2,177 research outputs found

    Sequential Monte Carlo Methods for Option Pricing

    Full text link
    In the following paper we provide a review and development of sequential Monte Carlo (SMC) methods for option pricing. SMC are a class of Monte Carlo-based algorithms, that are designed to approximate expectations w.r.t a sequence of related probability measures. These approaches have been used, successfully, for a wide class of applications in engineering, statistics, physics and operations research. SMC methods are highly suited to many option pricing problems and sensitivity/Greek calculations due to the nature of the sequential simulation. However, it is seldom the case that such ideas are explicitly used in the option pricing literature. This article provides an up-to date review of SMC methods, which are appropriate for option pricing. In addition, it is illustrated how a number of existing approaches for option pricing can be enhanced via SMC. Specifically, when pricing the arithmetic Asian option w.r.t a complex stochastic volatility model, it is shown that SMC methods provide additional strategies to improve estimation.Comment: 37 Pages, 2 Figure

    Smoothing the payoff for efficient computation of Basket option prices

    Get PDF
    We consider the problem of pricing basket options in a multivariate Black Scholes or Variance Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo in dimensions up to 35

    Conditional Quasi-Monte Carlo with Constrained Active Subspaces

    Full text link
    Conditional Monte Carlo or pre-integration is a useful tool for reducing variance and improving regularity of integrands when applying Monte Carlo and quasi-Monte Carlo (QMC) methods. To choose the variable to pre-integrate with, one need to consider both the variable importance and the tractability of the conditional expectation. For integrals over a Gaussian distribution, one can pre-integrate over any linear combination of variables. Liu and Owen (2022) propose to choose the linear combination based on an active subspace decomposition of the integrand. However, pre-integrating over such selected direction might be intractable. In this work, we address this issue by finding the active subspaces subject to the constraints such that pre-integration can be easily carried out. The proposed method is applied to some examples in derivative pricing under stochastic volatility models and is shown to outperform previous methods

    Smoothing the payoff for efficient computation of basket option prices

    Get PDF
    We consider the problem of pricing basket options in a multivariate Black Scholes or Variance Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo in dimensions up to 25

    Multilevel Particle Filters for L\'evy-driven stochastic differential equations

    Full text link
    We develop algorithms for computing expectations of the laws of models associated to stochastic differential equations (SDEs) driven by pure L\'evy processes. We consider filtering such processes and well as pricing of path dependent options. We propose a multilevel particle filter (MLPF) to address the computational issues involved in solving these continuum problems. We show via numerical simulations and theoretical results that under suitable assumptions of the discretization of the underlying driving L\'evy proccess, our proposed method achieves optimal convergence rates. The cost to obtain MSE O(ϵ2)O(\epsilon^2) scales like O(ϵ−2)O(\epsilon^{-2}) for our method, as compared with the standard particle filter O(ϵ−3)O(\epsilon^{-3})

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Topics in Financial Engineering

    Get PDF
    • …
    corecore