336 research outputs found

    An Efficient Semantic Segmentation Method using Pyramid ShuffleNet V2 with Vortex Pooling

    Get PDF

    Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images

    Get PDF
    The current deep convolutional neural networks for very-high-resolution (VHR) remote-sensing image land-cover classification often suffer from two challenges. First, the feature maps extracted by network encoders based on vanilla convolution usually contain a lot of redundant information, which easily causes misclassification of land cover. Moreover, these encoders usually require a large number of parameters and high computational costs. Second, as remote-sensing images are complex and contain many objects with large-scale variances, it is difficult to use the popular feature fusion modules to improve the representation ability of networks. To address the above issues, we propose a dynamic convolution self-attention network (DCSA-Net) for VHR remote-sensing image land-cover classification. The proposed network has two advantages. On one hand, we designed a lightweight dynamic convolution module (LDCM) by using dynamic convolution and a self-attention mechanism. This module can extract more useful image features than vanilla convolution, avoiding the negative effect of useless feature maps on land-cover classification. On the other hand, we designed a context information aggregation module (CIAM) with a ladder structure to enlarge the receptive field. This module can aggregate multi-scale contexture information from feature maps with different resolutions using a dense connection. Experiment results show that the proposed DCSA-Net is superior to state-of-the-art networks due to higher accuracy of land-cover classification, fewer parameters, and lower computational cost. The source code is made public available.National Natural Science Foundation of China (Program No. 61871259, 62271296, 61861024), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2021JC-47), in part by Key Research and Development Program of Shaanxi (Program No. 2022GY-436, 2021ZDLGY08-07), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-634, 2022JQ-018), and in part by Shaanxi Joint Laboratory of Artificial Intelligence (No. 2020SS-03)

    LEDCNet: A Lightweight and Efficient Semantic Segmentation Algorithm Using Dual Context Module for Extracting Ground Objects from UAV Aerial Remote Sensing Images

    Full text link
    Semantic segmentation for extracting ground objects, such as road and house, from UAV remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping field. In recent years, with the deepening of layers and boosting of complexity, the number of parameters in convolution-based semantic segmentation neural networks considerably increases, which is obviously not conducive to the wide application especially in the industry. In order to make the model lightweight and improve the model accuracy, a new lightweight and efficient network for the extraction of ground objects from UAV remote sensing images, named LEDCNet, is proposed. The proposed network adopts an encoder-decoder architecture in which a powerful lightweight backbone network called LDCNet is developed as the encoder. We would extend the LDCNet become a new generation backbone network of lightweight semantic segmentation algorithms. In the decoder part, the dual multi-scale context modules which consist of the ASPP module and the OCR module are designed to capture more context information from feature maps of UAV remote sensing images. Between ASPP and OCR, a FPN module is used to and fuse multi-scale features extracting from ASPP. A private dataset of remote sensing images taken by UAV which contains 2431 training sets, 945 validation sets, and 475 test sets is constructed. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G FLOPs, achieving an mIoU of 71.12%. The more extensive experiments on the public LoveDA dataset and CITY-OSM dataset to further verify the effectiveness of the proposed model with excellent results on mIoU of 65.27% and 74.39%, respectively. All the experimental results show the proposed model can not only lighten the network with few parameters but also improve the segmentation performance.Comment: 11 page

