impacts WKNN more than SRL-KNN because

the localized points calculated from WKNN can be possibly more inaccurate in later

runs of the algorithm in a given test. However, SRL-KNN is not affected as much by

the change in RSSI over the entire grid point space because of the threshold set by

the previous localized points. Therefore, SRL-KNN achieves a higher accuracy than

WKNN when only two APs are used.

SRL-KNN achieves a higher accuracy than PFL when only two APs are used.

Originally, SRL-KNN had a lower accuracy than PFL when all four APs are used.

PFL chooses the closest grid point compared to SRL-KNN, which chooses the four

closest grid points. As a result, when certain fingerprinting features are removed from

the grid points, there were some grid points that PFL chose that are far away from

the target node. However, SRL-KNN is not impacted as much because a change in

one of the closest four grid points does not affect the localized point significantly. As

a result, SRL-KNN achieves a higher accuracy when only two APs are used.

Compared to NNv3, SRL-KNN achieves a higher accuracy than the NNv3 algo-

rithm. The reason for this is because similar to PFL, the choice of the two closest grid
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points in NNv3 is significantly affected. Even though both algorithms first choose the

four closest grid points and calculate a centroid between them, NNv3 chooses the two

closest grid points in later steps. When fingerprinting features were removed from

grid points, the NNv3 algorithm chooses two different closest grid points as a result.

Therefore, the SRL-KNN algorithm achieves a higher accuracy than NNv3.

Finally, SRL-KNN achieves a higher accuracy than NNv4 and NNv2 when only

two APs are used. The explanation for this behavior is similar to the explanation

for why SRL-KNN has higher accuracy than FLBNN when only two APs are used.

Since NNv2 and NNv4 both involve choosing the nearest centroid first, the initial

centroid choice can be possibly inaccurate compared to the actual closest centroid to

the target node. Since SRL-KNN chooses the four closest grid points, however, the

SRL-KNN algorithm achieves a higher accuracy.

5.3 Limitations and Recommendations

One of the key limitations in this study is that the grid point space used is rela-

tively small and only a few centroids exist within the space. However, the grid point

space is designed in such a way to follow the Cisco best practices for AP spacing,

where the grid point space should ideally be designed within the convex boundary

formed by all four APs [45]. With regards to future study of the FLBNN algorithm

and fingerprinting-based algorithms, one recommendation is to work with a larger

grid point space to further explore the performance of each algorithm within various

different spaces. A major limitation in this study is that only four test points were

used during the experiments. Therefore, there is a need to deploy more test points

in future experiments in order to further evaluate the performance of each algorithm.

Another limitation is that there is a small set of APs that were used in the exper-

iments. More APs are recommended to be deployed in future experiments in order

to explore how the number of APs influences the performance of each algorithm. We

have not explored the challenges when varying Wi-Fi environment settings such as

channel selection, radio frequency selection, and physical ambience. Thus, there is a
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need to investigate the accuracy and precision of the FLBNN algorithm based on the

mentioned settings. Finally, we have only experimented with Wi-Fi technologies and

have not explored other technologies such as Bluetooth and Zigbee. Thus, there is a

need to evaluate each algorithm with those technologies.
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Chapter 6

Conclusion

In conclusion, this Thesis answers the question of whether the line-based shifting of

the grid points improves the indoor localization metrics compared to those for sev-

eral existing fingerprinting-based algorithms [17] [21] [22] [24]. The Thesis focuses on

important metrics such accuracy, precision, and localization time. A thorough inves-

tigation was conducted in order to verify the hypotheses. Furthermore, a detailed

discussion was mentioned in order explain the different behaviors for the Nearest

Neighbor-based algorithms in terms of all those metrics. In this chapter, we summa-

rize the conducted research and mention some future directions.

6.1 Summary

Indoor localization is a growing research area considering that there are fields such

as healthcare that is positively impacted by this area. Technologies such as GPS are

used to determine the location of a user outdoors, but is not sufficient to localize

a user indoors [6]. Moreover, techniques such as Angle of Arrival (AoA), Time of

Arrival (ToA) and Time Difference of Arrival (TDoA) are not sufficient for locating a

user indoors [2]. In comparison to the non-Receive Signal Strength Indicator (RSSI)

techniques, trilateration is an RSSI-based technique, but requires additional infras-

tructure and is not effective in spatially diverse environments [9] [10]. In order to

address these issues, fingerprinting is not as susceptible to angle multipath and can
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achieve higher accuracy without an Analog to Digital Converter (ADC) and clock

synchronization [11] [12] [14] [18]. Additionally, the fingerprinting technique is more

applicable for spatially diverse indoor environments [9] [10] [17].

