2,594 research outputs found

    Un modelo para resolver el problema dinámico de despacho de vehículos con incertidumbre de clientes y con tiempos de viaje en arcos

    Get PDF
    Indexación: Web of Science; ScieloIn a real world case scenario, customer demands are requested at any time of the day requiring services that are not known in advance such as delivery or repairing equipment. This is called Dynamic Vehicle Routing (DVR) with customer uncertainty environment. The link travel time for the roadway network varies with time as traffic fluctuates adding an additional component to the dynamic environment. This paper presents a model for solving the DVR problem while combining these two dynamic aspects (customer uncertainty and link travel time). The proposed model employs Greedy, Insertion, and Ant Colony Optimization algorithms. The Greedy algorithm is utilized for constructing new routes with existing customers, and the remaining two algorithms are employed for rerouting as new customer demands appear. A real world application is presented to simulate vehicle routing in a dynamic environment for the city of Taipei, Taiwan. The simulation shows that the model can successfully plan vehicle routes to satisfy all customer demands and help managers in the decision making process.En un escenario real, los pedidos de los clientes son solicitados a cualquier hora del día requiriendo servicios que no han sido planificados con antelación tales como los despachos o la reparación de equipos. Esto es llamado ruteo dinámico de vehículos (RDV) considerando un ambiente con incertidumbre de clientes. El tiempo de viaje en una red vial varía con el tiempo a medida que el tráfico vehicular fluctúa agregando una componente adicional al ambiente dinámico. Este artículo propone un modelo para resolver el problema RDV combinando estos dos aspectos dinámicos. El modelo propuesto utiliza los algoritmos Greedy, Inserción y optimización basada en colonias de hormigas. El algoritmo Greedy es utilizado para construir nuevas rutas con los clientes existentes y los otros dos algoritmos son usados para rutear vehículos a medida que surjan nuevos clientes con sus respectivos pedidos. Además, se presenta una aplicación real para simular el ruteo vehicular en un ambiente dinámico para la ciudad de Taipei, Taiwán. Esta simulación muestra que el modelo es capaz de planificar exitosamente las rutas vehiculares satisfaciendo los pedidos de los clientes y de ayudar los gerentes en el proceso de toma de decisiones.http://ref.scielo.org/3ryfh

    Ant colony optimization and its application to the vehicle routing problem with pickups and deliveries

    Get PDF
    Ant Colony Optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. It was first introduced for solving the Traveling Salesperson Problem. Since then many implementations of ACO have been proposed for a variety of combinatorial optimization. In this chapter, ACO is applied to the Vehicle Routing Problem with Pickup and Delivery (VRPPD). VRPPD determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The vehicles are not only required to deliver goods but also to pick up some goods from the customers. The objective is to minimize the total distance traversed. The chapter first provides an overview of ACO approach and presents several implementations to various combinatorial optimization problems. Next, VRPPD is described and the related literature is reviewed, Then, an ACO approach for VRPPD is discussed. The approach proposes a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. The performance of the approach is tested using well-known benchmark problems from the literature

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    ROUTING DESIGN FOR LESS-THAN-TRUCKLOAD MOTOR CARRIERS USING ANT COLONY TECHNIQUES

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results.

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip
    corecore