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Preface 

 
This thesis was prepared at DTU Management in partial fulfillment of the requirements 

for acquiring the Ph.D. degree. 

 

The thesis deals with 3 different aspects of financial mathematical modeling problem, each 

addressing a separate problem.  

 

1. Paper 1: A detailed analysis of the Quadratic time-dependent one-factor Interest-Rate 

model, both the numerical and analytical properties. A Monte-Carlo pricing method is 

designed and a discrete-time pricing procedure – along the lines of Hull and White 

(1993) – are being specified. 

2. Paper 2: Design a framework for the capturing of the Risk embedded in Danish 

Mortgage Backed Bonds, that is both feasible from a calculation point of view and 

robust during extreme market movements. Test is performed during the Financial 

Crisis of 2008. 

3. Paper 3: An empirical study on the use of stochastic programming (SP) models on 

mortgage choice and refinancing for Danish household. The focus is to perform a 

historical ex-ante test of the advice generated by our model framework for the period 

1995-2010, and compare the results with the traditional rules of thumb for refinancing. 

 

The thesis consists of a summary report and a collection of research papers. The last of these 

papers have at this point already been accepted for publication in an international journal 

within the area of Finance and Operations Research. 

 

Papers included in the thesis 

 
1. Paper 1: Claus Madsen (2012) “The normal class of arbitrage-free spot-rate models”,  

Technical Document at DTU Management, 2012 

2. Paper 2: Claus Madsen (2012) “Empirical Yield-Curve Dynamics, Scenario 

Símulation and Risk-Measures”, Technical Document at DTU Management, 2013 

3. Paper 3: Claus Madsen, Kourosh M. Rasmussen and Rolf Poulsen (2012) “Can Danish 

households benefit from Stochastic Programming models? – An empirical study of 

mortgage refinancing in Denmark”, accepted for publication in a special issue of the 

Journal of Computational Management Science 
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Part I 

 

Summary Report 

 
 

Chapter 1:  Introduction – a brief history of Mathematical Finance 

 

The “time value of money” and uncertainty are the central elements that influence the value of 

financial instruments. When only the time aspect of finance is considered, the tools of 

calculus and differential equations are adequate. When only the uncertainty is considered, the 

tools of probability theory illuminate the possible outcomes. When time and uncertainty are 

considered together we begin the study of mathematical finance. 

 

Finance is the study of economic agents’ behavior in allocating financial resources and 

managing risks across alternative financial instruments and in time in an uncertain 

environment. Known examples of financial instruments are bank accounts, loans, stocks, 

government bonds and corporate bonds.  

 

Economic agents are units who buy and sell financial resources in a market, from individuals 

to banks, businesses and hedge funds etc. Each agent has many choices of where to buy, sell, 

invest and consume assets, each with advantages and disadvantages. Each agent must 

distribute his resources among the many possible investments with a particular goal in mind. 

 

Mathematical finance is often characterized as the study of the more sophisticated financial 

instruments called derivatives. A derivative is a financial agreement between two parties that 

depends on something that occurs in the future, for example the price or performance of an 

underlying asset. The underlying asset could for example be a stock, a bond or a currency.  

 

Derivatives have become one of the financial world’s most important risk-management tools.  

 

Finance is about shifting and distributing risk and derivatives are a very efficient vehicle for 

that purpose. Two such instruments are futures and options
1
. Both futures and options are 

called “derivatives” and are types of instruments that have been around for quite some time.  

In 1865, futures on products such as grain, copper, and pork bellies were sold on the Chicago 

Board of Trade and options were a feature of the “tulip mania” in seventeenth century 

Holland. These instruments are called derivatives not because they involve a rate of change, 

but because their value is derived from some underlying asset. 

 

 Derivatives come in many types. For example, there are futures, agreements to trade 

something at a set price at a given dates (plus some “running netting” - margin); options, the 

right but not the obligation to buy or sell at a given price; forwards, like futures but traded 
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directly between two parties instead of on exchanges; and swaps, exchanging flows of income 

from different investments to manage different risk exposure. For example, one party in a deal 

may want the potential of rising income from a loan with a floating interest rate, while the 

other might prefer the predictable payments ensured by a fixed interest rate. This elementary 

swap is known as a “plain vanilla swap”.  

 

More complex swaps mix the performance of multiple income streams with varieties of risk 

(see O’Harrow (2010)). Another more complex swap is a creditdefault swap in which a seller 

receives a regular fee from the buyer in exchange for agreeing to cover losses arising from 

defaults on the underlying loans. These swaps are somewhat like insurance. These more 

complex swaps are the source of controversy since many people believe that they are 

responsible for the collapse or near-collapse of several large financial firms in late 2008 (for 

example Lehmann Brothers and AIG) 

 

Derivatives can be based on pretty much anything as long as two parties are willing to trade 

risks and can agree on a price. Businesses use derivatives to shift risks to other firms, chiefly 

banks. About 95% of the world’s 500 biggest companies use derivatives. Derivatives with 

standardized terms are traded in markets called exchanges. Derivatives tailored for specific 

purposes or risks are bought and sold “over the counter” from big banks. The “over the 

counter” market dwarfs the exchange trading. The Bank for International Settlements put the 

amount of outstanding of over-the-counter (OTC) derivatives at $647.76 billions as of 1. 

December 2011.  

 

Mathematical models in modern finance contain deep and one might even say beautiful 

applications of differential equations and probability theory. In spite of their complexity, 

mathematical models of modern financial instruments have had a direct and significant 

influence on finance practice. 

 

Early history 

 

 The origins of much of the mathematics in financial models traces back to Louis Bachelier’s 

1900 dissertation on the theory of speculation in the Paris markets. Completed at the 

Sorbonne in 1900, this work marks the twin births of both the continuous time mathematics of 

stochastic processes and the continuous time economics of option pricing. While analyzing 

option pricing, Bachelier provided two different derivations of the partial differential equation 

for the probability density for the Wiener process or Brownian motion.  

 

In one of the derivations, he works out what is now called the Chapman-Kolmogorov 

convolution probability integral. Along the way, Bachelier derived the method of reflection to 

solve for the probability function of a diffusion process with an absorbing barrier. Not a bad at 

all for a thesis on which the first reader, Henri Poincaré, gave less than a top mark! After 

Bachelier, option pricing theory lay dormant in the economics literature for over half a 

century until economists and mathematicians renewed study of it in the late 1960s. Jarrow and 

Protter (2004) speculate that this may have been because the Paris mathematical elite scorned 

economics as an application of mathematics. 

 

Bachelier’s work was 5 years before Albert Einstein’s 1905 discovery of the same equations 

for his famous mathematical theory of Brownian motion. The editor of Annalen der Physik 
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received Einstein’s paper on Brownian motion on May 11, 1905. The paper appeared later 

that year. Einstein proposed a model for the motion of small particles with diameters on the 

order of 0.001 mm suspended in a liquid.  He predicted that the particles would undergo 

microscopically observable and statistically predictable motion. The English botanist Robert 

Brown had already reported such motion in 1827 while observing pollen grains in water with 

a microscope. The physical motion is now called Brownian motion in honor of Brown’s 

description.  Einstein calculated a diffusion constant to govern the rate of motion of 

suspended particles. The paper was Einstein’s attempt to convince physicists of the molecular 

and atomic nature of matter. Surprisingly, even in 1905 the scientific community did not 

completely accept the atomic theory of matter. In 1908, the experimental physicist Jean-

Baptiste Perrin conducted a series of experiments that empirically verified Einstein’s theory. 

Perrin thereby determined the physical constant known as Avogadro’s number for which he 

won the Nobel prize in 1926. Nevertheless, Einstein’s theory was very difficult to rigorously 

justify mathematically. In a series of papers from 1918 to 1923, the mathematician Norbert 

Wiener constructed a mathematical model of Brownian motion. Wiener and others proved 

many surprising facts about his mathematical model of Brownian motion, research that 

continues today. In recognition of his work, his mathematical construction is often called the 

Wiener process (see Jarrow and Protter (2004)). 

 

Growth of Mathematical Finance 

 

The first influential work of mathematical finance is the theory of portfolio optimization by 

Harry Markowitz on using mean-variance estimates. Markowitz assumes mean/expected 

return and variance to be known of portfolios to judge investment strategies. Using a linear 

regression strategy to understand and quantify the risk (i.e. variance) and return (i.e. mean) of 

an entire portfolio of stocks and bonds, an optimization strategy was used to choose a 

portfolio with largest mean return subject to acceptable levels of variance in the return. 

Simultaneously, William Sharpe (1964) developed the mathematics of determining the 

correlation between each stock and the market (CAPM). Put more precisely/accurately the 

CAPM is an equilibrium argument that links a stocks correlation with the market to its 

expected return. For their pioneering work, Markowitz and Sharpe, along with Merton Miller, 

shared the 1990 Nobel Memorial Prize in Economic Sciences, for the first time ever awarded 

for a work in finance. 

 

What we today call modern mathematical finance theory begins in the 1960s. In 1965 the 

economist Paul Samuelson published two papers that argue that stock prices fluctuate 

randomly. One explained the Samuelson and Fama efficient markets hypothesis that in a well-

functioning and informed capital market, asset-price dynamics are described by a model in 

which the best estimate of an asset’s future price is the current price (possibly adjusted for a 

fair expected rate of return).  

 

Under this hypothesis, attempts to use past price data or publicly available forecasts about 

economic fundamentals to predict security prices are doomed to failure. In the other paper 

with mathematician Henry McKean, Samuelson shows that a good model for stock price 

movements is geometric Brownian motion. Samuelson noted that Bachelier’s model failed to 

ensure that stock prices would always be positive, whereas geometric Brownian motion 

avoids this error. 
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The next major revolution in mathematical finance in terms of practice was the 1973 Black-

Scholes model for option pricing. The two economists Fischer Black and Myron Scholes (and 

simultaneously, and somewhat independently, the economist Robert Merton) deduced an 

equation that provided the first strictly quantitative model for calculating the prices of options. 

The key variable is the volatility of the underlying asset. These equations standardized the 

pricing of derivatives in quantitative terms. The formal press release from the Royal Swedish 

Academy of Sciences announcing the 1997 Nobel Prize in Economics states that the honor 

was given “for a new method to determine the value of derivatives. Robert C. Merton and 

Myron S. Scholes have, in collaboration with the late Fischer Black developed a pioneering 

formula for the valuation of stock options. Their methodology has paved the way for 

economic valuations in many areas. It has also generated new types of financial instruments 

and facilitated more efficient risk management in society.” 

