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Abstract

Master River Multiple Creeks Intelligent Water Drops (MRMC-IWD) is an en-

semble model of the intelligent water Drop, whereby a divide-and-conquer strat-

egy is utilized to improve the search process. In this paper, the potential of the

MRMC-IWD using real-world optimization problems related to feature selec-

tion and classification tasks is assessed. An experimental study on a number of

publicly available benchmark data sets and two real-world problems, namely hu-

man motion detection and motor fault detection, are conducted. Comparative

studies pertaining to the features reduction and classification accuracies using

different evaluation techniques (consistency-based, CFS, and FRFS) and clas-

sifiers (i.e., C4.5, VQNN, and SVM) are conducted. The results ascertain the

effectiveness of the MRMC-IWD in improving the performance of the original

IWD algorithm as well as undertaking real-world optimization problems.

Keywords: Intelligent water drops, optimization, swarm intelligence, feature

selection, motion detection, motor fault detection

∗Corresponding author
Email address: balijla@iugaza.edu.ps (Basem O. Alijla)

Preprint submitted to Journal of Applied Soft Computing February 5, 2018



Page 3 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

1. Introduction

Feature selection (FS) is a fundamental pre-processing step of a classifica-

tion system. It refers to the process of selecting the most informative features,

which represent the original set of features [1]. The importance of FS comes

from the problems of the high dimensionality of the data set, e.g. text mining5

applications[2], gene expression array analysis [3]. FS is crucial in pattern recog-

nition applications and widely used in the literature [4, 5, 6, 7]. FS techniques

reduce the number of features by removing noisy, irrelevant, and redundant fea-

tures. It enhances the performance of classification systems either in the terms

of prediction accuracy or computation time.10

Figure 1 depicts the structure of FS methods, which contains the following

fundamental components: Subset generation, subset evaluation, stopping fea-

tures. Subset generation is a search technique which explores the problem space

for the optimal subset of features. Subset evaluation is an evaluation function

which is used to score the goodness of the generated subset. Stopping criteria15

is a condition that terminates the search process. FS process starts with the

subset generation, which utilizes a certain search algorithm to generate the can-

didate subsets. Evaluation function is used to evaluate the fitness of generated

subset. This process is iterated until a stopping criterion is met. The outcome

is a subset that optimizes the fitness value. The selected subset can be validated20

suing a classifier to ensure the classification accuracy.

Figure 1: structure of FS methods.

2
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FS techniques can be broadly classified into two categories: wrapper-based

and filter-based [5]. Wrapper-based methods are often used in conjunction with

machine learning or data mining algorithms, which are used as a black box to

score the subset of features. Filter-based methods are usually used as a pre-25

possessing step, and are independent of any learning (predicator) algorithms,

which can be subsequently applied to evaluate classification accuracy with the

selected subset of features.

Various evaluation techniques have been reported in the literature to evaluate

the quality of the discovered feature subsets, e.g. rough sets [8, 6, 9], fuzzy30

rough sets [10, 11, 6, 12], probabilistic consistence [13, 14], correlation analysis

[15, 16],information gain, mutual Information [17]. In [5] a good analysis on

FS techniques is provided. The optimality of the subset of features discovered

by filter-based methods is relative to the evaluation techniques. Filter-based

methods are computationally less intensive, as compared with wrapper-based35

methods. However, wrapper-based methods can be more efficient as compared

with filter-based methods. A wrapper-based method selects the feature subset

and utilizes it directly with a learning algorithm [5]. The optimality of the

selected subset is relative to the employed learning algorithm [18].

The simplest solution for feature selection is to generate all possible com-40

binations, and choose the one with the minimum cardinality and maximum

evaluation score [19]. Obviously, this requires an exhaustive search, and it is

impractical for large data sets, where the number of alternatives grows expo-

nentially with the data set size. Consider a given data set with N features, then

2N possible feature subsets have to be searched [20]. To manage the complexity45

of the search process, several optimization methods, e.g., HC with forward se-

lection and backward elimination [21], GA [21], PSO [22], ACO [23, 24], great

deluge and non-linear great deluge [25, 26] have been used. A detailed taxonomy

and the associated algorithms of FS can be found in[5].

