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Abstract—Efficient and accurate semantic segmentation is 

particularly important especially for applications like 

autonomous driving which requires real-time inference speed 

and high performance. Many works try to compromise spatial 

resolution to achieve real-time inference speed, which leads to 

poor performance. As a result, real-time segmentation task for 

embedded devices is still an open problem. In this paper, we 

focus on building a network with better performance possible 

while still achieve real-time inference speed. We first use a 

pyramid kernel size to capture more spatial information instead 

of using just a 3×3 kernel size for DWConvolution in ShuffleNet 

v2. Meanwhile, an efficient Vortex Pooling module is employed 

to aggregate the contextual information and generate high-

resolution features. Compared with other state-of-the-art real-

time semantic segmentation networks, the proposed network 

achieves similar inference speed and better performance on 

embedded device. Specifically, we achieve state-of-the-art    

73.46% mean IoU on Cityscapes test dataset, for a 768×1024 

input, a speed of 46.1 frames per second on NVIDIA Jetson 

AGX Xavier embedded development board is achieved. 

Keywords- semantic segmentation, real-time, embedded 

I.  INTRODUCTION 

The research of semantic segmentation is a challenge in 
computer vision. Recent interest in autonomous driving, video 
surveillance, and medical image research has emerged a great 
demand for semantic segmentation algorithms that can 
operate in real-time on low-powerful embedded devices. 
Moreover, such as automatic driving, which requires fine 
accuracy, puts forward high requirements for the performance 
of semantic segmentation. Consequently, the semantic 
segmentation algorithms should be compact and 
computationally efficient. The lightweight neural network 
works should balance efficiency and accuracy. 

Recently, many research works focus on accelerating 
semantic segmentation network to achieve low latency. These 
works can be summarized into three kinds of approaches that 

 Restrict the input size to reduce the computation 
complexity by cropping or resizing [24, 31]. This is a 
simple and effective way to achieve high efficiency, 
but also lost much spatial information, resulting in 
poor performance in both metrics and visualization. 

 Try to compress the existing network by using 
knowledge distillation [8], pruning [7] and other 
compression algorithms. Its goal is to minimize the 
size of the network as much as possible, which will 
greatly alter or even destroy the original network 
structure. 

 Design efficient architectures [11, 12]. This approach 
mainly uses Depthwise Separable Convolution 
(DWConvolution), which decomposes a convolution 
operation into Depthwise Convolution and Pointwise 
Convolution, greatly reduce computational 
requirements without significantly reducing accuracy. 

Specifically in the third approach, ShuffleNets [13, 29] and 
other lightweight architectures [4, 9, 21] have designed for 
mobile devices based on DWConvolution show that this 
operation can effectively achieve the appropriate results with 
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(a) Basic unit         (b) Spatial down sampling unit 

Figure 1. Pyramid building blocks. (a) Basic unit; (b) Spatial down 

sampling unit (stride = 2). DWConv: depthwise convolution. ⊗: 

concatenation. 

 



fewer parameters. These lightweight architectures promise 
low-latency inference speed in the task of semantic 
segmentation and motivate us to explore efficient networks 
with rich spatial information. 

In this paper, we introduce a lightweight semantic 
segmentation network that can achieve real-time inference on 
embedded devices with state-of-the-art performance. Our 
network first uses multi-scale kernels (a pyramid kernel size) 
to capture multi-level spatial information instead of using just 
a 3×3 kernel size for DWConvolution in ShuffleNet V2 [13]. 
Meanwhile, an efficient Vortex Pooling [25] module is 
employed to aggregate the contextual information and 
generate high-resolution features. Our main contributions are 
summarized as follows: 

 We achieve computationally efficient inference on 
embedded devices, especially achieving 73.46% 
mIoU on Cityscapes test set using Pyramid 
ShuffleNet and an efficient Vortex Pooling. 

 Proposed Pyramid ShuffleNet can effectively extract 
the multi-levels feature of the image and ensure the 
richness of spatial information. We accelerate Vortex 
Pooling to make it more efficient to aggregate the 
contextual information and generate high-resolution 
features. 

 Proposed network is capable of running real-time on 
embedded devices. 

II. RELATED WORK 

In this section, we introduce the state-of-the-art research 
in the task of semantic segmentation by analyzing the 
evolution process of semantic segmentation network. 

Convolutional neural networks (CNNs) [10] can not only 
achieve state-of-the-art performance in the task of image 
classification, but also make great achievement in semantic 
segmentation. 