 

For a strongly differing view, see Haug & Taleb (2011). They write the following: “…the 

development of scholastic finance appears to be an epiphenomenon rather than a cause of 

option trading. Once again, lecturing birds how to fly does not allow one to take subsequent 

credit.  

 

This is why we call the equation Bachelier-Thorp. We were using it all along and gave it the 

wrong name, after the wrong method and with attribution to the wrong persons. It does not 

mean that dynamic hedging is out of the question; it is just not a central part of the pricing 

paradigm..”  

 

I do not agree completely with Haug and Taleb, though they do have some interesting points, 

but to claim that the Black-Scholes formula is not used is like going to the extreme! 

 

The Chicago Board Options Exchange (CBOE) began publicly trading options in the United 

States in April 1973, a month before the official publication of the Black-Scholes model. By 

1975, traders on the CBOE were using the model to both price and hedge their options 

positions.  

 

The basic insight underlying the Black-Scholes model is that a dynamic portfolio trading 

strategy in the stock can replicate the returns from an option on that stock. This is called 

“hedging an option” and it is the most important idea underlying the Black-Scholes-Merton 

approach. 

 

The story of the development of the Black-Scholes-Merton option pricing model is that Black 

started working on this problem by himself in the late 1960s. His idea was to apply the capital 

asset pricing model (from Sharpe (1964)) to value the option in a continuous time setting. 

Using this idea, the option value satisfies a partial differential equation. Black could not find 

the solution to the equation. He then teamed up with Myron Scholes who had been thinking 

about similar problems. Together, they solved the partial differential equation using a 

combination of economic intuition and earlier pricing formulas. 

 

At this time, Myron Scholes was at MIT, so was Robert Merton, who was applying his 

mathematical skills to various problems in finance. Merton (1973) was the first to call the 

solution the Black-Scholes option pricing formula. Merton’s derivation used the continuous 
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time construction of a perfectly hedged portfolio involving the stock and the call option 

together with the notion that no arbitrage opportunities exist. 

 

Ironically Merton & Scholes were partners in Long Term Credit Management, the Greenwich, 

Connecticut-based hedge fund that almost single-handedly triggered a worldwide credit crisis 

in the late 1990’s. One could say, sometimes even the brilliant misjudge risk. 

 

In the 1970s and early 1980s mathematicians Harrison, Kreps and Pliska derived a more 

abstract formulation for the valuation of a derivative using the concept of martingales and 

showed that this provides greater generality. 

 

A sometimes overlooked major contribution in mathematical finance is the introduction of 

duration. Hicks published Value and Capital in 1939, 1 year after Macaulay's book appeared. 

Hicks defined and used "an elasticity [of a capital value] with respect to a discount ratio [i.e., 

factor]" that is equivalent to Macaulay's duration. Hicks called his measure "average period." 

Hicks used his measure to make concrete the intuitive notion that, when interest rates fall, 

producers will substitute money (or the capital it can buy) for other means of production and 

that the average period of production plans increases. 

 

Macaulay (1938) wanted a measure of time; Hicks, an elasticity. They derived the same 

measure. Hicks noted that, although elasticities are ordinarily "pure" numbers, this particular 

one had dimension time, and he explained why. Grove (1966) appears to have been the first to 

cite both Macaulay and Hicks. Fisher (1966) at that time unaware of Hicks's interest elasticity, 

showed that Macaulay's measure had the properties of an elasticity.  Not all writers who use 

duration or duration-like measures cite any authority. 

 

In 1945, Samuelson then unaware of Macaulay's work, analyzed the effect of interest rate 

changes on institutions such as universities, insurance companies, and banks. He developed a 

measure-the "weighted average time period of payments"-essentially equivalent to duration, 

and proved, that  if the duration of an institution's assets is larger (smaller) than that of its 

liabilities, then the institution will lose (profit) when interest rates rise and profit (lose) when 

interest rates fall. 

 

In 1952, Redington, in a paper not well known by (many) economists, defined the mean term 

of an asset stream and of a liability stream. He proved that the profits of an insurance 

company were immune (could not be reduced but might be increased) to any small 

(infinitesimal) change in interest rates provided that the mean term of assets equaled the mean 

term of liabilities. Wallas (1960) provide an expanded exposition of Redington's brilliant 

contribution. 

 

Hopewell and Kaufman (1973) were the first to note the relationship between bond-price 

volatility and duration – whereas this relationship is used widely in connection with stochastic 

modeling of the yield-curve. 

 

A few very important later contributions in mathematical finance is Vasicek (1977). The 

Vasicek model is a mathematical model describing the evolution of interest rates. It is a type 

of "one-factor model" (more precisely, one factor short rate model) as it describes interest rate 

movements as driven by only one source of market risk. The model can be used in the 
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valuation of interest rate derivatives, and has also been adapted for credit markets – though 

less irrelevant, as it is normal. 

 

Vasicek's model was the first one to capture mean reversion, an essential characteristic of the 

interest rate process that sets it apart from other financial prices. Thus, as opposed to stock 

prices for instance, interest rates cannot rise indefinitely. This is because at very high levels 

they would hamper economic activity, prompting a decrease in interest rates. Similarly, 

interest rates cannot (given recent time, this view might have to be relaxed) decrease 

(significantly) below 0 (zero). As a result, interest rates move in a limited range, showing a 

tendency to revert to a long run value.  

 

The drift in Vasiceks model is expressed as: dr(t) = a(b-r(t))dt. The drift factor represents the 

expected instantaneous change in the interest rate at time t. The parameter b represents the 

long run equilibrium value towards which the interest rate reverts. Indeed, in the absence of 

shocks, the interest remains constant when r(t) = b, if it starts at b. The parameter a, governing 

the speed of adjustment, needs to be positive to ensure stability around the long term value. 

For example, when r(t) is below b, the drift term becomes positive for positive a, generating a 

tendency for the interest rate to move upwards (toward equilibrium). 

 

The main disadvantage is that, under Vasicek's model, it is theoretically possible for the 

interest rate to become negative, an (normally) undesirable feature. This shortcoming was 

fixed in notable the Cox–Ingersoll–Ross (1985) model, among many others. The Vasicek 

model was further extended in the Hull–White (1990) model. The Vasicek model is also a 

canonical example of the affine term structure model, along with the Cox–Ingersoll–Ross 

model. Extension to multiple factors was originally and very generally explained in the classic 

work of Langetieg (1980) (later extended and formalized in Duffie and Kan (1996)). 

 

A major contribution in the area of yield-curve modeling is the HJM framework which 

originates from the work of David Heath, Robert A. Jarrow and Andrew Morton in the late 

1980s. Notable the Ph.d dissertation of Andrew Morton from (1988) which was the 

forerunner for their ground breaking article in 1992. It however has its critics, Paul Wilmott
2
 

(2009) describing it as "...actually just a big rug for [mistakes] to be swept under”. What 

Wilmott refers to is the following, put in his own words: “…Developed in the late 1980s, the 

formula looks horrifically complicated to the layman. But to a mathematician it's elegant, 

simple—and dangerous. Behind its simplicity lie hidden mistakes, unobservable variables like 

volatility and correlation that can provide a false sense of security. "With models, you want to 

see where things go wrong," says Wilmott. "You want to see the dirt….” 

 

The key to the HJM techniques is the recognition that the drifts of the no-arbitrage evolution 

of certain variables can be expressed as functions of their volatilities and the correlations 

among themselves. In other words, no drift estimation is needed.  Models developed 

according to the HJM framework are different from the so called short-rate models in the 

sense that HJM-type models capture the full dynamics of the entire forward rate curve, while 

the short-rate models only capture the dynamics of a point on the curve (the short rate). 

                                                           
2
 Paul Wilmott is a 52 year-old Oxford-trained mathematician and arguably the most influential quant today. 

The Financial Times calls him a "cult derivatives lecturer." Nassim Taleb, the mathematician and author of the 
bestseller The Black Swan, calls him the smartest quant in the world. "He's the only one who truly understands 
what's going on ... the only quant who uses his own head and has any sense of ethics," says Taleb.  
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However, models developed according to the general HJM framework are often non-

Markovian and can even have infinite dimensions. A number of researchers have made great 

contributions to tackle this problem. They show that if the volatility structure of the forward 

rates satisfy certain conditions, then an HJM model can be expressed entirely by a finite state 

Markovian system, making it computationally feasible, see for example Ritchken and 

Sankarasubramanian (1995) and Bhar and Chiarella (1997). 

 

An extension of HJM model - but specified in the same spirit - is the work of Brace, Gatarek 

and Musiela (BGM) (1997) – this extension is normally termed the LIBOR market model (or 

sometimes just the The Market Model). The BGM model is a financial model of interest rates.  

It is today used for the pricing of foremost interest rate derivatives, especially exotic 

derivatives like for example Bermudan swaptions, and ratchet caps and floors. The quantities 

that are modeled, rather than the short rate or instantaneous forward rates (like in the Heath-

Jarrow-Morton framework) are a set of forward rates (also called forward LIBORs), which 

have the advantage of being directly observable in the market, and whose volatilities are 

naturally linked to traded contracts. Each forward rate is modeled by a lognormal process 

under its forward measure, i.e. a Black (1976) model leading to a Black formula for interest 

rate caps (this equation was independently derived by Miltersen, Sandmann and Sondermann 

(MSS) (1997)
3
 . This formula is the market standard to quote cap prices in terms of implied 

volatilities, hence the term "market model".  In connection with the interest modeling it is 

impossible to get around Jamshidian, who is arguably one of the main pioneers. For example 

can mentioned the case of pricing using forward induction, see Jamshidian (1991). See also 

references in: http://wwwhome.math.utwente.nl/~jamshidianf/. 

 

The LIBOR market model may be interpreted as a collection of forward LIBOR dynamics for 

different forward rates with spanning tenors and maturities, each forward rate being consistent 

with a Black interest rate caplet formula for its canonical maturity. One can write the different 

rates dynamics under a common pricing measure, for example the forward measure for a 

preferred single maturity, and in this case forward rates will not be lognormal under the 

unique measure in general, leading to the need for numerical methods such as monte carlo 

simulation or approximations like the frozen drift assumption.  