Intelligent Water Drops (IWD) algorithm is a swarm based nature-inspired50

optimization introduced by Shah-Hosseini [27]. IWD is a constructive-based al-

gorithm constructs an optimal solution through cooperation among a group of

3
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agents called water drops. The algorithm imitates the phenomena of a swarm of

water drops flowing with soil along a river bed. Procedurally, each water drop

incrementally constructs a solution through a series of iterative transitions from55

one node to the next until a complete solution is obtained. Water drops com-

municate with each other through an attribute called soil, which is associated

with the path between any two points. The soil value is used to determine the

direction of movement from the current node to the next, whereby a path with

a lower amount of soil is likely to be followed. A detailed description for the60

IWD can be found in [28].

The IWD algorithm has been successfully employed to solve numerous com-

binatorial, and continuous optimization problems from different application

fields [29]. It has been adopted to solve optimization problems such as function

optimization, travelling salesman, multiple knapsack, n-queen puzzle problems,65

feature selection, parallel processor scheduling [30, 31, 28, 32, 33, 34, 35, 36].

IWD has been successfully used to solve multi-objectives optimization problem

[37, 38, 39]. Some efforts have been made by researchers in investigating the fun-

damental algorithmic aspects of IWD in order to enhance the search capability

[40, 41, 42, 43, 44].70

This paper, investigates the applicability of the Master River Multiple Creeks

Intelligent Water Drops (MRMC-IWD) model to real-world optimization prob-

lems related to feature selection and classification problems. To assess the per-

formance of MRMC-IWD and to facilitate a performance comparison study

with other state-of-the-art methods, benchmark and real-world optimization75

problems have been used. The problems include UCI (University of California

Irvine machine learning repository) benchmark data sets [45] and two real-world

problems, namely human motion detection and motor fault detection.

The rest of this paper is organized as follows. In Section 2, the MRMC-

IWD model is briefly explained. Section 3 describes the experimental study80

of MRMC-IWD using the UCI benchmark data sets and the two real-world

problems. Conclusion is presented in Section 4 .

4
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2. The Master-River, Multiple-Creek IWD model (MRMC-IWD)

MRMC-IWD is an ensemble of the IWD algorithm proposed in [41]. It is

inspired by the natural phenomena pertaining to a main river with multiple85

independent creeks flowing down the stream. MRMC-IWD utilizes divide-and-

conquer strategy to enhance the search capability of the IWD algorithm. The

rationale is based on dividing a complex problem into a number of sub-problems,

(i.e., divide-and-conquer). Figure 2 depicts the structure of MRMC-IWD and

its communication scheme.90

Figure 2: The structure of the MRMC-IWD and its communication model.

MRMC-IWD comprises a master river and multiple independent creeks.

Firstly, a suitable decomposition technique (e.g. clustering algorithm) can be

used to decompose the entire problem into a number of sub-problems, e.g., the k -

means algorithm is used to cluster the entire problem into several sub-problems.

The master river handles the entire problem, while each creek handles a sub-95

problem. In other words, the master river constructs a complete solution for

the problem, while each creek contributes a partial solution. Both the mas-

ter river and independent creeks maintain their parameters, (i.e. IWD static

and dynamic parameters). A bilateral cooperative scheme between the master

5
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river and multiple creeks is introduced, in order to enable exchange of partial100

solutions between the master river and each creek, as shown in Figure 2. The

partial solutions are known as the creek local best (CLB) water drops. The

complete solution is known as the master local best (MLB) water drop. A se-

quential optimization process is adopted. Algorithm 1 depicts a pseudo-code of

MRMC-IWD. A detailed description to the MRMC-IWD is found in [41].105

Algorithm 1 Pseudo-code of the MRMC-IWD model.

1: Initialize the Master River and the C numbers of Creeks.

2: while Termination condition not reached do

3: for each creek i = 1...C do

4: The master applies the IWD to construct the complete solution.

5: The master river passes its MLB water drop to creek i.

6: Creek i applies the IWD algorithm to construct its solutions

7: Creek i passes its CLB water drop back to the master river

8: end for

9: end while

3. MRMC-IWD for features subset selection

FS is a fundamental process in any data mining techniques. It is used to

discover (i.e., select) a high quality feature subset that represents information

of the original set of features [1]. The subset quality is evaluated in two aspects,

namely the subset evaluation score and the subset size. FS is the search process110

for the subset that has the maximum evaluation score [4]. The objective function

shown in Eq. (1), in [6], can be used to represent FS as a maximization problem.

max
x

{
γξ(x))× |D| − S(x)

|D|

}
(1)

where γξ(x)) is the evaluation score of feature subset x, |D| is the dimension of

the complete set of features, and S(x) is the dimension of feature subset x.