    Semantic Segmentation for Real-World Applications

    Get PDF
    En visión por computador, la comprensión de escenas tiene como objetivo extraer información útil de una escena a partir de datos de sensores. Por ejemplo, puede clasificar toda la imagen en una categoría particular o identificar elementos importantes dentro de ella. En este contexto general, la segmentación semántica proporciona una etiqueta semántica a cada elemento de los datos sin procesar, por ejemplo, a todos los píxeles de la imagen o, a todos los puntos de la nube de puntos. Esta información es esencial para muchas aplicaciones de visión por computador, como conducción, aplicaciones médicas o robóticas. Proporciona a los ordenadores una comprensión sobre el entorno que es necesaria para tomar decisiones autónomas.El estado del arte actual de la segmentación semántica está liderado por métodos de aprendizaje profundo supervisados. Sin embargo, las condiciones del mundo real presentan varias restricciones para la aplicación de estos modelos de segmentación semántica. Esta tesis aborda varios de estos desafíos: 1) la cantidad limitada de datos etiquetados disponibles para entrenar modelos de aprendizaje profundo, 2) las restricciones de tiempo y computación presentes en aplicaciones en tiempo real y/o en sistemas con poder computacional limitado, y 3) la capacidad de realizar una segmentación semántica cuando se trata de sensores distintos de la cámara RGB estándar.Las aportaciones principales en esta tesis son las siguientes:1. Un método nuevo para abordar el problema de los datos anotados limitados para entrenar modelos de segmentación semántica a partir de anotaciones dispersas. Los modelos de aprendizaje profundo totalmente supervisados lideran el estado del arte, pero mostramos cómo entrenarlos usando solo unos pocos píxeles etiquetados. Nuestro enfoque obtiene un rendimiento similar al de los modelos entrenados con imágenescompletamente etiquetadas. Demostramos la relevancia de esta técnica en escenarios de monitorización ambiental y en dominios más generales.2. También tratando con datos de entrenamiento limitados, proponemos un método nuevo para segmentación semántica semi-supervisada, es decir, cuando solo hay una pequeña cantidad de imágenes completamente etiquetadas y un gran conjunto de datos sin etiquetar. La principal novedad de nuestro método se basa en el aprendizaje por contraste. Demostramos cómo el aprendizaje por contraste se puede aplicar a la tarea de segmentación semántica y mostramos sus ventajas, especialmente cuando la disponibilidad de datos etiquetados es limitada logrando un nuevo estado del arte.3. Nuevos modelos de segmentación semántica de imágenes eficientes. Desarrollamos modelos de segmentación semántica que son eficientes tanto en tiempo de ejecución, requisitos de memoria y requisitos de cálculo. Algunos de nuestros modelos pueden ejecutarse en CPU a altas velocidades con alta precisión. Esto es muy importante para configuraciones y aplicaciones reales, ya que las GPU de gama alta nosiempre están disponibles.4. Nuevos métodos de segmentación semántica con sensores no RGB. Proponemos un método para la segmentación de nubes de puntos LiDAR que combina operaciones de aprendizaje eficientes tanto en 2D como en 3D. Logra un rendimiento de segmentación excepcional a velocidades realmente rápidas. También mostramos cómo mejorar la robustez de estos modelos al abordar el problema de sobreajuste y adaptaciónde dominio. Además, mostramos el primer trabajo de segmentación semántica con cámaras de eventos, haciendo frente a la falta de datos etiquetados.Estas contribuciones aportan avances significativos en el campo de la segmentación semántica para aplicaciones del mundo real. Para una mayor contribución a la comunidad cientfíica, hemos liberado la implementación de todas las soluciones propuestas.----------------------------------------In computer vision, scene understanding aims at extracting useful information of a scene from raw sensor data. For instance, it can classify the whole image into a particular category (i.e. kitchen or living room) or identify important elements within it (i.e., bottles, cups on a table or surfaces). In this general context, semantic segmentation provides a semantic label to every single element of the raw data, e.g., to all image pixels or to all point cloud points.This information is essential for many applications relying on computer vision, such as AR, driving, medical or robotic applications. It provides computers with understanding about the environment needed to make autonomous decisions, or detailed information to people interacting with the intelligent systems. The current state of the art for semantic segmentation is led by supervised deep learning methods.However, real-world scenarios and conditions introduce several challenges and restrictions for the application of these semantic segmentation models. This thesis tackles several of these challenges, namely, 1) the limited amount of labeled data available for training deep learning models, 2) the time and computation restrictions present in real time applications and/or in systems with limited computational power, such as a mobile phone or an IoT node, and 3) the ability to perform semantic segmentation when dealing with sensors other than the standard RGB camera.The general contributions presented in this thesis are following:A novel approach to address the problem of limited annotated data to train semantic segmentation models from sparse annotations. Fully supervised deep learning models are leading the state-of-the-art, but we show how to train them by only using a few sparsely labeled pixels in the training images. Our approach obtains similar performance than models trained with fully-labeled images. We demonstrate the relevance of this technique in environmental monitoring scenarios, where it is very common to have sparse image labels provided by human experts, as well as in more general domains. Also dealing with limited training data, we propose a novel method for semi-supervised semantic segmentation, i.e., when there is only a small number of fully labeled images and a large set of unlabeled data. We demonstrate how contrastive learning can be applied to the semantic segmentation task and show its advantages, especially when the availability of labeled data is limited. Our approach improves state-of-the-art results, showing the potential of contrastive learning in this task. Learning from unlabeled data opens great opportunities for real-world scenarios since it is an economical solution. Novel efficient image semantic segmentation models. We develop semantic segmentation models that are efficient both in execution time, memory requirements, and computation requirements. Some of our models able to run in CPU at high speed rates with high accuracy. This is very important for real set-ups and applications since high-end GPUs are not always available. Building models that consume fewer resources, memory and time, would increase the range of applications that can benefit from them. Novel methods for semantic segmentation with non-RGB sensors.We propose a novel method for LiDAR point cloud segmentation that combines efficient learning operations both in 2D and 3D. It surpasses state-of-the-art segmentation performance at really fast rates. We also show how to improve the robustness of these models tackling the overfitting and domain adaptation problem. Besides, we show the first work for semantic segmentation with event-based cameras, coping with the lack of labeled data. To increase the impact of this contributions and ease their application in real-world settings, we have made available an open-source implementation of all proposed solutions to the scientific community.<br /
    corecore