23,584 research outputs found

    Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm

    Get PDF
    The official published version can be found at the link below.This paper presents a novel particle swarm optimization (PSO) algorithm based on Markov chains and competitive penalized method. Such an algorithm is developed to solve global optimization problems with applications in identifying unknown parameters of a class of genetic regulatory networks (GRNs). By using an evolutionary factor, a new switching PSO (SPSO) algorithm is first proposed and analyzed, where the velocity updating equation jumps from one mode to another according to a Markov chain, and acceleration coefficients are dependent on mode switching. Furthermore, a leader competitive penalized multi-learning approach (LCPMLA) is introduced to improve the global search ability and refine the convergent solutions. The LCPMLA can automatically choose search strategy using a learning and penalizing mechanism. The presented SPSO algorithm is compared with some well-known PSO algorithms in the experiments. It is shown that the SPSO algorithm has faster local convergence speed, higher accuracy and algorithm reliability, resulting in better balance between the global and local searching of the algorithm, and thus generating good performance. Finally, we utilize the presented SPSO algorithm to identify not only the unknown parameters but also the coupling topology and time-delay of a class of GRNs.This research was partially supported by the National Natural Science Foundation of PR China (Grant No. 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No. 200802550007), the Key Creative Project of Shanghai Education Community (Grant No. 09ZZ66), the Key Foundation Project of Shanghai (Grant No. 09JC1400700), the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant No. GR/S27658/01, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, an International Joint Project sponsored by the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Gene regulatory network modelling with evolutionary algorithms -an integrative approach

    Get PDF
    Building models for gene regulation has been an important aim of Systems Biology over the past years, driven by the large amount of gene expression data that has become available. Models represent regulatory interactions between genes and transcription factors and can provide better understanding of biological processes, and means of simulating both natural and perturbed systems (e.g. those associated with disease). Gene regulatory network (GRN) quantitative modelling is still limited, however, due to data issues such as noise and restricted length of time series, typically used for GRN reverse engineering. These issues create an under-determination problem, with many models possibly fitting the data. However, large amounts of other types of biological data and knowledge are available, such as cross-platform measurements, knockout experiments, annotations, binding site affinities for transcription factors and so on. It has been postulated that integration of these can improve model quality obtained, by facilitating further filtering of possible models. However, integration is not straightforward, as the different types of data can provide contradictory information, and are intrinsically noisy, hence large scale integration has not been fully explored, to date. Here, we present an integrative parallel framework for GRN modelling, which employs evolutionary computation and different types of data to enhance model inference. Integration is performed at different levels. (i) An analysis of cross-platform integration of time series microarray data, discussing the effects on the resulting models and exploring crossplatform normalisation techniques, is presented. This shows that time-course data integration is possible, and results in models more robust to noise and parameter perturbation, as well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as knock-out experiments, annotated transcription factors, binding site affinities and promoter sequences are integrated within the evolutionary framework to obtain more plausible GRN models. This is performed by customising initialisation, mutation and evaluation of candidate model solutions. The different data types are investigated and both qualitative and quantitative improvements are obtained. Results suggest that caution is needed in order to obtain improved models from combined data, and the case study presented here provides an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in comparison to microarray experiments, to identify overlapping features and possibilities of integration within the framework. The extension of the framework to this data type is straightforward and qualitative improvements are obtained when combining predicted interactions from single-channel and RNA-seq datasets

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Comparison of evolutionary algorithms in gene regulatory network model inference

    Get PDF
    Background: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very di±cult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insu±cient. Results: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and o®er a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. Conclusions: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identi¯ed and a platform for development of appropriate model formalisms is established

    Multi-objective context-guided consensus of a massive array oftechniques for the inference of Gene Regulatory Networks

    Get PDF
    Background and Objective: Gene Regulatory Network (GRN) inference is a fundamental task in biology and medicine, as it enables a deeper understanding of the intricate mechanisms of gene expression present in organisms. This bioinformatics problem has been addressed in the literature through multiple computational approaches. Techniques developed for inferring from expression data have employed Bayesian networks, ordinary differential equations (ODEs), machine learning, information theory measures and neural networks, among others. The diversity of implementations and their respective customization have led to the emergence of many tools and multiple specialized domains derived from them, understood as subsets of networks with specific characteristics that are challenging to detect a priori. This specialization has introduced significant uncertainty when choosing the most appropriate technique for a particular dataset. This proposal, named MO-GENECI, builds upon the basic idea of the previous proposal GENECI and optimizes consensus among different inference techniques, through a carefully refined multi-objective evolutionary algorithm guided by various objective functions, linked to the biological context at hand. Methods: MO-GENECI has been tested on an extensive and diverse academic benchmark of 106 gene regulatory networks from multiple sources and sizes. The evaluation of MO-GENECI compared its performance to individual techniques using key metrics (AUROC and AUPR) for gene regulatory network inference. Friedman’s statistical ranking provided an ordered classification, followed by non-parametric Holm tests to determine statistical significance.This work has been partially funded by grant (funded by MCIN/AEI/ 10.13039/501100011033/) PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation) and the Junta de Andalucia, Spain, under contract QUAL21 010UMA. Funding for open access charge: Universidad de Málaga/CBUA. Adrián Segura-Ortiz is supported by Grant FPU21/03837 (Spanish Ministry of Science, Innovation and Universities)
    corecore