In this paper, a filter-based FS method is built by coupling the MRMC-IWD115

(i.e, search method) with different subset evaluation techniques, which are avail-

6
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able in WEKA (Waikato Environment for Knowledge Analysis ). WEKA is open

source software contains a number of state-of-the-art knowledge analysis and

data mining models. It has been widely used in both academic and industrial

domains [46]. The aim of building MRMC-IWD with WEKA is to leverage on its120

built-in models (i.e., subset evaluation techniques, and classifiers) for evaluating

the effectiveness of MRMC-IWD in tackling FS tasks. Three evaluation tech-

niques, namely Fuzzy Rough Set Feature Selection (FRFS) [6], correlation-based

Feature Selection (CFS) [15], and probabilistic consistence [13] are employed in

MRMC-IWD. They cover three different principle for assisting the informative125

representation of data set (i.e., fuzzy rough theory, probabilistic data consis-

tence, and statistical valuables correlation). The potential of MRMC-IWD is

evaluated using UCI benchmark data sets [45] and two real-world problems re-

lated to FS and classification, namely human motion detection and motor fault

detection. Detailed descriptions are as follows.130

3.1. MRMC-IWD for FS using benchmark data sets

The applicability of MRMC-IWD is investigated in tackling FS problems

using UCI benchmark data set. The main characteristics of the UCI data sets

are described in Section 3.1.1 The experiments results and the comparative

studies are discussed in Section 3.1.2.135

3.1.1. Data sets

A total of seven real-valued UCI FS and classification benchmark data sets

are used in the experimental study. Table 1 summarizes the main characteristics

of the data sets. They have different degrees of complexity, i.e., varying number

of features, number of data samples, and number of target outputs. The num-140

bers of features and target outputs vary from 35 and 2 in Ionosphere to 280 and

16 in Arrhythmia, respectively, while the number of data samples varies from

230 in Ionosphere to 5000 in Waveform. All data sets have real-valued features;

therefore discretizing is applied to the features.

7
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Table 1: The main properties of the real UCI data sets.

Data-sets No. of features No. of instances Decisions

Ionosphere 35 230 2

Water 39 390 3

Waveform 41 5000 3

Sonar 61 208 2

Ozone 73 2534 2

Libras 91 360 15

Arrhythmia 280 452 16

3.1.2. Experimental study145

The stratified 10-fold cross validation (10-FCV) [47] schemes is adopted to

confirm the reliability and validity of the results. As such, each data set is

divided into ten subsets, nine of them are used for training, where MRMC-

IWD is used to select the feature subsets. The remaining subset is used for

testing the classifier. This process is repeated ten times. The advantage of150

10-FCV over random sub-sampling is that all data samples are used for both

training and testing, and each data sample is used for testing only once per fold.

Data stratification prior to its division into different folds ensures that each class

label has as equal representation in all folds as possible, therefore mitigating the

bias/variance problems [48]. The parameters setting of MRMC-IWD is shown155

in Table 2.

Using the real-valued UCI benchmark data sets, as shown in Table 1, a se-

ries of experiments was carried out with the 10-FCV method. For each data

set, a total of 100 (10 runs × 10-FCV ) experimental outcomes were obtained.

The results were compared with those from other state-of-the-art methods in160

the literature. The performance indicators used were the feature subset size

and its evaluation score. Four standard classifiers in WEKA were employed

in the experimental study, namely C4.5 [49], Naive Bayes (NB)[50], Vaguely

Quantified Nearest Neighbor (VQNN)[11], and Support Vector Machine (SVM)

[51]. Classifiers were selected to cover different the commonly used classifica-165

8
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Table 2: Parameters setting for the hybrid MRMC-IWD for feature selection.

Parameter type Parameters Values

IWD 30

av, bv, cv 1, 0.01, 1

as, bs, cs 1, 0.01, 1

Static initSoil 1000

Max iter 1000

εs ,ρIWD, ρn 0.01,0.9,0.9

V kvisited Empty

Dynamic intiVelk 4

soilk 0

Number of creeks C 3

tion methods, i.e., decision tree, uncertainty modeling, machine learning and

probabilistic models [52].