Initially, image block classification is a deep learning 
method commonly used in semantic segmentation tasks, 
which uses the image blocks around each pixel to divide each 
pixel into corresponding categories. The main reason for using 
image blocks is that the classification network usually has a 
full connection layer, and its input needs to be a fixed size 
image block. Especially, the proposed seminal fully 
convolution network (FCN) [12] extends the original CNNs 
and can make an intensive prediction without full connection 
layer, which laid the foundation for most modern 
segmentation architectures. 

In addition to the full connection layer structure, the 
pooling layer is another limitation that makes it challenging to 
use CNNs in segmentation problems. The pooling layer (down 
sampling) not only enlarges the receptive field of the upper 
convolution filter, but also aggregates the spatial information 
and discards part of the spatial information. However, the 
semantic segmentation method needs to adjust the category 
map accurately, so it requires both rich spatial information and 
sizeable receptive field. Researchers have proposed three 
different structures to solve the problem of spatial information 
loss. 

Researchers have proposed three different structures to 
solve the problem of spatial information loss. 

Encoder-Decoder Architecture: The encoder uses the 
pooling layer to reduce the spatial dimension of the input data 
gradually, while the decoder progressively restores the details 
and the spatial dimension of the target through the 
deconvolution layer and other network layers. There is usually 
a direct information connection between the encoder and the 
decoder to help the decoder recover the target details better. 
Both FCN [12] and SegNet [1] are early encoder-decoder 
structures, but the benchmark scores of SegNet cannot satisfy 
the practical requirements. Enet [17] also designed an 
encoder-decoder structure with few layers to reduce 
computational cost. 

Some methods employ their specific refinement structure 
into U-shape [1, 6, 12, 16, 20] structure. Vijay et al. and 
Hyeonwoo et al. [1, 16] create an U-shape network with the 
usage of deconvolution layers. UNet [20] acquires multi-level 
features of input through skip-connected. Poudel et al. [6] 
proposed a feature fusion method inspired by Laplacian 
pyramids. Lin et al. [11] fuses coarse-grained high-level 
features and fine-grained low-level features. However, in the 
U-shape structure, some lost spatial information can not be 
easily recovered. 

Two-branch Architecture: This Architecture usually has 
two branches to confront with the loss of spatial information 
and the contraction of receiving field respectively. ICNet [31], 
ContextNet [18], BiSeNet [26] and GUN [15] employ a 
shallow network structure as the spatial branch to obtain rich 
spatial information from low-level features. In respect of 
context branch, a deep network structure is employed to obtain 
a larger receptive field to acquire global context information. 
More recently, inspired by two-branch architecture, Fast-
SCNN [19] incorporates a shared shallow network path to 
encode detail, while the context is efficiently learned at low 
resolution. 

Nevertheless, networks with the two-branch or multi-
branch architecture usually introduce heavy computational 
overhead, being nontrivial to optimize, especially when the 
network goes more in-depth, which therefore makes them 
unfavorable for the task of semantic segmentation. 

Atrous Convolutions based Architecture: Atrous 
convolutions, or dilated convolutions [27], are shown to be a 
powerful tool in the semantic segmentation task [2]. The 
atrous convolutions amplify the receptive field of the 
convolution filter while keeping the number of parameters 
invariant. Simultaneously, it can promise that the size of the 
feature map remains invariant. 

By using atrous convolutions it is possible to use 
pretrained ImageNet networks such as [13, 21] to extract 
denser feature maps by replacing downscaling at the last 
layers with atrous rates, thus allowing us to control the 
dimensions of the features [22]. DeepLab V3 [2] is one of the 
most recent state-of-the-art semantic segmentation networks 
on multiple benchmarks. In their approach, they improved the 
ASPP module proposed in [3] for better context features. 
Furthermore, Vortex Pooling [25] delves into the ASPP 
module and explore its deficiency. Meanwhile, Yu et al. [28] 
and Wang et al. [23] showed that dilated convolution might 



cause "gridding" problems, and they proposed Hybrid Dilated 
Convolution (HDC) to remove such abnormal artifacts. 

Our literature review in this Section and Section 1 shows 
us that the architecture and implementation of ShuffleNet V2 
are effective as the main feature extraction structure of 
efficient semantics segmentation network. Both Türkmen et 
al. [22] and Zhao et al. [30] indicate that employing 
ShuffleNet can achieve fast inference speed and acceptable 
accuracy. We improve ShuffleNet V2 to capture multi-level 
spatial information and accelerate Vortex Pooling to 
aggregate the contextual information and generate high-
resolution features. 