 

The area of (Financial) Risk-Management 

 

If you went to work this morning, you took a risk. If you rode your bicycle, walked, or drove 

a car, you took a risk. If you put your money in a bank, or in stocks, or under a mattress, you 

took other types of risk. If you bought a lottery ticket at the newsstand or gambled at a casino 

over the weekend, you were engaging in activities that involve an element of chance – 

something intimately connected with risk. The word risk has its roots in the old French word 

risqué, which means “danger, in which there is an element of chance” (Littré, 1863). The 

word hazard, another term integral to discussions of risk management, comes from a game of 

chance invented at a castle named Hasart, in Palestine, while it was under siege (Oxford 

English Dictionary, 1989). 

 

                                                           
3
 It is interesting to note, that the formula derived by MSS, was actually - though in a completely different setup 
– already derived by Rady and Sandmann (1994). 

http://wwwhome.math.utwente.nl/~jamshidianf/
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In his 1998 book Against the Odds, Peter Bernstein describes how thinking about risk evolved 

in part because of changes in mathematical numbering systems, an understanding of the 

statistical basis of probability, and the rise in popularity of gambling. Although games of 

chance and gambling were depicted in Egyptian tomb paintings from 3500 B.C.E., it wasn’t 

until the Renaissance that a “scientific” or statistical basis for gambling was presented. This 

was because the Hindu-Arabic numbering system (the numerals 1, 2, 3, and so forth) appeared 

in Europe between 1000–1200 C.E. allowing calculations beyond simple addition and 

subtraction to be performed. It wasn’t until the Renaissance, however, that the ten digits – 0 to 

9 – that we take for granted fully replaced the more clumsy Roman numerals. 

 

Financial Risk-Management as a discipline first really kicked off when J.P. Morgan (1992) 

(published in 1996 by Zangari) introduced the ground-breaking RiskMetrics™ and the 

concepts of DEAR, which is now named VaR – Value-at-Risk
4
. 

 

We define VaR as a category of probabilistic measures of market risk. Consider a portfolio 

with fixed holdings. Its current market value is known. Its markets value at some future 

time—say one day or one month in the future—is a random variable. As a random variable, 

we may ascribe it a probability distribution. A VaR metric is a function of: 

 

1. that distribution and 

2. the portfolio’s current market value 

With this definition, variance of return, standard deviation of P&L and .95-quantile of loss are 

all VaR metrics. We define a VaR measure as any procedure that, given a VaR metric, assigns 

values for that metric to portfolios. 

 

What justifies our interpreting the output of those computations as, say, two-week 99% EUR 

VaR? The answer is the VaR model. The VaR model is the intellectual link between the 

computations of a VaR measure and the interpretation of the output of those computations, 

which is the VaR metric. 

 

Early VaR measures developed along two parallel lines. One was portfolio theory, and the 

other was capital adequacy computations.  

 

Markowitz (1999) have documented the history of VaR measures in the context of portfolio 

theory, whereas the development of VaR measures in the context of capital adequacy 

computations is documented in Holten (2002). 

 

Since the introduction of VaR a lot of discussion have centered around the following key 

areas: 

 

1. The distribution assumption 

2. How to estimate volatility and indeed how to define it 

3. How to measure the correlation or more generally, co-dependence (causality) 

                                                           
4
 Originally however, the concept of risk-management originated from the pioneering work of Markowitz 

(1952). 
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This debate is still an on-going debate, which probably never will end. After the financial 

crisis of 2008 new areas of how to look at risk have entered on the scene, where one very 

interesting direction is the use of Bayesian Networks, see Fenton and Neil (2012). 

 

A major contribution which does not focus on any of the 3 points mentioned above but 

instead of the VaR measure itself is the highly technical article by Artzner, Delbaen, Eber and 

Heath (2001). They showed that VaR understood as a percentile is not a coherent risk 

measure. A coherent risk measure is a function ρ that satisfies properties of monotonicity, 

sub-additivity, homogeneity, and translational invariance. They specified the requirements for 

being part of the family of coherent risk measures and showed that the most simple candidate 

is ETL (expected tail-loss) – also termed CVaR (Conditional Value-of-Risk). 

 

A practical example that illustrates this is the following: 

 

 “We have 2 identical bonds, A and B. Each default with probability 4%, and we get a 

loss of 100 if default occurs, and a loss of 0 if no default occurs. The 95% VaR for 

each bond is therefore 0, so VaR(A) = VaR(B) = VaR(A) + VaR(B) = 0. Let us now 

suppose that defaults are independent. Elementary calculations now establish that we 

get a loss of 0 with probability 0.962 = 0.9216, a loss of 200 with probability 0.042 = 

0.0016, and a loss of 100 with a probability of 1 – 0.9216 – 0.0016 = 0.0768. That is 

VaR(A+B) = 100. Thus VaR(A+B) = 100 > 0 = VaR(A) + VaR(B), and the VaR 

violates the sub-additivity property – hence VaR is not a Coherent Risk Measure!” 

 

The next stage 

 

In the past, mathematical models had a limited impact on finance practice. But since 1973 

these models have become central in markets around the world. In the future, mathematical 

models are likely to have an indispensable role in the functioning of the global financial 

system including regulatory and accounting activities. 

 

We need to seriously question the assumptions that make models of derivatives work: the 

assumptions that the market follows probability models and the assumptions underneath the 

mathematical equations. But what if markets are too complex for mathematical models? What 

if irrational and completely unprecedented events do occur, and when they do – as we know 

they do – what if they affect markets in ways that no mathematical model can predict? What if 

the regularity that all mathematical models assume ignores social and cultural variables that 

are not subject to mathematical analysis?  

 

Any virtue can become a vice if taken to extreme, and just so with the application of 

mathematical models in finance practice. At times, the mathematics of the models becomes 

too interesting and we lose sight of the models’ ultimate purpose. Futures and derivatives 

trading depend on the belief that the stock market behaves in a statistically predictable way; in 

other words, that probability distributions accurately describe the market. The mathematics is 

precise, but the models are not, being only approximations to the complex, real world. The 

practitioner should apply the models only tentatively, assessing their limitations carefully in 

each application. The belief that the market is statistically predictable (meaning that we have a 

well-specified stochastic model) drives the mathematical refinement, and this belief inspires 

derivative trading to escalate in volume every year. 
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Financial events since late 2008 show that many of the concerns of the previous paragraphs 

have occurred. In 2009, Congress and the Treasury Department considered new regulations 

on derivatives markets. Complex derivatives called credit default swaps appear to have been 

based on faulty assumptions that did not account for irrational and unprecedented events, as 

well as social and cultural variables that encouraged unsustainable borrowing and debt.  

Extremely large positions in derivatives that failed to account for unlikely events caused 

bankruptcy for financial firms such as Lehman Brothers and the collapse of insurance giants 

like AIG. The causes are complex, but some of the blame has been fixed on the complex 

mathematical models and the people who created them. This blame results from distrust of 

that which is not understood. Understanding the models is a prerequisite for correcting the 

problems and creating a future which allows proper risk management. 

 

Wilmott and Derman (2009) as a reflection over the financial crisis in 2008 wrote what they 

termed the “Financial Modeler’s Manifesto”. It is a fitting end of the history of mathematical 

finance so for that reason I have included the full manifest here: 

 

Manifesto 

 

“In finance we study how to manage funds – from simple securities like dollars and yen, 

stocks and bonds to complex ones like futures and options, subprime CDOs and credit default 

swaps. We build financial models to estimate the fair value of securities, to estimate their 

risks and to show how those risks can be controlled. How can a model tell you the value of a 

security? And how did these models fail so badly in the case of the subprime CDO market?  

Physics, because of its astonishing success at predicting the future behavior of material 

objects from their present state, has inspired most financial modeling. Physicists study the 

world by repeating the same experiments over and over again to discover forces and their 

almost magical mathematical laws. Galileo dropped balls off the leaning tower, giant teams 

in Geneva collide protons on protons, over and over again. If a law is proposed and its 

predictions contradict experiments, it's back to the drawing board. The method works. The 

laws of atomic physics are accurate to more than ten decimal places.  

 

It's a different story with finance and economics, which are concerned with the mental world 

of monetary value. Financial theory has tried hard to emulate the style and elegance of 

physics in order to discover its own laws. But markets are made of people, who are influenced 

by events, by their ephemeral feelings about events and by their expectations of other people's 

feelings. The truth is that there are no fundamental laws in finance. And even if there were, 

there is no way to run repeatable experiments to verify them.  

 

You can hardly find a better example of confusedly elegant modeling than models of CDOs. 

The CDO research papers apply abstract probability theory to the price co-movements of 

thousands of mortgages. The relationships between so many mortgages can be vastly 

complex. The modelers, having built up their fantastical theory, need to make it useable; they 

resort to sweeping under the model's rug all unknown dynamics; with the dirt ignored, all 

that's left is a single number, called the default correlation. From the sublime to the elegantly 

ridiculous: all uncertainty is reduced to a single parameter that, when entered into the model 

by a trader, produces a CDO value. This over-reliance on probability and statistics is a 
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severe limitation. Statistics is shallow description, quite unlike the deeper cause and effect of 

physics, and can’t easily capture the complex dynamics of default.  

 

Models are at bottom tools for approximate thinking; they serve to transform your intuition 

about the future into a price for a security today. It’s easier to think intuitively about future 

housing prices, default rates and default correlations than it is about CDO prices. CDO 

models turn your guess about future housing prices, mortgage default rates and a simplistic 

default correlation into the model’s output: a current CDO price.  

 

Our experience in the financial arena has taught us to be very humble in applying 

mathematics to markets, and to be extremely wary of ambitious theories, which are in the end 

trying to model human behavior. We like simplicity, but we like to remember that it is our 

models that are simple, not the world.  

 

Unfortunately, the teachers of finance haven’t learned these lessons. You have only to glance 

at business school textbooks on finance to discover stilts of mathematical axioms supporting a 

house of numbered theorems, lemmas and results. Who would think that the textbook is at 

bottom dealing with people and money? It should be obvious to anyone with common sense 

that every financial axiom is wrong, and that finance can never in its wildest dreams be 

Euclid. Different endeavors, as Aristotle wrote, require different degrees of precision. 