The bootstrap method [53] was used to compute the 95% confidence intervals

of the feature subset size and evaluation score of MRMC-IWD. Bootstrap is a

statistical method that does not rely on the assumption that the samples must be170

drawn from normal distribution, and can be used with small sample sizes. The

results were compared with those from other state-of-the-art methods, namely

Harmony Search (HS). Furthermore, a comparative study pertaining to the

classification accuracies using the features selected from different evaluation

techniques (consistency-based, CFS, and FRFS) was conducted.175

3.1.3. Comparing the performance of MRMC-IWD against other methods

In this section, the experimental results of MRMC-IWD using the three

subset evaluation techniques(i.e., CFS, Consistency-based, and FRFS), were

analyzed and discussed. It was reported in [4], that HS performed better than

other optimization methods. In this study, the results of the MRMC-IWD is180

compared with the those that obtained by HS [4].

i. Consistency-based evaluation technique.
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The performance of MRMC-IWD with 95% confidence intervals is compared

with the average subset sizes obtained by HS [4]. As can be seen in Figures

3 (a) to (g), the upper 95% confidence intervals of the subset sizes from185

MRMC-IWD are lower than those from HS for all the data sets, except one

(i.e. Water) in Figure 3 (b).

Table 3 shows the average subset sizes and evaluation scores between MRMC-

IWD and four state-of-the-art methods (i.e., HS, GS, PSO, and HC). Sym-

bols v, −, and ∗, respectively, denote that the bootstrapped results (i.e.,190

subset size or the evaluation score) yielded by MRMC-IWD is not signif-

icantly better, has no statistical difference, or worse than those provided

by other methods. Comparing the feature subset sizes, MRMC-IWD sig-

nificantly outperformed HS as well as the other methods (i.e., GA, PSO,

and HC) for all data sets except one (i.e., Water), which showed no signifi-195

cant difference comparing with HS. The results show that GA and PSO can

optimize the evaluation score but unable to reduce the feature subset size

further. In terms of the evaluation score, no significant differences between

the results of MRMC-IWD and those from HS [4].

In general, global optimization methods (i.e. MRMC-IWD, PSO, HS, and200

GA) discovered features subsets with equally good evaluation scores. Local-

based methods had the tendency to be stuck in local optima, e.g. HC

stuck in a local solution in three (i.e., Sonar, Ozone, and Libras) out of

seven data sets. Overall, MRMC-IWD optimized both the subset size and

evaluation score for the all seven data sets. This is owing to the exploration-205

exploitation balance that enabled it to perform well in the both global and

local optimization conditions.
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Figure 3: Comparing the bootstrapped means and 95% confidence intervals of the subset size

from MRMC-IWD and average subset sizes from HS [4] using the consistency-based evaluation

technique.
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ii. CFS evaluation technique.

Table 4 shows the results obtained using CFS as the evolution technique.

The bootstrapped results from MRMC-IWD were compared with those210

from HS in regards to the subset size and evaluation score. Figures 4 (a)

to (g) summarize the results presented in Table 4. They depict the differ-

ence between the average subset sizes from HS and the bootstrapped results

(mean and 95% confidence interval) from MRMC-IWD using CFS for seven

data sets.215

In terms of the feature subset size, MRMC-IWD provided significantly bet-

ter results for four data sets (i.e., Water, Waveform, Ozone, and Arrhythmia

) as compared with those provided by HS. As can be seen in 4(b), (c), (e)

and (g), the upper bounds 95% confidence intervals of the bootstrapped

subset size from MRMC-IWD are lower than those from HS. For the other220

three data sets (i.e., Ionosphere, Sonar, and Libras), no statistically signif-

icant difference between the results from both MRMC-IWD and from HS.

As shown in Figures 4(a),(d), and (f), the average subset sizes of the results

obtained from HS are within the 95% confidence intervals. In terms of the

evaluation score, MRMC-IWD yielded equal results for two data sets (i.e.,225

Libras, and Arrhythmia ), better results for four data sets (i.e. Ionosphere,

Waveform, Sonar, and Ozone ), and an inferior result for one (i.e., Water)

data set.
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Figure 4: Comparing the average subset sizes of HS, published in [4], with the bootstrap

results (i.e., means and 95% confidence intervals ) of MRMC-IWD using the CFS evaluation

technique.
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iii. FRFS evaluation technique.