III. PROPOSED METHOD 

In this section, we first illustrate our proposed pyramid 
building blocks. Furthermore, we describe improved Vortex 
Pooling. Finally, we elaborate our proposed network 
architecture. 

A. Pyramid Building Blocks 

As shown in Figure 1, we use a pyramid kernel size to 

capture more spatial information instead of using just a 3×3 

kernel size for DWConvolution in building blocks of 

ShuffleNet v2 [13]. Then combines all output of pyramid 

convolution before the 1×1 convolution.  

For basic unit, the “Channel Split” operation splits the 

input into two branches with c-c'  and c'  channels, 

respectively. For simplicity, we set c'=c/2 . One branch 

directly goes through the block without any operation. The 

other branch consists of a pyramid convolution sandwiched 

between two 1×1 convolutions with the same input and 

output channels. After convolution, the two branches are 

concatenated. Finally, the “Channel shuffle” operation is 

employed to enable information communication between the 

two branches.  

For spatial down sampling, The “Channel Split” 

operation is removed at the beginning of the block. Thus, the 

number of output channels is doubled. Besides, the left 

branch consists of a 1×1 DWConv (stride = 2) and a 1×1 

convolutions. The right branch remains the same as the basic 

unit except that the stride of convolutions whose size larger 

than 1 is set to 2. 

Furthermore, we set the kernel size group of pyramid 

convolution to K={k1,k2,…,kN} . We apply a strategy (as 

shown in Figure 2) inspired by [5] to combine the outputs of 

pyramid convolution. For the output group C={c1,c2,…,cN} 

of the pyramid convolution, the final combined output is 

 

output=∏∑ cj

i

j=1

N

i=1

 (1) 

where ∏ xi
N
i=1  means concatenating 𝑥1, 𝑥2, … , 𝑥𝑁, and ∑ xi

N
i=1   

means adding x1,x2,…,xN. 

B. Efficient Vortex Pooling 

As aforementioned, semantic segmentation requires both 
rich spatial information and sizeable receptive field. In other 
words, besides spatial information, global contextual 
information is also essential. Vortex Pooling is an effective 
module for aggregating contextual information by multi-
branch convolution with different dilation rates. Different 
dilation rates can dramatically increase the receptive field, 
thus acquiring multi-level contextual information. 

Vortex Pooling first takes each k×k square region in input 
feature map as subregion. Specifically, it uses small k for the 
subregions near from the given pixel, which enables more 
details. While for regions far away from the target pixel, it 
uses large k because only contextual information is needed. 
The k values for the four convolution layers are set to (1, 3, 9, 
27), respectively. Operationally, it first uses k×k average 
pooling to pool the descriptor in each subregion to one new 
descriptor. Then it employs four convolution layers with 
different dilation rates to aggregate the descriptors from the 
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Figure 2. The combination strategy of output group of the pyramid 

convolution. ⊕: addition. 
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Figure 3. Architecture of efficient Vortex Pooling. 

 



TABLE I.  RESULTS ON CITYSCAPES TEST SET OF (1) ENET [17], (2) SHUFFLENETV2+DPC [22], (3) FAST-SCNN [19], AND OUR PYRAMID SHUFFLENET 

V2 WITH EFFICIENT VORTEX POOLING. 

Method mIoU Building Sky Car Sign Road Person Fence Pole Sidewalk Bicycle 

1 58.3 85.0 90.6 90.6 44.0 96.3 65.5 33.2 43.5 74.2 55.4 
2 70.3 90.7 93.9 94.0 66.9 98.1 78.5 50.9 51.5 82.5 67.5 

3 68.0 89.7 94.3 93.0 60.5 97.9 74.0 48.6 48.3 81.6 61.2 

Ours 73.4 91.6 94.6 94.7 73.8 98.3 82.4 51.6 58.2 83.8 70.8 

all subregions. Simultaneously, it applies global average 
pooling on the input to incorporate global information, feeds 
the result to a 1×1 convolution, and then bilinearly up sample 
the feature map to generate high-resolution features. 

TABLE II.  PROPOSED NETWORK ARCHITECTURE. 

