7 research outputs found

    Solving the Software Project Scheduling Problem Using Intelligent Water Drops

    Get PDF
    Within the category of project scheduling problems, there is a specific problem within the software industry referred to as the software project scheduling problem. The problem consists in the correct allocation of employees to the different tasks that make up a software project, bearing in mind time and cost restraints. To achieve this goal, the present work first uses metaheuristic intelligent water drops illustrating; this is a recent stochastic swarm-based method increasingly used for solving optimization problems. Finally, the results and comparisons with experiments performed with other techniques are presented, demonstrating the solidity of the approach presented

    An ensemble of intelligent water drop algorithm for feature selection optimization problem

    Get PDF
    Master River Multiple Creeks Intelligent Water Drops (MRMC-IWD) is an ensemble model of the intelligent water drop, whereby a divide-and-conquer strategy is utilized to improve the search process. In this paper, the potential of the MRMC-IWD using real-world optimization problems related to feature selection and classification tasks is assessed. An experimental study on a number of publicly available benchmark data sets and two real-world problems, namely human motion detection and motor fault detection, are conducted. Comparative studies pertaining to the features reduction and classification accuracies using different evaluation techniques (consistency-based, CFS, and FRFS) and classifiers (i.e., C4.5, VQNN, and SVM) are conducted. The results ascertain the effectiveness of the MRMC-IWD in improving the performance of the original IWD algorithm as well as undertaking real-world optimization problems

    An improved intelligent water drops algorithm for solving multi-objective job shop scheduling

    No full text
    10.1016/j.engappai.2013.07.011Engineering Applications of Artificial Intelligence26102431-2442EAAI

    Review and Classification of Bio-inspired Algorithms and Their Applications

    Get PDF
    Scientists have long looked to nature and biology in order to understand and model solutions for complex real-world problems. The study of bionics bridges the functions, biological structures and functions and organizational principles found in nature with our modern technologies, numerous mathematical and metaheuristic algorithms have been developed along with the knowledge transferring process from the lifeforms to the human technologies. Output of bionics study includes not only physical products, but also various optimization computation methods that can be applied in different areas. Related algorithms can broadly be divided into four groups: evolutionary based bio-inspired algorithms, swarm intelligence-based bio-inspired algorithms, ecology-based bio-inspired algorithms and multi-objective bio-inspired algorithms. Bio-inspired algorithms such as neural network, ant colony algorithms, particle swarm optimization and others have been applied in almost every area of science, engineering and business management with a dramatic increase of number of relevant publications. This paper provides a systematic, pragmatic and comprehensive review of the latest developments in evolutionary based bio-inspired algorithms, swarm intelligence based bio-inspired algorithms, ecology based bio-inspired algorithms and multi-objective bio-inspired algorithms

    Reduction of carbon emission and total late work criterion in job shop scheduling by applying a multi-objective imperialist competitive algorithm

    Get PDF
    New environmental regulations have driven companies to adopt low-carbon manufacturing. This research is aimed at considering carbon dioxide in the operational decision level where limited studies can be found, especially in the scheduling area. In particular, the purpose of this research is to simultaneously minimize carbon emission and total late work criterion as sustainability-based and classical-based objective functions, respectively, in the multiobjective job shop scheduling environment. In order to solve the presented problem more effectively, a new multiobjective imperialist competitive algorithm imitating the behavior of imperialistic competition is proposed to obtain a set of non-dominated schedules. In this work, a three-fold scientific contribution can be observed in the problem and solution method, that are: (1) integrating carbon dioxide into the operational decision level of job shop scheduling, (2) considering total late work criterion in multi-objective job shop scheduling, and (3) proposing a new multi-objective imperialist competitive algorithm for solving the extended multi-objective optimization problem. The elements of the proposed algorithm are elucidated and forty three small and large sized extended benchmarked data sets are solved by the algorithm. Numerical results are compared with two well-known and most representative metaheuristic approaches, which are multi-objective particle swarm optimization and non-dominated sorting genetic algorithm II, in order to evaluate the performance of the proposed algorithm. The obtained results reveal the effectiveness and efficiency of the proposed multi-objective imperialist competitive algorithm in finding high quality non-dominated schedules as compared to the other metaheuristic approache

    Development of a Multi-Objective Scheduling System for Complex Job Shops in a Manufacturing Environment

    Get PDF
    In many sectors of commercial operation, the scheduling of workflows and the allocation of resources at an optimum time is critical; for effective and efficient operation. The high degree of complexity of a “Job Shop” manufacturing environment, with sequencing of many parallel orders, and allocation of resources within multi-objective operational criteria, has been subject to several research studies. In this thesis, a scheduling system for optimizing multi-objective job shop scheduling problems was developed in order to satisfy different production system requirements. The developed system incorporated three different factors; setup times, alternative machines and release dates, into one model. These three factors were considered after a survey study of multiobjective job shop scheduling problems. In order to solve the multi-objective job shop scheduling problems, a combination of genetic algorithm and a modified version of a very recent and computationally efficient approach to non-dominated sorting solutions, called “efficient non-dominated sort using the backward pass sequential strategy”, was applied. In the proposed genetic algorithm, an operation based representation was designed in the matrix form, which can preserve features of the parent after the crossover operator without repairing the solution. The proposed efficient non-dominated sort using the backward pass sequential strategy was employed to determine the front, to which each solution belongs. The proposed system was tested and validated with 20 benchmark problems after they have been modified. The experimental results show that the proposed system was effective and efficient to solve multi-objective job shop scheduling problems in terms of solution quality

    Metodología multiobjetivo basada en un comportamiento evolutivo para programar sistemas de producción flexible job shop. Aplicaciones en la industria metalmecánica

    Get PDF
    El objeto de estudio de la presente tesis es el taller de trabajo flexible en el sector metalmecánico. El problema de investigación se derivó a partir de la búsqueda sistemática de metodologías y algoritmos para programar sistemas productivos; se identificaron configuraciones de variables de proceso no abordadas en la literatura, lo que se considera un vacío en el conocimiento. Consecuente con lo anterior, se diseñó una metodología basada en un algoritmo evolutivo para programar los pedidos en un taller de trabajo flexible, con restricciones de tiempo, secuencia, mantenimiento, liberación de pedidos, disponibilidad, consumo y costo de recurso que varía en el tiempo, con el fin de minimizar tiempo de proceso y costo de producción; incluyó un proceso de ponderación para escoger la mejor secuencia de programación. Como aporte principal se propone una metodología novedosa que al compararla con otras metodologías encontradas en la bibliografía, demostró mejoras mayores al 10% en makespan y costo total del recurso consumidoAbstract: The study object of the present thesis is the flexible job shop in the metal mechanic sector. The research problem was derived from the systematic search of methodologies and algorithms to schedule production systems; configurations of process variables not addressed in the literature were identified, which is considered an empty in knowledge. Consequent with previous, a methodology was designed based on an evolutionary algorithm to schedule orders in a flexible job shop, with time restrictions, sequence, maintenance, liberation of orders, availability, consumption and cost of resource that varies in time, in order to minimize processing time and cost of production; it includes a weighting process to choose the best programming sequence. As main contribution a novel methodology was proposed which, compared with other methodologies found in the literature, it demonstrated greater improvements to 10% in Makespan and total cost of consumed resourceDoctorad
    corecore