Table 5 shows the results from MRMC-IWD and those from HS, GA, PSO,230

and HC [4] using FRFS as the evolution technique. Only five data sets were

used in the experimental study because of the high computational load of

RSFS. Figures 5(a) to (e) summarize the results presented in Table 5

Comparing the results in terms of the evaluation score, all optimization

methods including MRMC-IWD were able to discover feature subsets with235

the best evaluation score (i.e., eval = 1) for all five data sets. In terms of

the feature subset size, MRMC-IWD significantly outperformed HS for all

data sets except for one (i.e., Water) that showed no significant difference,

as shown in Figure 5 (a). This is owing the property of the search space

landscape of the Water data set, where the local optimum solution hap-240

pened to be the global optima[4]. This can be observed from the results

obtained from the local search method (i.e., HC), which performed better

than the global-based methods (i.e., HS, GA, PSO) for this data set . How-

ever, MRMC-IWD performed well in this case due to its exploration and

exploitation capability.245
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Figure 5: Comparing the average subset size of HS published in [4] with the bootstrap re-

sults (i.e., mean and 95% confidence interval ) of MRMC-IWD using the FRFS evaluation

technique..
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3.1.4. Comparison of classification accuracies.

Based on the features selected using different evaluation techniques, the im-

pact of FS on classification accuracies was evaluated using four standard clas-

sifiers (i.e., C4.5, NB, VQNN, and SVM) in WEKA. The evaluation compared

classification accuracies between the selected features and the full features.250

i. C4.5.

Tables 6, 7, and 8 respectively, show the average classification accuracy

rates of C4.5 based on the features selected using the consistency-based,

CFS, and FRFS evaluation techniques. The results were compared with

those using the original set of features (i.e., full features). A statistical test,255

namely the t-test, was carried out to indicate the reliability of the result

statistically. Specifically, the paired t-test with p= 0.05 was conducted.

The results show that the classification accuracy rates after FS varied as

compared against the use of full features. In some cases, the classification

accuracy rates were better with more attributes, while in other cases the260

classification results were enhanced by selecting a subset of features. Sym-

bols v, -, and * , respectively, denote that classification accuracy using the

selected subsets by MRMC-IWD is better than, no statistical difference, or

worse than those using the full features.

Table 6 show the accuracy rates of C4.5 based on the feature subsets discov-265

ered by different optimization methods using the consistency-based evalua-

tor technique. When the C4.5 used the subset that discovered by MRMC-

IWD, better classification accuracies for four data sets (i.e., Ionosphere,

Sonar, Ozone, and Arrhythmia) were obtained. The classification accuracy

for one data set (i.e., Libras) using the full features was better than that270

using the discovered data set from MRMC-IWD. There was no significant

difference between the classification accuracies using the full and selected

features for the other two data sets (i.e., Water, and Waveform).

Tables 7 and 8, which show the results of C4.5 using the subsets discovered

using CFS and FRFS, respectively. A number of observations can be made:275
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Table 6: Classification accuracy rates (measured in %) of C4.5 using features selected by the

consistency-based evaluation technique and from different optimization methods published in

[4].

MRMC-IWD HS GA PSO HC

Data sets Full Acc. Ind Acc. Acc. Acc. Acc.

Ionosphere 86.44 88.22 v 87.04 86.52 84.61 85.22

Water 82.89 82.94 - 83.38 82.77 82.26 82.25

Waveform 75.29 75.31 - 74.3 74.75 75.29 76.88

Sonar 72.68 75.33 v 73.8 71.79 70.99 70.5

Ozone 92.69 93.25 v 93.05 93.22 93.17 93.21

Libras 68.77 65.86 * 65.33 65.22 67.39 65.83

Arrhythmia 66.12 66.96 v 66.12 66.66 65.99 66.38

a). Referring to Table 7 the classification accuracies for two the all data sets

except for one data set (i.e., Libras) are significantly better using the

discovered subset. There is no significant different in the classification

accuracy using the full feature and the discovered subset for the case of

the Libaras data set.280

b). Referring to Table 8, which shows the FRFS results, two data sets

(i.e., Ionosphere, and Water) show better classification accuracies, one

(i.e., Sonar) shows no significant difference, and two (i.e., Libras, and

Arrhythmia) show inferior results using the discovered subsets as com-

pared with those from the full feature set.285

ii. Different classifiers using the feature subsets discovered by MRMC-

IWD.