Finance is not one of the natural sciences, and its invisible worm is its dark secret love of 

mathematical elegance and too much exactitude.  

 

We do need models and mathematics – you cannot think about finance and economics without 

them – but one must never forget that models are not the world. Whenever we make a model 

of something involving human beings, we are trying to force the ugly stepsister’s foot into 

Cinderella’s pretty glass slipper. It doesn't fit without cutting off some essential parts. And in 

cutting off parts for the sake of beauty and precision, models inevitably mask the true risk 

rather than exposing it. The most important question about any financial model is how wrong 

it is likely to be, and how useful it is despite its assumptions. You must start with models and 

then overlay them with common sense and experience.  

 

Many academics imagine that one beautiful day we will find the ‘right’ model. But there is no 

right model, because the world changes in response to the ones we use. Progress in financial 

modeling is fleeting and temporary. Markets change and newer models become necessary. 

Simple clear models with explicit assumptions about small numbers of variables are therefore 

the best way to leverage your intuition without deluding yourself.  

 

All models sweep dirt under the rug. A good model makes the absence of the dirt visible. In 

this regard, we believe that the Black-Scholes model of options valuation, now often unjustly 

maligned, is a model for models; it is clear and robust. Clear, because it is based on true 

engineering; it tells you how to manufacture an option out of stocks and bonds and what that 

will cost you, under ideal dirt-free circumstances that it defines. Its method of valuation is 

analogous to figuring out the price of a can of fruit salad from the cost of fruit, sugar, labor 

and transportation. The world of markets doesn’t exactly match the ideal circumstances 

Black-Scholes requires, but the model is robust because it allows an intelligent trader to 

qualitatively adjust for those mismatches. You know what you are assuming when you use the 

model, and you know exactly what has been swept out of view.  
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Building financial models is challenging and worthwhile: you need to combine the qualitative 

and the quantitative, imagination and observation, art and science, all in the service of 

finding approximate patterns in the behavior of markets and securities. The greatest danger is 

the age-old sin of idolatry. Financial markets are alive but a model, however beautiful, is an 

artifice. No matter how hard you try, you will not be able to breathe life into it. To confuse the 

model with the world is to embrace a future disaster driven by the belief that humans obey 

mathematical rules.  

 

MODELERS OF ALL MARKETS, UNITE! You have nothing to lose but your illusions.  

The Modelers' Hippocratic Oath 

  

1. I will remember that I didn't make the world, and it doesn't satisfy my equations.  

2.  Though I will use models boldly to estimate value, I will not be overly impressed by 

mathematics.  

3.  I will never sacrifice reality for elegance without explaining why I have done so.  

4. Nor will I give the people who use my model false comfort about its accuracy. Instead, 

I will make explicit its assumptions and oversights.  

5. I understand that my work may have enormous effects on society and the economy, 

many of them beyond my comprehension.” 

How is the Financial Modeler’s Manifesto related to this thesis? 

 

In the area of yield-curve modelling, not a lot of completely new work has been done since 

the BGM-Model (1997), but instead extensions to this framework, like for example the 

Displace Diffusion extension of the Libor-Market Model, see Joshi and Rebonato (2003) and 

the CEV extension of the Libor-Market-Model, see  Andersen and Andreasen (2000) or the 

SABR model of Hagan, Kumar, Lesniewski and Woodward (2002).  

 

Academically, the affine framework (including related transform methods for option pricing) 

was a key development form the late 90’ies up to the “outbreak” of the financial crisis 2008. 

Since then, we have been forced “back to fundamentals” including “what is a risk-free rates”, 

which has led to multi-curve frameworks – in various guises, and related issues on the pricing 

of derivatives in this new multi-curve setting. 

 

Even though the Market model (or versions hereof) probably is the most popular model for 

interest rate derivative pricing, the model is not without its limitations: 

 

 As it is such a flexible model, one can fit any combination of Caps/Floors or 

Swaptions with it – the question that arises is, which one to actually use in the 

estimation? 

 As it is a multi-factor model, in general it should be able to capture the correlation 

observed in the market, however as shown by Sidenius (1997) that a 10-factor model 

is needed in order to capture the observed correlation structure. This is true for all 

multi-factor models – capturing the observed correlation is not possible without a 

“huge” amount of factors – which complicated the use  
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 From a theoretical point of view, even though the model is consistent with the use of 

the Black (1976) model for the pricing of Caps it is not consistent with the Black 

(1976) model for the pricing of swaptions – which also is market standard. The reason 

being if the forward-rates are assumed log-normal, then an “average” of forward-rates 

cannot also be log-normal distributed. This has give rise to yet another version of the 

Libor-Market-Model, namely the Swap-Market-Model 

 

In the wake of the financial crisis the valuation of interest rate derivatives has been even more 

complicated due to this new multi-yield-curve scenario, we now are in, see for example 

Pallaviciniy and  Tarenghi (2010).   

 

In the spirit of the Financial Manifesto we have instead decided – in the first paper (The 

normal class of arbitrage-free spot-rate models”) – to take a step backward in order to take a 

more detailed look at a type of model which belongs to the class of one-factor-models. The 

reasons being: 

 

 Even though the math might be somewhat complex it is easy to understand the models 

limitations 

 It does have all the nice ingredients, tractability and a automatic fit of the initial yield-

curve, and non-negative rates 

 

One can say that, yes we know the model does not take into account all the issues there are in 

the world of interest-rate derivative pricing, but it is still consistent and theoretical founded – 

and as the Black-Scholes model – the limitations for the user of this type of model is more 

easy to grasp. 

 

The second paper (“Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-

Measures”) addresses methods for assessing risk for complex portfolios. Where we by 

complex portfolios mean portfolios that contain instruments that are not “plain-vanilla”, in 

our case it is Danish Mortgage Bonds.  

 

Some citations from the crisis with respect to Risk-Management (VaR) are (see Madsen 

(2009)): 

 

 ”Risk modelling did not help as much as it should have”, says Aaron Brown (former 

risk manager Morgan Stanley) 

 ”VaR is a limited tool”, says Marc Groz (Risk Consultant) 

 ”This is like an air bag that works all the time, except when you have a car accident”, 

says Nassim Taleb 

 David Einhorn (founder of Greenlight Capital) has recently written that VaR was 

”relatively useless as a risk management tool and potentially catastrophic when its use 

creates a false sense of security among senior managers and watchdogs” 

 

One could easily argue that it is not so much VaR itself that are the inherent problem but also 

the Risk-Culture in financial companies and the way VaR is being calculated – maybe there is 

too much reliance on the numbers that are being calculated, and to little accept/knowledge 

about its limitations! 
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The focus of paper 2 in this connection is as follows: 

 

 Show that it is possible to obtain much more reliable Risk-Estimates with limited 

additional complexity 

 

In the last paper “Can Danish households benefit from Stochastic Programming models? – An 

empirical study of mortgage refinancing in Denmark” we focus on the following important 

practical question: 

 

 Is it possible to improve and extend the rules of thumbs that are used for refinancing? 

 

In this analysis we focus on introducing advanced optimization techniques to investigate if we 

can do better than simple rules of thumb. So, yes, we do add complexity, but we always keep 

in mind that the results should be intuitive. This paper is a very good example on the fact that 

mathematical models is an important tool in supporting financial decisions, but on the other 

hand one should always be able to understand from an economic point of view why (in this 

case) the model generate that particular refinancing decision! 

 

Chapter 2: Summary of the papers 

 

Paper 1: The normal class of arbitrage-free spot-rate models 

 

When yield curve models are used in practice the traditional approach is to make sure that the 

parameters describing the process for the term structure satisfy certain requirements. The most 

important requirement in this connection is that the initial observed yield curve is exactly 

described by the chosen model - that is the model takes the initial yield curve as given. This 

has the desired characteristic that all other interest rate derivatives are priced by using a no-

arbitrage argument. 

 

The first yield curve model to satisfy this requirement was proposed by Ho and Lee (1986).  

Other models building on this basic idea are for example Black, Derman and Toy (1990), 

Black and Karasinski (1991) and Hull and White (1993a) - where these models are so called 

spot-rate models. The most general approach along these lines is the framework developed by 

Heath, Jarrow and Morton (HJM) (1991), which build an m-factor continuous time term 

structure model in the instantanous forward rates.      

 

It is of course preferable to price interest rate contingent claims analytically instead of having 

to use more or less time-consuming numerical methods. Unfortunately, for many models this 

is not possible. In general, a normal distribution assumption is needed in order to have a rich 

analytical structure for the term structure model. 

 

This assumption has that well known and (properly) undesired characteristic that interest rates 

can become negative. Recently, for that reason, a great deal of focus has been on models 

which contain some degree of tractability and at the same time do not allow for negative 

interest rates.  

 

In the framework of HJM there is the log-normal Market Model from Brace, Gatarek and 

Musiela (1995) which is used by Miltersen, Sandmann and Sondermann (1995) to derive 
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analytical expression for options on discount bonds. Another model in the HJM framework 

that precludes negative interest rates is the model from Flesaker and Houghton (1996) which 

builds a new equivalent martingale measure called the terminal measure in order to prevent 

negative interest rates. 

 

In the class of spot-rate models there is the extended Cox, Ingersoll and Ross model from 

Jamshidian (1995) and the Quadratic interest rate model from Jamshidian (1996). 

 

The main focus on this paper will be on the Quadratic interest rate model, we will however 

take the analysis much further than done in Jamshidian. 

 

The first result of this paper is to - using the concepts of fundamental solutions - show an 

alternative/new method to determine the T-forward adjusted risk-measure for interest rate 

models which does not rely on the use of Girsanov’s theorem. With respect to obtaining the 

fundamental solution of linear PDEs we will here introduce a new method relying on the 

Fourier transformation. 

 

Following along these lines we will focus on the one-factor Quadratic interest rate model, and 

in that connection we will show that the analytical structure of this model is very rich - nearly 

as rich as the extended Vasicek model from Hull and White (1993a). We will employ a 

different approach than the one advocated by Jamshidian which has that nice characteristic 

that we are capable of carrying the analysis of the Quadratic interest rate model much further. 