Layer Output Size Stride Rate Repeat 

Image 512×1024×3    

Conv2D 
MaxPool 

256×512×24 
128×256×24 

2 
2 

 1 

Stage1 
64×128×116 

64×128×116 

2 

1 

1 

1 

1 

3 

Stage2 
32×64×232 

32×64×232 

2 

1 

1 

1 

1 

7 

Stage3 
32×64×464 

32×64×464 

1 

1 

1 

(1, 2, 3) 

1 

3 

Vortex 

Pool 
128×256×256   1 

Conv2D 
Conv2D 

128×256×128 
128×256×n_classes 

1 
1 

 1 

Bilinear 

Up 
512×1024×n_classes   1 

 
While the original Vortex Pooling effectively converges 

contextual information, it also introduces a lot of additional 
parameters from the four convolution layers. This stunts the 
inference speed of our network heavily. To address the 
problem, we apply four 3×3 depthwise separable convolutions 
with dilation rates are set to (1, 3, 9, 27) instead of standard 
convolutions as shown in Figure 3. This operation remarkably 
reduces the number of parameters and improves efficiency, 
while almost maintaining the original performance of Vortex 
Pooling. To be precise, it reduces the number of parameters 
from 10.42 million to 2.69 million at the expense of 0.7% 
mIoU (as shown in Table Ⅳ). 

C. Network Architecture 

The architecture of our proposed network is presented in 
Table Ⅱ. It can be divided into an initial module, a feature 
extraction module, Vortex Pooling module, and up-sampling 
module. 

The initial module consists of a standard convolution and 
a max pooling, and feature extraction module consists of three 
stages. These two modules are based on ShuffleNet v2. Note 
that there are some differences. For following the discovery in 
[2], that is, the consecutive striding is harmful for semantic 
segmentation. We set the stride of the spatial down sampling 
unit in Stage3 to 1, the dilated rates of the next three basic 
units to (1, 2, 3) respectively, and the kernel size of all 
DWConvs of Stage3 to 3×3. In the original ShuffleNet v2, 

output_stride goes as low as 32, after our implementation, the 
output_stride of Stage3 in our network is adjusted to 16. 

Next module is the improved efficient vortex pooling as 
previously described. Finally, two convolutions and a bilinear 
up sampling are employed to classify and up sample the 
feature map to input size. 

IV. EXPERIMENTS 

We evaluate our proposed network on Cityscapes [14] 
benchmark, which is a large urban street scene dataset in the 
field of semantic segmentation. It contains 5000 finely 
annotated samples which are split into 2975, 500 and 1525 for 
training, validation, and testing respectively. 

A. Implementation Details 

We use stochastic gradient descent (SGD) with 
momentum 0.9 and batch-size 16. Following [9, 14, 19, 30], 

we employ "ploy" learning rate with initial value 2.5e-2 and 
power 0.9. Our network is trained with cross-entropy loss. To 
augment data, we apply random resizing with scales contains 
{0.75, 1.0, 1.5, 1.75, 2.0}, randomly crop, horizontal flip. 

B.  Evaluation of Cityscapes 

TABLE III.  CLASS AND CATEGORY IOUS OF OUR PROPOSED NETWORK 

COMPARED TO OTHER STATE-OF-THE-ART SEMANTIC SEGMENTATION 

NETWORKS ON THE CITYSCAPES TEST SET. THE NUMBER OF PARAMETERS IS 

LISTED IN MILLIONS. 

Mothod Class IoU Cat. IoU Params 

DeepLab-v2 [3] 70.4 86.4 44. __ 

PSPNet [30] 78.4 90.6 65.7_ 

SegNet [1] 56.1 79.8 29.46 
Enet [17] 58.3 80.4 00.37 

ICNet [31] 69.5 - 06.68 

ERFNet [32] 68.0 86.5 02.1_ 
BiSeNet [26] 71.4 - 05.8_ 

ShuffleNetv2+DPC [22] 70.33 86.48 03.82 

Fast-SCNN [19] 68.0 84.7 01.11 

Ours 73.46 88.32 02.69 

 
Our network outperforms state-of-the-art efficient 

networks on the Cityscapes test set. Table Ⅰ  display detail 
results of IoUs on class-level. As shown in Table Ⅲ, we 
compare our network with other offline networks (DeepLab-
v2, PSPNet) and state-of-the-art real-time semantic 
segmentation networks in terms of performance and number 
of parameters. Our network only has 2.69 million parameters, 
which is slightly higher than ERFNet (2.1_ million) and Fast-
SCNN (1.11 million) except ENet with poor performance. 
Furthermore, We achieve 73.4% mIoU which makes a gain of 
3.13% mIoU over the best performing ShuffleNetv2+DPC 
network. 