To demonstrate the generality, Table 9 shows the results of three standard

classifiers (i.e., VQNN, NB, and SVM) using the feature subsets discov-

ered by MRMC-IWD. The results are compared with those using the full290

features. Overall, CFS performed the best in terms of preserving and im-

proving classification accuracy. Out of the 21 cases (i.e., 7 data sets × 3

classifiers ), 4 cases indicated reduction, and 17 cases showed improvement
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Table 7: C4.5 classification accuracy rates (measured in %) using the feature subsets selected

by CFS and different optimization methods published in [4].

MRMC-IWD HS GA PSO HC

Data sets Full Acc. Ind Acc. Acc. Acc. Acc.

Ionosphere 86.44 88.75 v 85.3 85.22 85.57 85.21

Water 82.89 83.40 v 82.46 82.36 81.18 82.56

Waveform 75.29 77.59 v 77.23 77.22 77.19 77.22

Sonar 72.68 76.56 v 72.95 72.48 72.74 73.14

Ozone 92.69 93.26 v 93.28 93.31 93.47 93.49

Libras 68.77 69.23 - 69.33 71.33 67.5 70.83

Arrhythmia 66.12 68.99 v 67.27 66.74 63.19 66.81

Table 8: C4.5 classification accuracy (measured in %) using feature subsets selected by FRFS

and different optimization methods published in [4].

MRMC-IWD HS GA PSO HC

Data sets Full Acc. Ind Acc. Acc. Acc. Acc.

Ionosphere 86.44 87.27 v 86.96 86 87.04 86.52

Water 82.89 85.04 v 79.03 80.21 78.15 80.51

Sonar 72.68 72.42 - 70.54 70.1 70.19 76.51

Libras 68.77 58.53 * 60.39 64.06 56.67 61.11

Arrhythmia 66.12 54.66 * 62.27 64.33 63.44 66
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in classification performance. On the other hand, the results obtained us-

ing the consistency-based and FRFS evaluation techniques reflect loss of295

accuracy in most cases. Note that for the Ozone data set, VQNN and SVM

obtained identical cross-validated accuracy of 93.69%. Furthermore, the re-

sults from the reduced feature subsets discovered by both consistency-based

and CFS were in agreement in terms of classification accuracy. Overall,

the experimental results demonstrate that CFS works very well in preserv-300

ing the information of the original features in the reduced feature subsets.

FRFS can produce smaller features subsets, but compromise classification

performance slightly. The consistency-based evaluation technique compro-

mises the classification performance and the feature subset size. The results

conform to the common understanding that evaluation techniques used in305

filter-based FS and the actual classification performance are independent.

In other words, it is not necessary for a feature subset that has the highest

evaluation score to yield the highest classification performance.
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3.2. MRMC-IWD for real-world problems

In this section, MRMC-IWD is used to tackle FS on two real-world problems,310

namely human motion detection and motor fault detection. The main objective

of this study is to investigate the impact of FS on classification accuracy for

both problems. Figure 6 shows the main components of a pattern recognition

system, viz., (i) data acquisition (ii) features extraction (iii) features subset

selection (iv) classification. The details are as follows.

Figure 6: The main components of a pattern recognition system.

315

• Data acquisition

Data acquisition is a process of collecting data samples that represent the

physical condition and behavior of a real-world problem. As an example,

sensors can be used to record signal samples, which represent the physical

condition of a system. The recorded signals can be converted to numerical320

values, which can then be manipulated by using a computing model [54].

• Features extraction

Extracting the relevant information that represents the characteristics of

the underlying problem is an important task. Two main types of fea-

tures (i.e., time-domain and frequency-domain) can be derived from the325

collected data samples. Time-domain features comprise set of statistical

information (e.g., mean, median, variance, skewness, kurtosis) of the data

samples [55]. Frequency-domain features describe the periodical proper-

ties of a signals. Fast Fourier transform (FFT) is an efficient approach

used to extract periodicity of signals [55].330

The data samples can be transformed from the time domain to the fre-

quency domain. The output of FFT typically gives a set of basis coef-

ficients that represents the amplitudes of the frequency components of
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the signal and the distribution of the signal energy. Different attributes

can then be used to characterize the spectral distribution from these co-335

efficients. Tables 10, and 11, respectively, show the description of 15

time-domain and frequency-domain features used in this study.