We will in this paper also present a new derivation of the extended Vasicek model from Hull 

and White (1993a), which uses the concept of Fourier transformation.       

 

The second result of this paper is the derivation of analytical expression for the prices of 

discount bonds, options on discount bonds - which, it appears, can be expressed in terms of 

the cumulative normal distribution. In the paper it will also be shown how the model can be 

fitted to the initial term structure in the spirit of Hull and White (1990). 

 

For the pricing of American style securities (like for example Bermudan options) we will 

specify a special discrete time version for the model and compare it to the approach from Hull 

and White (1994).  

 

The last part of the paper will focus on pricing techniques in order to handle path-dependent 

interest-rate derivatives. In connection with Monte Carlo simulation we will only focus on 

one-factor spot-rate processes with time-dependent coefficients. Monte Carlo simulation of 

yield-curve models that by construction match the initial term structures has (as far as we 

know) only been applied to models in the Heath, Jarrow and Morton framework (see for 

example Zhenyu (1994)). Recently Andersen (1995) has designed a powerful application of 

importance sampling for simulating interest rates with time-homogenous parameters.                         

We will here design a procedure which ensures that a given Monte Carlo simulation method 

matches the initial yield-curve by construction - which is the third main result of the paper. 

 

Paper 2: Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures 

 

This paper has two objectives. First we will construct a general model for the variation in the 

term structure of interest rates, or to put it another way, we will define a general model for the 
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shift function. Secondly, we will specify a Risk model which uses the shift function derived in 

the first part of the paper as its main building block.  

 

This general model of the variation in the term structure of interest rates is assumed to belong 

to the linear class, and, moreover, the factors that determine the shift function are 

independent; the model is therefore comparable to the Ross (1976) APT (Arbitrage-Pricing-

Theory) model. 

 

The traditional approach to describe the dynamics of the term structure of interest rates is 

either by defining the stochastic process that drives one or more state variables, such as Cox, 

Ingersoll and Ross (1985), Vasicek (1977) and Longstaff and Schwartz (1991), or by 

postulating one or more volatility structures for determining the dynamics of the initial term 

structure of interest rates, such as Heath, Jarrow and Morton (1991).  

 

However, the approach used in this paper to describe the dynamics of the term structure of 

interest rates is an empirical approach in order to derive the number of factors needed to 

describe the variation in the term structure of interest rates. Our reference period will here be 

2 January 2002 - 2 January 2012.  

 

The approach follows along the lines of Litterman and Scheinkman (1988) and in that 

connection we will relate the approach to the Heath, Jarrow and Morton framework. We show  

in that connection that the PCA method can be thought of as a tool for specifying/determining 

the spot rate volatility structure using a non-parametric approach. 

      

In the second and by far the largest part of the paper we will turn our attention to Risk-

Models. The reason being that Risk Measures have three very important roles within a 

modern financial institution: 

 

1. It allows risky positions to be directly compared and aggregrated 

2. It is a measure of the economic or equity capital required to support a given level of 

risk activities 

3. It helps management to make the returns from a diverse risky business directly 

comparable on a risk adjusted basis    

 

Our approach to the calculation of VaR/ETL is a simulation based methodology which relies 

on the scenario simulation framework of Jamshidian and Zhu (1997).  

 

The general idea behind the scenario simulation procedure is to limit the number of portfolio 

evaluations by using the factor loadings derived in the first part of the paper and then specify 

particular intervals for the Monte Carlo simulated random numbers and assign appropriate 

probabilities to these intervals (states). 

 

We find that the scenario simulation procedure is computationally efficient, because we with 

a limited number of states are capable of deriving robust approximations of the probability 

distribution. Compared to Monte Carlo simulation another important feature with the scenario 

simulation procedure is that we have more control over the tails of the distribution - which for 

Risk models is important.  
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The promising results we obtain here leads us to address the problem of Risk-Calculations for 

non-linear securities. More precisely we turn our attention to VaR/ETL for Danish MBBs, 

with as far as we are aware of, only has been considered by Jacobsen (1996). We conclude 

here that the methodology is both efficient and feasible to use for large portfolios of non-

linear securities - because even for complex instruments like Danish MBBs the computational 

burden is acceptable.     

 

Our overall conclusion is the following: 

 

 The Jamshidian and Zhu scenario simulation methodology is best suited for the 

calculation of the Risk-Measure ETL - less for VaR 

 We find that the scenario simulation procedure is computational efficient, because we 

with a limited number of states is capable of deriving robust approximations of the 

probability distribution 

 We also find that it is very useful for non-linear securities (Danish Mortgage-Backed-

Bonds MBBs), and argue that the method is feasible for large portfolios of highly 

complex non-linear securities - for example Danish MBBs 

 Backtesting the Risk-Model setup during 2008 showed some very promising results as 

we were able to capture the extreme price-movements that were observed in the 

market              
 

 

Paper 3: Can Danish households benefit from Stochastic Programming models? – An 

empirical study of mortgage refinancing in Denmark 

 

This paper focuses on improving advisory standards for mortgage choice and refinancing for 

the Danish market. In particular the focus is on improving and extending the rules of thumbs 

that are used for refinancing. 

 

Refinancing rules of thumbs have traditionally only dealt with refinancing among fixed rate 

mortgages, but given that most borrowers today opt for F1 loans there is a need for 

refinancing rules which reduce the risk of holding F1 loans by looking into strategies which 

allow movement from one type of loan to the other – that is strategies that takes into account 

the risk associated with this. 

 

The contribution of this paper is the following: 

 

1. Showing that the existing rules of thumb for refinancing are of little or no use 

2. Introducing a model-based refinancing framework ensuring significant refinancing 

gains without adding risk 

3. Reducing the risk of holding a F1 loan by introducing strategies which allow mixing 

fixed and adjustable rate loans 

The paper is organized as follows: Initially we explain the existing rules of thumb for 

refinancing in Denmark. After that we introduce the model framework used in this paper for 

individual mortgage choice and refinancing. Next, we compare the performance of the model-

based advising framework compared to the existing rules of thumb. 
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Finally we conclude suggesting that future innovations in the Danish mortgage market are 

likely to have special focus on risk management and advisory services. The existing mortgage 

products offer considerable potential for diversification and individualization in terms of risk 

and cost characteristics of the loans. This potential is however not taken advantage of due to 

lack of effective and personal consultancy tools and services. The framework suggested in 

this paper suggests a foundation for such tools and services. 
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THE NORMAL CLASS OF ARBITRAGE-FREE 
SPOT-RATE MODELS

- IMPLICATION AND IMPLEMENTATION

Claus Madsen

Abstract: In this paper we first show how to determine the T-forward adjusted risk-measure
using the concept of fundamental solution to linear PDE’s. After that, relying on Fourier
transformation we derive bond-and bond-option prices for the Extended Vasicek model from
Hull and White (1990) and the Quadratic Interest Rate model. With respect to the Quadratic
Interest Rate model we succeed in carrying the analysis much further than Jamshidian (1996).
A special discrete time model - which in some cases is appropriate for the Quadratic Interest
Rate model - is also derived. 

The last part of the paper analyse Monte Carlo techniques in connection with spot-rate models
with a time-dependent drift. We also introduce a method - using the concept of forward
induction - that constrain the Monte Carlo simulated spot-rate process for the matching of the
initial yield-curve. For the pricing of path-dependent contingent claim, we deduce that, even
though Monte Carlo is the natural method to use, it might not be the most efficient one - at
least not when the spot-rate is Markovian.                    

Keywords: Arbitrage-free pricing, spot-rate models, Fourier transformation, forward adjusted
risk-measure, closed form solutions, lattice-models, SDE discretization schemes, Monte Carlo
methods, Markovian structures, positive interest rates     
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The normal class of arbitrage-free spot-rate models

The normal class of arbitrage-free spot-rate models 
- Implication and Implementation

1: Introduction

When yield curve models are used in practice the traditional approach is to make sure that the
parameters describing the process for the term structure satisfy certain requirements. The most
important requirement in this connection is that the initial observed yield curve is exactly
described by the chosen model - that is the model takes the initial yield curve as given. This
has the desired characteristic that all other interest rate derivatives are priced by using a no-
arbitrage argument.

The first yield curve model to satisfy this requirement was proposed by Ho and Lee (1986). 
Other models building on this basic idea are for example Black, Derman and Toy (1990),
Black and Karasinski (1991) and Hull and White (1993a) - where these models are so called
spot-rate models. The most general approach along these lines is the framework developed by
Heath, Jarrow and Morton (1991), which build an m-factor continuous time term structure
model in the instantanous forward rates.     

It is of course preferable to price interest rate contingent claims analytically instead of having
to use time-consuming numerical methods. Unfortunately, for many models this is not
possible. In general, a normal distribution assumption is needed in order to have a rich
analytical structure for the term structure model.

This assumption has that well known and (properly) undesired characteristic that interest rates
can become negative. Recently, for that reason, a great deal of  focus has been on models
which contain some degree of tractability and at the same time do not allow for negative
interest rates. 

In the framework of HJM there is the log-normal Market Model from Brace, Gatarek and
Musiela (1995) which is used by Miltersen, Sandmann and Sondermann (1995) to derive
analytical expression for options on discount bonds. Another model in the HJM framework
that precludes negative interest rates is the model from Flesaker and Houghton (1996) which
builds a new equivalent martingale measure called the terminal measure in order to prevent
negative interest rates.

In the class of spot-rate models there is the extended Cox, Ingersoll and Ross model from
Jamshidian (1995) and the Quadratic interest rate model from Jamshidian (1996).

The first result of this paper is to - using the concepts of fundamental solutions - show an
alternative/new method to determine the T-forward adjusted risk-measure for interest rate
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- Implication and Implementation

models which does not rely on the use of Girsanov’s theorem. With respect to obtaining the
fundamental solution of linear PDEs we will here introduce a new method relying on the
Fourier transformation.

Following along these lines we will focus on the one-factor Quadratic interest rate model, and
in that connection we will show that the analytical structure of this model is very rich - nearly
as rich as the extended Vasicek model from Hull and White (1993a). We will employ a
different approach than the one advocated by Jamshidian which has that nice characteristic
that we are capable of carrying the analysis of the Quadratic interest rate model much further .1

We will in this paper also present a new derivation of the extended Vasicek model from Hull
and White (1993a), which uses the concept of Fourier transformation.      