C. Ablation Experiments 

In this section, using mIoU and number of parameters as 
indicators, we perform ablation experiments to explore the 
effects of different implementation of the network. 

TABLE IV.  ABLATION RESULTS ON THE CITYSCAPES TEST SET. 
NUMBER OF PARAMETERS IS LISTED IN MILLIONS.  

Method Class Params 

ShuffleNetv2 67.7 01.68 

PydShuffleNetv2 71.22 02.10 

PydShuffleNetv2+VortexPooling 74.16 10.42 
PydShuffleNetv2+efficirnt VP  73.46 02.69 

 
The ablative results are showed in Table Ⅳ. Original 

ShuffleNet v2 can obtain 67.7% mean IoU on the Cityscapes 
test set. After we use pyramid convolutions instead of 
DWConvolution in ShuffleNet v2, mIoU increased by about 
3.52%. Then Vortex Pooling further increases about 2.94% 
mIoU. For the number of parameters, as aforementioned, 
original Vortex Pooling introduces 8.3 million parameters 
from the four convolution layers, but our operation 
remarkably reduces the number of parameters from 10.42 
million to 2.69 million. The results of ablation experiments 
strongly demonstrate the effectiveness of our continuous 
improvement of the network. 

D. Inference Speed on Embedded Devices and Qualitative 

Results 

We present the inference speed results for different input 
size on Jetson AGX Xavier Developer Kit in Figure 5. The 
configuration of Xavier is 512-core Volta GPU with Tensor 
Cores, 8-core ARM v8.2 64-bit CPU with 8MB L2 + 4MB L3 
and 16-GB memory. The original image size of Cityscapes is 
1024×2048, we also experiment with 768×1024 and 
512×1024 resolutions. The experimental results show that our 
network achieves similar inference speed and better 
performance compared (over 2.06% and 5.46% mIoU of 
BiSeNet and Fast-SCNN respectively) with other state-of-the-

 

(a) image          (b) Ground truth     (c) ShuffleNetv2+DPC              (d) ours 

Figure 4. Example results on Cityscapes validation set. (Black colored regions on ground truth are ignored) 

 
Figure 5. Inference speed on Jetson AGX Xavier. 

 



art real-time semantic segmentation networks on embedding 
device. 

Finally, Figure 4 displays the qualitative results of our 
network on Cityscapes validation set. Visually, our network is 
closer to ground truth in some details. For example, the fence 
in the second picture, the pedestrian in the far of the fourth 
picture, and the tricycle in the fifth picture. In particular, our 
results have fewer noise points. 

V. CONCLUSIONS 

In this paper, we have presented a semantic segmentation 
network with state-of-the-art mIoU without compromising the 
inference speed. The experimental results show that our 
network achieves a competitive 73.46% mIoU on Cityscapes 
test dataset. Furthermore, we tested our network on embedded 
device and achieve 46.1 frames per second for a 768×1024 
input, which means that our proposed network is capable of 
running real-time on embedded devices. Future work is to 
further accelerate the network without compressing 
performance. 

From the experimental results, we discovered that the 
precise segmentation of object boundary is a direction in 
which the network can be improved. In the future work, we 
intend to combine some edge segmentation algorithms with 
our network efficiently, so as to further improve the 
performance of the network. 

REFERENCES 

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A 
deep convolutional encoder-decoder architecture for image 
segmentation. IEEE transactions on pattern analysis and machine 
intelligence, 39(12):2481–2495, 2017. 

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig 
Adam. Rethinking atrous convolution for semantic image 
segmentation. arXiv preprint arXiv: 1706.05587, 2017. 

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin 
Murphy, and Alan L Yuille. Parsing NetworkICNet: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and 
fully connected crfs. IEEE transactions on pattern analysis and 
machine intelligence, 40(4):834–848, 2018. 

[4] François Chollet. Xception: Deep learning with depthwise separable 
convolutions. In Proceedings of the IEEE conference on computer 
vision and pattern recognition, pages 1251–1258, 2017. 

[5] Mostafa Gamal, Mennatullah Siam, and Moemen Abdel-Razek. 
Shuffleseg: Real-time semantic segmentation network. arXiv preprint 
arXiv:1803.03816, 2018. 

[6] Golnaz Ghiasi and Charless C Fowlkes. Laplacian pyramid 
reconstruction and refinement for semantic segmentation. In European 
Conference on Computer Vision, pages 519–534. Springer, 2016. 