Table 10: Time-domain features.

Features Equation

Mean µx = 1
K

∑K

k=1
x(k)

Standard Deviation (std) stdx =

√∑K

k=1
(x(k)−µx)2

K−1

Root Mean Square (RMS) RMSx =

√∑K

k=1
(x(k))2

K

Maximum Amplitude MAXx = max(x(k))

Minimum Amplitude MINx = min(x(k))

Skewness Skewx =

∑K

k=1
(x(k)−µx)3

(K−1)×std(x)3

Kurtosis Kurtox =

∑K

k=1
(x(k)−µx)4

(K−1)×std(x)4

Clearance Factor CLF = MAXx(
1
K

∑K

k=1

√
|x(k)|

)2
Shape Factor SF = MAXx

1
K

∑K

k=1
|x(k)|

Crest Factor CF = MAXx
RMSx

• Features subset selection

Not all features are important to the learner classifiers. Selecting the sig-

nificant features by removing irrelevant, noisy, and redundant features can340

enhance the classification performance. In this study MRMC-IWD with

three evaluation techniques (i.e., CFS, FRFS, and probabilistic consis-

tence) was used. FS was repeated 10 times, each time the 10-FCV scheme
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Table 11: Frequency-domain features.

Features Equation

Maximum Power Spectrum MAXFx = max(power(n))

Maximum Envelope MAXFenv = max(Env)

Frequency Center Fc =

∑N

n=1
FS(n)∑N

n=1
S(n)

RMS Frequency RMSFx =√∑N

n=1
F2×S(n)∑N

n=1
S(n)

Standard Deviation Frequency stdFx =

√
(F−Fc)2×S(n)∑N

n=1
S(n)

was performed to indicate the reliability and validity of the results.

• Classification345

The outcomes of FS (i.e., selected feature subsets) was used by the learner

classifiers. In this study, four standard classifiers in WEKA (i.e., VQNN,

NB, SVM, C4.5) were employed. The 10 × 10-FCV FCV scheme was

employed in the classification process.

3.3. Human motion detection350

Human motion detection is an important and challenging research area with

many different applications, e.g. safety surveillance, fraud detection, clinical

management, and healthcare [56]. For an instance, in the healthcare area, it is

beneficial to identify the energy consumption rate during human activities [57].

The wearable based sensors are an efficient data acquisition unit to acquire355

human motion activities (i.e. data acquisition unit). Wearable sensors are

small size mobile sensors designed to be worn by humans [58]. They can be

used to record humans’ physiological states such as location changes, moving

directions, and speed. Most of the smartphones are equipped with sensors such

as accelerometers nowadays [56]. In the following sub-sections, the procedure360
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of human motion detection and the experimental results and discussion are

presented.

3.3.1. Data acquisition

In this case study, a binary classification problem was formulated. A data

set was collected using smartphones with the built-in tri-axial accelerometer. A365

total of 57 subjects including children, adults, and students of both gender (i.e.,

male and female) participated in the data collection process. Three smartphones

with built-in accelerometers were placed in different positions (i.e., belt pocket,

shirt pocket, and front pants pocket). Each subjects performed two types of

activities (i.e., walking, and running) with 100 steps. The tri-axial accelerometer370

measured the subjects’ acceleration along three axes ( i.e., x-axis, y-axis and

z-axis). Data pre-processing was conducted to remove noise from the motion

waveforms. Table 12 shows the details of the data samples.

Table 12: Number of samples collected for human motion data set.

Pocket Position Walking

Samples

Running

Samples

Total

Samples

Belt Pocket 76 57 133

Front Pants Pocket 49 39 88

Shirt Pocket 67 55 122

Overall 192 151 343

3.3.2. Feature extraction

As shown in Tables 10 and 11 , a total of 15 features (10 time-domain and 5375

frequency-domain) were extracted from the motion waveforms. An augmented

feature vector of 45 components (i.e., 15 features × 3 axes) was formed for each

data sample. Given the data set of 343 instances, each instance has 45 features,

the problem was to identify the type of human motion, i.e. walking or running.
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3.3.3. Features selection380

Table 13 show the results obtained by applying the FS procedure. The aver-

age subset sizes and average evaluation scores of 10×10-FCV for three different

evaluation techniques are summarized. As shown in Table 13 the number of

Table 13: The results of feature selection for human motion detection using MRMC-IWD.