The second result of this paper is the derivation of analytical expression for the prices of
discount bonds, options on discount bonds - which, it appears, can be expressed in terms of
the cumulative normal distribution. In the paper it will also be shown how the model can be
fitted to the initial term structure in the spirit of Hull and White  (1990).

For the pricing of American style securities (like for example Bermudan options) we will
specify a special discrete time version for the model and compare it to the approach from Hull
and White (1994). 

The last part of the paper will focus on pricing techniques in order to handle path-dependent
interest-rate derivatives. In connection with Monte Carlo simulation we will only focus on
one-factor spot-rate processes with time-dependent coefficients. Monte Carlo simulation of
yield-curve models that by construction match the initial term structures has (as far as we
know) only been applied to models in the Heath, Jarrow and Morton framework (see for
example Zhenyu (1994)). Recently, Andersen (1995) has designed a powerful application of
importance sampling for simulating interest rates with time-homogenous parameters.                
       
We will here design a procedure which ensures that a given Monte Carlo simulation method
matches the initial yield-curve by construction - which is the third main result of the paper.

The paper is organized as follows: In section 2, we will define a general class of one-factor
interest rate models and derive the partial differential equation that all interest rate contingent
claims have to satisfy. In this section, we will also show how the T-forward adjusted risk-
measure and fundamental solutions to PDEs are connected. In section 3, a method to obtain
fundamental solutions from the PDE using the concept of Fourier transformation is
introduced. 

Section 4 will employ this technique for the extended Vasicek model and in that connection
show how the price of discount bonds and options on discount bonds can be obtained. In
section 5 we will turn our focus on the Quadratic interest rate model and show how to derive
the price of discount bonds and options on discount bonds. 

 This has independtly been done by Pelsser (1995).1
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The normal class of arbitrage-free spot-rate models

(1)

We will in the spirit of Hull and White (1990) and Jamshidian (1996) show how it is possible
to fit the model to the initial term structure. The next two sections will focus on pricing
techniques when closed form solutions are not avaiable. First we will focus on a discrete time
model for the Quadratic interest rate model and second we will analyse general Monte Carlo
methods for spot-rate processes with time-dependent parameters.           

2: Generalized one-factor models

In this paper, I consider a continuous trading economy with zero-coupon bonds and a money
market account with a trading interval [0,ô], for a fixed ô > 0. In addition, it is assumed that
money does not exist, i.e. that the agents in the economy are forced at all times to invest all
their funds in assets. As usual, the uncertainty in the economy is characterized by the
probability space (Ù,F,P), where Ù is the entire state space, P is a probability measure and F is
the event space. At the same time, it is assumed that a one-dimensional Wiener process exists:
W = [W(t);0 < t #T < ô], with a drift equal to zero (0) and a variance equal to one (1).

Let us now consider, like Hull and White (1993a), the following rather general single-factor
yield curve model:

Where ì(•) represents the drift coefficient, which may be a function of time and the state
variable, and where ö(t) is a time-dependent function, ó(•) represents the diffusion coefficient,
which may be a function of time and the state variable, and dW is a Wiener process with the
following properties: (dW)  = dt, dtdW = 0 and (dt)  = 0. Furthermore, the spot rate is2 2

determined from the underlying process through the function F(t,y).  

An important class of models arise under the assumption that the diffusion coefficient is
independent of the state variable, i.e. ó(y,t) = ó(t) and that the drift coefficient is defined as 

 - where ê(t) is the mean-reversion parameter.

For this particular choice, the process y has a normal distribution. Therefore, I will denote this
class of models as normal models. By making appropriate choices for F(t,y) it is possible to
show that several existing models belong to this category of normal models. For F(t,y) = y we
obtain the extended Vasicek model from Hull and White (1990). By assuming  F(t,y) = e  wey

get the Black and Karasinski (1991) model and for F(t,y) = y , this will lead to the one-factor2

Quadratic model from Jamshidian (1996). Lastly, (for F(t,y) = y) we get the Ho and Lee
(1986) model for ê(t) = 0.

Using the arbitrage-free argument, it can be shown that the price of g(y,t,T) of an interest rate
derivative security at time t which has a payoff at time T satisfies the partial differential
equation:
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(2)

(3)

(4)

(5)

Where ë denotes the market price of risk.

The price g(y,t,T) of an interest rate derivative that has a payoff H(y(T)) at maturity T can be
calculated by solving the partial differential equation subject to the boundary condition
g(y,T,T) = H(y(T)) at time T - that is at expiry/maturity the value of the derivative security is
equal to the payoff at the time of expiry. 

The Feynman-Kac solution to formula no. 2 (if it exists) can be written as :2

Where the expectation is taken, conditional on the information avaiable at time t, with respect
to the risk-adjusted process:

Where  is a Wiener process on (Ù,F,Q), for dQ = ñdP and ñ is the Radon-Nikodym

derivative.

Using the Feynman-Kac formula the price of any interest rate derivative is given by the risk-
adjusted expectation of the discounted payoff. However, as the discounting term and the
payoff term are two correlated stochastic variables, this expectation is, in general, difficult to
evaluate. As shown by Karoui, Myneni and Viswanathan (1993) it is more efficient to use the
change of numerator techniques which in a sense moves the discounting outside the
expectation and then the expectation is taken under a different probability measure and only
with respect to the payoff at maturity. In connection which formula 3 this means that the price
g(y,t,T) can be written as:

 In general the term " Feynman-Kac" is considered a misnomer as it originally refers to the probabilistic2

solution to a narrower class of parabolic equations than the Cauchy problem, see Duffie (1996) Appendix E.
Typically formula 3 would be called the probabilistic solution to the PDE.    
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(6)

(7)

(8)

TWhere Q  is the probability measure that is associated with using the T-period zero-coupon
bond as numerator.

The result from formula 5 is obtained by using Girsanov’s theorem. In the rest of this chapter,
I will show an alternative derivation of this result, using the concept of fundamental solutions
of PDEs.

Let us now suppose that a function d(y,t,T,z) exists that satisfies a linear PDE in y and t (that
is a PDE like the one in formula 2), with boundary condition:

for all z and T. Formula 6 means that at time T the function d(y,t,T,z) will collapse into a
Dirac delta-function   centered at point z. If we now consider a boundary condition described3

by the function H(y(T)) at time T then we have that:

satisfies the partial differential equation, due to the linearity of the differentiation operator. 

Furthermore, the above equation also satisfies the boundary condition at t = T. This is true
since at t = T we have:

where the last equality follows from the definition of the Dirac delta-function.

This means that for any given boundary condition, we can use the function d(y,t,T,z) to
construct a solution to the PDE. For this reason, the function d(y,t,T,z) is called the
fundamental solution to the partial differential equation.

It is actually possible to give an economic interpretation of formula 7. The Dirac delta-
function can be thought of as the continuous time version of the payoff of an Arrow-Debreu

security. As ä(y - z) � 0 if only y = z and ,  we could say that the Dirac

delta-function gives a payoff worth 1 in the state  y = z and zero (0) elsewhere. This property
means that  d(y,t,T,z) can be viewed as the price at time t in state y of an Arrow-Debreu
security that has a payoff of 1 at time T in state y = z.

 See Wilmott, Dewynne and Howison (1993) chapter 5.  3
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(9)

(10)

(11)

If we now consider a discount bond, it is well known that this is a security that has a payoff of
1 in all states at maturity T. From this follows that the price at time t of a zero-coupon bond

that matures at time T (P(y,t,T))  is given by .4

If the economy is arbitrage-free, the prices of Arrow-Debreu securities cannot become
negative and prices of discount bonds are finite. These observations lead to another
interpretation for formula 7. More precisely it is possible to write the following relationship:

The function p(y,t,T,z) is positive and integrates by construction to 1 with respect to z. Any
function that integrates to 1 and is non-negative can be interpretated as a probability density
function. By this, it follows that formula 7 can be rewritten as:

Where the expectation is taken, conditional on the information avaiable at time t, with respect
to the density p(y,t,T,z), the density p(y,t,T,z) will in general differ from the transition density
of the risk-adjusted process of y from formula 4.

If we now combine this result with the relation from formula 3, where z represents y(T), we
get the following result:

TThat is, we have now expressed the Q-expectation as the discounted value of the Q -

expectatation of the time T payoff. Under the expectation E   the prices  Q

of interest rate derivatives with maturity T denominated in T-period discount bonds are

1martingales. This also holds true under , since for each t < T  < T we have:

 I will interchangely use the notation P(t,T), P(y,t,T) and P(q,t,T) for the price at time t for a disount bond4

that matures at time T - whenever applicable.
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(12)

(13)

(14)

(15)

Where the fourth equality follows from the law of iterated expectations, and the second and
fifth are obtained through the use of formula 10.

3: Deriving Fundamental Solutions to linear PDEs

When we want to find the fundamental solution to a linear PDE, we are actually seeking
functions d(y,t,T,z) that satisfy the partial differential equation and at expiry/maturity collapse
into the Dirac delta-function for all z. Instead of trying to obtain the fundamental solution
directly, I will solve the partial differential equation for the Fourier transformation of the
fundamental solution and find the fundamental solution from here.

Let us now consider the function D(y,t,T,ò) defined as:

Where this formula represents the Fourier transformation in the variable z and d(y,t,T,z),
where i is the imaginary number, for which i  = -1. The function D(y,t,T,ò) satisfies the same2

PDE as d(y,t,T,z) but the boundary condition is here given by:

Where the last equality follows from the definition of the Dirac delta-function. It follows from
here that the boundary condition for the function D(y,t,T,ò) is of a very simple form.

We can obtain the fundamental solutions d(y,t,T,z) by inverting the Fourier transformation
D(y,t,T,ò). This inversion is usually very simple if we use the following property. Using the
relation from formula 9, we can write the fundamental solution as a product of the price of the
T-period discound bond and a probability density function, hence we can rewrite formula 14
as:
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(16)

(17)

Where  is the Fourier transformation of the density function p(y,t,T,z). Apart from a

minus sign in the exponent (and, possibly, a factor ), characteristic functions coincide

with Fourier transforms of a probability density function in the continuous case and with
Fourier series in the discrete case. Furthermore, it is well known that it is possible to obtain
the moments of the underlying distribution directly from the charateristic function .5

If we assume that ò = 0, then we have that the boundary condition for D(y,t,T,ò) becomes
identical to the boundary condition for a discount bond, hence:

Where the last equality follows directly from formula 14.