[7] Song Han, Huizi Mao, and William J Dally. Deep compression: 
Compressing deep neural networks with pruning, trained quantization 
and huffman coding. arXiv preprint arXiv:1510.00149, 2015. 

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the 
knowledge in a neural network. arXiv preprint arXiv:1503.02531, 
2015. 

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry 
Kalenichenko,WeijunWang, TobiasWeyand, Marco Andreetto, and 
Hartwig Adam. Mobilenets: Efficient convolutional neural networks 
for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet 
classification with deep convolutional neural networks. In Advances in 
neural information processing systems, pages 1097–1105, 2012. 

[11] G Lin, A Milan, C Shen, and I Reid. Refinenet: Multi-path refinement 
networks with identity mappings for high-resolution semantic 
segmentation. arxiv 2016. arXiv preprint arXiv:1611.06612. 

[12] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully 
convolutional networks for semantic segmentation. In Proceedings of 
the IEEE conference on computer vision and pattern recognition, pages 
3431–3440, 2015. 

[13] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 
Shufflenet v2: Practical guidelines for efficient cnn architecture design. 
In Proceedings of the European Conference on Computer Vision 
(ECCV), pages 116–131, 2018. 

[14] Sebastian Ramos Timo Rehfeld Markus Enzweiler Rodrigo Benenson 
Uwe Franke Stefan Roth Bernt Schiele Marius Cordts, Mohamed 
Omran. The cityscapes dataset for semantic urban scene understanding. 
IEEE conference on computer vision and pattern recognition, 2018. 

[15] Davide Mazzini. Guided upsampling network for real-time semantic 
segmentation. arXiv preprint arXiv:1807.07466, 2018. 

[16] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning 
deconvolution network for semantic segmentation. In Proceedings of 
the IEEE international conference on computer vision, pages 1520–
1528, 2015. 

[17] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio 
Culurciello. Enet: A deep neural network architecture for real-time 
semantic segmentation. arXiv preprint arXiv:1606.02147, 2016. 

[18] Rudra PK Poudel, Ujwal Bonde, Stephan Liwicki, and Christopher 
Zach. Contextnet: Exploring context and detail for semantic 
segmentation in real-time. arXiv preprint arXiv:1805.04554, 2018. 

[19] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. Fast-scnn: 
Fast semantic segmentation network. arXiv preprint arXiv:1902.04502, 
2019. 

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: 
Convolutional networks for biomedical image segmentation. In 
International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015. 

[21] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, 
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear 
bottlenecks. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pages 4510–4520, 2018. 

[22] Sercan Türkmen and Janne Heikkilä. An efficient solution for semantic 
segmentation: Shufflenet v2 with atrous separable convolutions. arXiv 
preprint arXiv:1902.07476, 2019. 

[23] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi 
Hou, and Garrison Cottrell. Understanding convolution for semantic 
segmentation. In 2018 IEEE Winter Conference on Applications of 
Computer Vision (WACV), pages 1451–1460. IEEE, 2018. 

[24] Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Real-time 
semantic image segmentation via spatial sparsity. arXiv preprint 
arXiv:1712.00213, 2017. 

[25] Chen-Wei Xie, Hong-Yu Zhou, and Jianxin Wu. Vortex pooling: 
Improving context representation in semantic segmentation. arXiv 
preprint arXiv:1804.06242, 2018. 

[26] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, 
and Nong Sang. Bisenet: Bilateral segmentation network for real-time 
semantic segmentation. In Proceedings of the European Conference on 
Computer Vision (ECCV), pages 325–341, 2018. 

[27] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by 
dilated convolutions. arXiv preprint arXiv:1511.07122, 2015. 

[28] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual 
networks. In Proceedings of the IEEE conference on computer vision 
and pattern recognition, pages 472–480, 2017. 

[29] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: 
An extremely efficient convolutional neural network for mobile 
devices. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pages 6848–6856, 2018. 

[30] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, XiaogangWang, and 
Jiaya Jia. Pyramid scene parsing network. 2016. 



[31] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and 
Jiaya Jia. Icnet for real-time semantic segmentation on high-resolution 
images. In Proceedings of the European Conference on Computer 
Vision (ECCV), pages 405–420, 2018. 

[32] E. Romera, J. M. A  ́lvarez, L. M. Bergasa, and R. Arroyo. ERFNet: 
Efficient Residual Factorized ConvNet for Real-Time Semantic 
Segmentation. IEEE Transactions on Intelligent Transportation 
Systems, 19(1): 263-272, 2017.

 