Fingerprinting algorithms such as the Nearest Neighbor (NN) and K-Nearest

Neighbor (KNN) suffer from multipath interference [17]. Weighted KNN (WKNN)

has high time complexity [20] [22]. WKNN, Path-Loss-Based Fingerprint Localiza-

tion (PFL), and Dual-Scanned Fingerprint Localization (DFL) have relatively low

accuracy [20] [22] [24]. Additionally, the time complexity of PFL and DFL were not

evaluated in their research [24]. Moreover, Nearest Neighbor version 2 (NNv2), Near-

est Neighbor version 3 (NNv3), and Nearest Neighbor version 4 (NNv4) all achieve

high accuracy, however, the accuracy and precision metrics can be further improved

[17]. For Soft-Range-Limited KNN (SRL-KNN), it has potential inaccuracies in loca-

tions calculated in previous runs of the algorithm and its precision is unknown [21].

Therefore, this Thesis proposed and implements the Fingerprinting Line-Based Near-

est Neighbor (FLBNN) algorithm in order to improve the accuracy, precision, and

run time metrics.

Our findings indicate that while deploying all Access Points (APs), our proposed

FLBNN algorithm improves accuracy compared to those for NNv4, NNv2, DFL,

and SRL-KNN. FLBNN also improves accuracy compared to those for NNv2, NNv4,

PFL, and DFL when only two APs are deployed. This is primarily because the new

algorithm has the shifting capability.

When all the four APs are deployed, FLBNN also achieves higher precision com-

pared to those for PFL and DFL and achieves similar precision compared to those

for NNv4 and SRL-KNN. This is hypothesized that the localized positions are within

a particular area of the grid space (i.e., triangle). In addition, when only a subset

of APs is deployed, FLBNN does not achieve a higher precision compared to those

for KNN, WKNN, NNv2, and NNv3 for the same reason as when all four APs are

deployed.

Finally, our proposed FLBNN algorithm improves the run time compared to those

for PFL and DFL based on the full and partial deployments of APs. This is because
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PFL focuses on evaluating all grid points to locate the nearest grid point and DFL

relies on calculating two thresholds. The key contributions of this work are listed as

follows.

1. The FLBNN algorithm improves accuracy compared to those for NNv4, NNv2,

DFL, SRL-KNN when all four APs are used. FLBNN also improves accuracy

compared to those for NNv2, NNv4, PFL, and DFL algorithms when a subset

of APs are deployed.

2. The FLBNN algorithm improves precision compared to those for PFL and DFL

when all four APs or a subset of APs are deployed.

3. The FLBNN algorithm improves the run time complexity compared to those

for PFL and DFL.

6.2 Future Work

As future work, we will explore the deployment of Bluetooth beacons for our FLBNN

algorithm along with using a larger grid point space. In addition, more test points

and APs will be deployed in order to further evaluate the performance of each ex-

isting fingerprinting-based algorithm and the FLBNN algorithm. Various different

techniques beyond the Kalman filter will be implemented to filter the RSSI measure-

ments [16]. Moreover, the proposed and existing algorithms will be extended to 3-D.

Furthermore, various machine learning techniques will be applied to these algorithms

in order to investigate the performance of each algorithm. The accuracy and pre-

cision of the FLBNN algorithm when changing several environmental settings such

as Dynamic Frequency Selection (DFS) and channel selection will also be explored.

Finally, new variations of the FLBNN algorithm will be proposed in the future.
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Glossary

Access Point (AP) A device that emits Wi-Fi signals.

Accuracy A metric referring to the distance error between the location estimated

and the actual location.

Angle of Arrival (AoA) A measurement that indicates the angle of a signal’s ar-

rival at a signal receiver sent from the target device [12].

Fingerprinting A technique which involves constructing a radio map with RSSI

measurements and using it to determine the target device’s location indoors

[17].

Precision A metric referring to the distribution of the estimated locations and the

relative distances between them.

Receive Signal Strength Indicator (RSSI) A measurement that indicates the

strength of a signal that has been sent from an access point to the target device.

Time Complexity The run time complexity of an algorithm. A lower time com-

plexity means that the algorithm runs faster.

Time Difference of Arrival (TDoA) A measurement that indicates the differ-

ence in signal arrival time between a pair of signal receivers [2] [13].

Time of Arrival (ToA) A measurement that indicates the time it takes for a signal

to be transmitted from a signal transmitter to the target device [12].
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Trilateration A technique which involves the use of three or more access points to

send signals to the target device [10].
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