From formula 16 it can be seen that from D(y,t,T,ò) we can obtain the bond price P(y,t,T) and
the Fourier transformation of the density function p(y,t,T,z) - that is  -and then we

can derive the density p(y,t,T,z) by inversion of the characteristic function . Once we have6

defined the bond price P(y,t,T) and the transitions densities p(y,t,T,z), it is possible to price
interest rate derivative securities by using formula 10. 

Before turning my attention to the Quadratic interest rate model, I will demonstrate this
technique for a more simple model, namely the extended Vasicek model from Hull and White. 

4: Deriving the Fundamental Solution for the Extended Vasicek Model   

As was mentioned in section 2, we get the extended Vaseicek model from Hull and White
(1990) by making the following specification of the drift-parameter, the diffusion-parameter
and the function F(t,y):

which results in the following risk-adjusted spot rate process:

 See Gut (1995).5

 If it is not possibly to invert the characteristic function then we can at least get useful information about6

the distribution, such as the moments or approximating distributions.  
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(18)

(19)

(20)

(21)

(22)

Let me employ the following change of variable  where 

and r(0) = ø(0) as y(0) = 0. Using Ito-lemma we can deduce that

. 

Under this change of variable the partial differential equation from formula 2 becomes of the
following form:

In order to obtain the price of a discount bond in this model, we have to solve the PDE in

formula 19 with respect to the boundary condition  . 

We guess that the solution is of the affine exponential type :7

By substituting this functional form into the PDE we get :8

The partial differential equation can be solved by simultaneously solving the following two
ordinary differential equations with respect to each other subject to the boundary conditions
A(T,T,ò) = iò and B(T,T,ò) = 0:

 “Guess” is probably the wrong term to use in this context, as we know from Hull and White (1990) that7

this actually is the case.  

 I will in this paper interchangely use the notation A(t,T,ò) and A, B(t,T,ò) and B and C(t,T,ò) and C -8

whenever applicable.  
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(23)

(24)

(25)

(26)

The solution for A(t,T,ò) and B(t,T,ò) can be shown to be given by :       9

Substituting this into formula 22 yields:

From the boundary condition for D(y,t,T,ò) we get the boundary condition for discount bonds
for ò = 0 and then we immediately obtain the price of a discount bond from equation 24,
namely:

and furthermore we see that the characteristic function of the density p(y,t,T,z) is given by:

It can now be observed that formula 26 actually is the characteristic function for the normal
distribution with mean M(t,T) and variance V(t,T). We therefore have that the fundamental
solution d(y,t,T,z) for the extended Vasicek model is given by:

 See Appendix A where the actual derivation is done. 9
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(27)

(28)

(29)

(30)

Now that we have the fundamental solution, it is possible to price interest rate derivatives with
the joint use of formula 10, formula 16 and the result from formula 27.

To illustrate this, let me show how to derive the price at time t of a call-option with expiry
date T , for t < T  < T, written on a discount bond which matures at time T. By assuming thatF F

y(T ) = z we can write the payoff as:F

Where K is the strike-price.

The price of the option can now be written as:

From formula 28, it can be deduced that the payoff  H(z) is positive for all z that satisfies 

.       

If the integration in formula 29 is done over the region for positive values of z, we can write
the price of the call-option in terms of the cumulative normal distribution, hence:

As  we get :10

 Later in the paper, this will become obvious, see section 6 and Appendex E.  10
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(31)

(32)

where the expression in formula 31 also can be found in Hull and White (1993c). The price of
a put-option is now easily derived by using either the put-call parity or the symmetric
properties of the normal distribution.

Now I will turn my attention to the Quadratic interest rate model, and in the next section show
how the price of a discount bond can be derived using the principle of fundamental solutions.
Furthermore, I will show how to derive the price of a call-option on a discount bond in a
easier expression than the one given in Jamshidian (1996) as it turns out that it can be
expressed in terms of the cumulative normal distribution. I will then briefly discuss the pricing
of caps, swaptions and options on coupon bonds in the Quadratic interest rate model
compared to the extended Vasicek model. 

After that I will discuss a discrete time implementation of the Quadratic interest rate model in
comparison with the Hull and White (1994) trinomial approach. In section 8 I will focus on
Monte Carlo simulation of spot-rate processes with time-dependent parameters. 

5: The Quadratic Interest Rate Model           

As mentioned in section 2, we get the Quadratic interest rate model by assuming that F(t,y) =
y . Furthermore, I will only allow for one time-dependent parameter in the SDE for y, that is:2

This property to allow only for one time-dependent parameter in the stochastic differential
equation and use that for matching the initial term structure is also the approach advocated by
Hull and White (1994) .  11

Using the arbitrage-free argument, it can be shown that the price of g(y,t,T) of an interest rate
derivative security at time t which has a payoff at time T satisfies the partial differential

 In the case of the Quadratic Interest rate model we actually need a deterministic volatility for the11

underlying state-variable - this issue is addressed in Appendix F. 
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(33)

(34)

(35)

(36)

(37)

equation:

We will employ the following change of variable :12

Under the change of variable, we have that the spot rate is governed by the following SDE:  

Which means that the price of g(y,t,T) of an interest rate derivative security at time t has to
satisfy the following PDE:

From the last sections, we know that in order to get a solution for an interest rate derivative
security, we "just" have to find the expression for D(q,t,T,ò) as the price of discount bonds and
the density p(q,t,T,z) can be found by inverting the characteristic function obtained through a
Fourier transformation. 

Using the technique employed in the last section we postulate that the functional form for
D(q,t,T,ò) is given by:

which satisfies formula 36 subject to the boundary condition .

Plucking formula 37 into formula 36 we have that the partial differential equation can be
solved by simultaneously solving the following three ordinary differential equations with
respect to each other subject to the boundary conditions A(T,T,ò) = C(T,T,ò) = 0 and B(T,T,ò)

 As will be apparent later in this paper, this change of variable will make a discrete time version of the12

model easier to implement.   
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(38)

(39)

(40)

= -iò:

The solution for A(t,T,ò), B(t,T,ò) and C(t,T,ò) can be shown to be given by :       13

Where:

Substituting this into formula 37 yields:

 See Appendix B for the proof.  13

34



The normal class of arbitrage-free spot-rate models

(41)

(42)

(43)

(44)

From the boundary condition of D(q,t,T,ò), we can derive the price for a zero-coupon bond,
and we obtain:

As in  the extended Vasicek case, we see from equation 41 that the terms containing ò can be
recognized as the characteristic function for the normal distribution. This leads us to conclude
that under the T-forward adjusted probability measure the probability density function
p(q,t,T,z) is equal to a normal probability function, which means that the fundamental solution
d(q,t,T,ò) for the Quadratic interest rate model can be expressed as:

That is the density for the Quadratic interest rate model is identical to the density for the
extended Vasicek model, except for the definition of M(t,T) and V(t,T) - as they are both of
the normal class.

As in section 4, we are now in a position were we can price interest rate derivatives by a joint
use of the density from formula 43 and formulas 10 and 16.

To illustrate this, let me again focus on the pricing at time t of a call-option with expiry date
T , for t < T  < T, written on a discount bond which matures at time T. By assuming that y(T )F F F

= z we can write the payoff as:

Where K is the strike-price.

The price of the option can now be written as:
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(45)

(46)

(47)

If we integrate formula 45 for all z for which the payoff H(z) is positive, we will be able to
express the price of the call-option in terms of the cumulative normal distribution. 

It follows directly from formula 44 that z is defined as the root in a second order equation,
more precisely we find that z is positive for values of z lying in the following interval:

From this relation it it clearly seen that for Dis # 0, the payoff H(z) will never be positive  -
that is the value of the option has to be equal to zero (0). If instead Dis > 0, we can integrate
formula 45 over the region Lower < z < Upper. If this is done, we obtain the following
analytical expression for the price of a call-option :14

The same procedure can be used to derive the formula for a put-option, see Appendix C.

Quadratic interest rate models have also been analysed in for example Leblon and Moraux
(2009) and Leippold and Wu (2001). However, they only consider the quadratic interest rate
model for the case of constant parameters - that is their representations is not defined so it by
construction match the initial yield-curve as is the case here.  

Earlier examples of quadratic models - for the case of constant parameters - is the double
square-root model of Longstaff (1989), the extended (and corrected) version from Beaglehole
and Tenney (1991) and Beaglehole and Tenney (1992). One can also mention the SAINTS
model of Constantinides (1992), where the pricing kernel is being defined as exogenously
specified as a time-seperable quadratic function of the Markov process.

The paper (that to our knowledge) takes the analyses of the quadratic interest rate model
furtherst is Leippold and Wu (2001). They for example manage to obtain closed-form solution

 See Appendix C where the derivation has been made.14
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(48)

for European options on bonds, which however require that one has to perform a numerical
inversion of a Fourier transform. As comparison Jamshidian’s (1996) expression for the price
of an option on a discount bond was expressed in terms of the non-central chi-square
distribution. See also Andersen and Piterbarg (2010), section 12.3.

As it is possible to get a (nearly) closed form solution for both the price of a discount bond
and the price of an option on a discount bond in the Quadratic interest rate model, it follows
directly that a whole range of instruments can also be priced analytically. As examples, I can
mention coupon bonds, Calls/Floors and Swaps. This is of course also possible in the
extended Vasicek model but in the extended Vasicek model we are also capable of deriving
closed form solution for the value of swaptions and options on coupon bonds, see Jamshidian
(1989). In order to value swaptions or options on coupon bonds in the Quadratic interest
model it does not seem possible to derive closed form solutions, instead we could use
numerical integration in order to solve the following equation:

where formula 48 gives the price at time t of a call-option that expires at time T , written on aF

n jcoupon bond that matures at time T , for t < T  < T  and j å {1,2,....,n}.F

Another possibility is to discretize the process in the manner of Hull and White (1994) and
then price interest rate contingent claims by backwardation. This procedure is quite flexible
and allows us to price claims with American style features  (backward path-dependency), so15

for that reason I will show how to employ this technique for the Quadratic interest rate model
- this is done in section 7.   