Evaluation technique Average subsets Size Average evaluation

value

FRFS 6.21 1

CFS 6.09 0.626

Consistency-based 8.96 0.996

features has been drastically reduced from 45 to an average of 6 to 9 features,

based on the evaluation techniques.385

3.3.4. Classification

Table 14 shows the classification results of 10× 10-FCV. Three performance

indicators, namely classification accuracy, specificity, and sensitivity using four

classifiers are summarized. MRMC-IWD with FRFS reduced the subset size to

6.21, and it produced the best evaluation score of 1. However, it was unable to390

preserve important features, as indicated by the classification performance using

the selected features. Improved classification results using the feature subsets se-

lected by both CFS, and consistency-based evaluation techniques were obtained.

Overall, CFS performed the best in terms of preserving important original fea-

tures and the subset size. It yielded the smallest subset size (6.09 features) and395

the best classification performance for different standard classifiers.
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3.4. Fault Motor fault detection

Induction motors are widely used in different industrial areas, include man-

ufacturing machines and pumps. Fault detection and diagnosis is important

issue that can reduce the maintenance and downtime costs in the manufactur-400

ing domain. In this study, the motor current signature analysis (MCSA), which

is a condition monitoring technique, was used for fault detection of induction

motors [59, 60]. In the following sub-sections, the procedure of fault detection

induction motors and the experimental results and discussion are presented.

3.4.1. Data acquisition405

Data set comprising three-phases stator currents (A, B, and C) from induc-

tion motors was collected. The task was to identify the motor conditions, either

normal or faulty (with broken rotor bars).The data samples comprised current

spectrum from normal and faulty (one or two broken rotor bars) motors in two

load conditions (i.e., 50%, and 100%) are considered. Table 15 shows the details410

of data samples used for experimentation.

Table 15: Data samples for fault detection of induction motors.

Load condition Total Samples

50 % 100 %

Broken rotor bar #1 10 10 20

Broken rotor bar #1 10 10 20

Healthy motor 10 10 20

Overall 30 30 60

3.4.2. Feature extraction

To extract the relevant features, the three-phases current signals were pre-

processed by dividing each signal into its perspective cycle of the sine waveform.

Each data sample was represented by the 15 features, which are shown in Tables415

10,and 10. As such, a data set of 60 instances, each with 45 features (15 features
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× 3 current phases) was established to determine the motor condition (i.e.,

normal or faulty with broken rotor bars).

3.4.3. Features selection

Table 16 shows the results obtained by using MRMC-IWD for the three420

different evaluation techniques. As shown in Table 16,the number of features

was drastically reduced from 45 features to an average range of 2 to 6 features,

based on the respective evaluation techniques.

Table 16: The results of feature subset selected using MRMC-IWD for motor fault detection.

Evaluation technique Average subsets Size Average evaluation value

FRFS 1.86 1

CFS 5.76 0.87062

Consistency-based 1.83 1

3.4.4. Classification

Table 17 shows the classification results of 10 × 10 − FCV . In case of425

FRFS and Consistency based evaluation techniques, the average subset size was

significantly reduced; however, they failed to preserve the important original

features. This was reflected by the inferior classification accuracy rates from

the classifiers using the selected feature subset as compared with those from

the full set of features. CFS was able to compromise between preserving the430

important features and the subset size, since the accuracy rate is better using

the reduced feature set as compared with those of the full features.
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4. Conclusion and Future Study

This paper, investigated the potential of the MRMC-IWD model pertaining

to real-world FS problems was investigated. Firstly, benchmark data sets from435

UCI was evaluated using three evaluation techniques (i.e., CFS, Consistency-

based, and FRFS) for FS. The comparative results indicate the superiority of

MRMC-IWD to other state-of-the-art (i.e., HS, PSO, GA, and HC) methods.

Furthermore, the impact of FS on the classification performance of different

classifiers (i.e., NB, VQNN, SVM, and C4.5) was investigated. Secondly, the440

applicability of MRMC-IWD to real-world human motion detection and motor

fault detection was evaluated. The results indicate the usefulness of MRMC-

IWD in tackling real-world FS problems.
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