6: Arbitrage-free pricing in the Quadratic interest rate model

The reason for incorporating a time-dependent parameter in the drifts-specification as was
done for the extended Vasicek model in formula 18 and for the Quadratic interest rate model
in formula 32, was to be able to use the initial term structures as input and then price all other
instruments using a no-arbitrage argument. The purpose of this section is to show how ø(t) is
to be chosen so that the model by construction matches the initial term structure.

I will here only concentrate on the Quadratic interest model as the extended Vasicek model
with respect to this reformulation has been analysed in Kijima and Nagayama (1995).

 For example Bermudan options.15
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(49)

(50)

(51)

(52)

The Heath, Jarrow and Morton framework is my starting point here as this framework by
construction matches the initial term structure, and then I will rewrite the Quadratic interest
rate model so it is consistent with the procedure of HJM.

Let me as HJM start by defining the forward rates:

We have that P(t,T) can be expressed as:

Plucking this expression into formula 49 yields:

where the last part in formula 51 follows directly from equation 5. As a consequence, it is

Tobvious that under the Q - probability measure the expected instantaneous forward rate at
time T is given by the spot rate at time T.

We have that  and furthermore, we know from the last equation that

Tunder the T-adjusted probability measure the instantanous forward rate is equal to the Q -
expected spot rate, hence we can write r (t,T) as :F 16

For t = 0 we get that q(0) = 0 because ø(0)  = r(0), which means:2

 In Appendix E the approach that leads to this result is shown with respect to the extended Vasicek16

model. 
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(53)

(54)

(55)

By re-arranging terms in formula 53 we find that ø(T) is of the following form:

Which is only valid when . 

This property clearly means that the model cannot be fitted to all initial term structures if

.

From the last section, we know that B(t,T) is a function of ø(T), hence formula 54 is an
integral equation in ø(T). In Appendix D, it is in this respect shown that it is possible to
express ø(T) as:

Now, following the approach in Jamshidian (1996), it is more efficient to express A(t,T) and
B(t,T) in formula 40 in terms of the initial term structure and B(0,T) and A(0,T). As B(t,T)
and A(t,T) are specified for now, we are in a position where we have to use a numerical
integrations technique for every value we need of A(t,T) and B(t,T). 

1 1In the rest of this section, I will therefore show how to evaluate P(T ,T) in terms of P(0,T )
and P(0,T).  

Proposition no. 1

1 1 1 1We find generally that A(T ,T), B(T ,T) and C(T ,T) at time t for 0 < t < T  < T can be
written as:
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(56)

(57)

(58)

(59)

For t = 0 we find that A(0,T), B(0,T) and C(0,T): 

Proof:

We have the following property (see Appendix E):

Plucking in the expression for P(t,T) from formula 37 and the definition for 

1from formula 5 in Appendix C given T  = T  and re-arranging terms we get:F

1 1If we use the definition of M(t,T ) from equation 41 (given T  = T ) and collecting terms ofF

equal power in q, we get:
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(60)

(61)

(62)

(63)

Now equation 56 follows directly from here.

For t = 0 we have for all T > 0 that A(0,T) = ln P(0,T) (as q = 0 for t = 0) and we also have

0that G  = ø(T) - F(T), using this we can rewrite formula 60 as:

0 0where F  is F evaluated at t = 0 and G  is G evaluated at t = 0.

The only unknown factor in this relationsship is B(0,T) for all T. In order to solve this
problem we will employ the same technique we used in Appendix E with respect to the
extended Vasicek model.  

From equation 53 we have an expression for r (0,T), but we are also able to describe theF

instantanous forward rate by using formula 49, hence:

TUsing formula 62 and collecting terms of equal power in q we find that B (0,T) can be written
as follows:
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(64)

0 TUsing the knowledge that G  = ø(T) - F(T), we can simplify the expression for B (0,T) as:

Formula 57 now follows, which completes the argument.

Qed.

It follows from this that it is only necessary to valuate B(0,T) for all T - that is we can store
the calculations. 

7: A Discrete Time Version of the Quadratic Interest Rate Model    

If we want to price instruments with American style features - that is path-dependent
securities, or we need to price European style instruments where no analytical expression is
available we can build a discrete model.

One possibility is to discretize the PDE using the trinomial model from Hull and White (1994)
which of couse is directly applicable for the Quadratic model. It should nevertheless with
respect to the Hull and White trinomial model be mentioned that it might not be possible to
use the analytical expression for the arbitrage-free bond prices in connection with the
trinomial approach . 17

What I mean is that if for example you want to price a 3-year option on a 10-year bond you
might have to build the lattice all the way up to 10-years instead of just to 3-years. The reason
for that is that the Hull and White trinomial model is modelled in the Ät-interest rate whereas
in the analytical bond price expression you use the continous time interest rate. This
difference in perspective means that you have to convert the Ät-interest rate given in the
lattice to the continous time interest rate that you need to use in the analytical expression for
the bond price. This conversion is in many cases not possible, as the continous time interest
rate is the solution to a second order equation which might not have a positive discriminant.   

For that reason, we will define a new method for building discrete time models for one-factor
interest rate models. The idea is to build a lattice in the continous time interest rate instead of
the Ät-interest rate.   

We will construct a grid which is defined in changes in q and t. The steps along the y-axis will

ibe Äq and along the x-axis Ät. We will define a node (i,j) on the lattice as a point where t  =

jiÄt and q  = jÄq. Every node on the grid will be an approximation to the true value of the

i,jsecurity, and will for node (i,j) be denoted as g (t,q). From Clewlow (1992) we have that in

 Which in general is a very efficient method.17
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(65)

(66)

(67)

the explicit finite difference technique the partial derivatives of g(t,q) at node (i,j) are
approximated as follows:

In order to solve the PDE from equation 36 (under the risk-adjusted process) we have to
impose the restrictions from formula 65 on every node (i,j) - that is the approximations of the
partial derivatives have to satisfy the partial differential equation exactly. By combining the
last equation with formula 65 we find the following approximated value for g(t,q) in node
(i,j):

Along the lines of Hull and White (1994) we impose  the following relationship18

u m d, hence we can rewrite p ,p  and p  as :19

 See Hull and White (1994) for the motivation.18

 It should here be stressed that ê Ät is defined as . 19 *
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(68)

u m dFrom these equations it follows that the numbers p ,p  and p  are positive and sum to 1 if

, which allows us to conclude that they can be recognized as branching

probabilities. In order to prevent the probabilities from becoming negative we cannot use a
lattice that is arbitrarily large, more precisely, we have to change branching process at some

shiftlevel j . 

We will therefore employ the following rule for the change of branching process: at some

level   we will from node (i,j) jump to either node (i+1,j), (i+1,j-1) or (i+1,j-2)

that is the grid will be bounded at j  - where we will denote this the falling branching process.+

We will also at some level   jump from node (i,j) to either node (i+1,j+2),

(i+1,j+1) or (i+1,j) that is the grid will be bounded at j  - where we will denote this the rising-

branching process. 

For j respectively equal to -1 or +1 we find that the probabilities in the falling and the rising
branching process are defined as:

Where the probabilities in the falling branching process are positive and sum to 1 if   

, and the probabilities in the rising branching process are positive and
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sum to 1 if  .. 20

This trinomial approach defined above is quite similar to the trinomial lattice model from Hull
and White (1994). Both numerical approximations methods are equal to the first order of Ät.
As mentioned earlier, the main difference is that in the trinomial model that is implemented

here the spot interest rate is modelled directly using , whereas in the Hull and

White trinomial model it is the Ät-period interest rate that is modelled.

This difference has the following two implications - one positive and one negative: Firstly, in
the method advocated here we are able to use the analytical expression for ø(t) (from formula
55) which means that we do not need to use forward induction in building the lattice - which
clearly speeds up the calibration. Secondly, the method devised here has that undesired
property that the initial term structure is not matched by construction - as is the case when
using forward induction in the Hull and White trinomial approach . We will for this reason21

prefer (if possible) to use the Hull and White approach.

For the pricing of generel path-dependent interest rate derivatives a lattice method might not
be the most efficient technique . 22

For the general problem of handling path-dependency, two different kinds of method can be
employed:

Monte Carlo sampling from the lattice
Monte Carlo simulation

In this paper I will not discuss how to employ efficient sampling techniques in connection
with lattice based methodology, this will be left for future research.

In section 8 I will for that reason show how MC techniques can be applied to one-factor
interest rate models with a time-dependent drift part .23

 In practise we define  - that is we change branching process at the first20

given opportunity.

 However it is worth mentioning that the initial yield curve is only matched at discrete maturity-points. 21

 Hull and White (1993b) have shown that certain kinds of path-dependency can be handled in a lattice-22

based model. Their method is however not easy to generalise.

 Extending the method to the case of time-dependent diffusion parameters is however straightforward,  23
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8: Time-dependent SDEs and Monte Carlo simulation

The main idea of the Monte Carlo method can be explained by a simple example. Consider
the valuation of the expected value of a random variable X distributed according to its
probability density f(x). Suppose we can, by whatever means, sample a point from the
distribution of X, then a direct way to calculate the expectation of X is to independently
sample a large number of points, say N points, from the distribution of X and compute the
arithmetic mean of these points, as:

iWhere x , for i = 1,2,....,N, are the points sampled from f(x). If the second moment of X is

Nfinite, then by the law of large numbers, X  6 E(X) as N 84, with probability 1. This means
that for a sufficient large number of N and any particular realisation of the set of sampled
points from f(x), the arithmetic mean of these points is very close to the mean of X. In fact,

N Nthe mean of X  is the same as the mean of X, and the variance of X  is:

iSince all x  are identically and independently sampled from f(x), the correlation among these

i i Nx  is zero and the variance of x  is equal to that of X. Therefore Var(X ) = Var(X)/N. This
relationship is essential to the understanding of Monte Carlo. On one hand it ensures that as
the number of sample points increases, the error of the estimated expected value of X
decreases. On the other hand, it shows the difficulty of the Monte Carlo method in achieving a 

high degree of accuracy: the standard deviation descreases only as .

As the complexity of traded instruments has grown, Monte Carlo techniques have become
increasingly important, a trend that is likely to continue in the future. This is particularly true
in the fixed income markets, where multiple factors and path-dependency are embedded in a
wide variety of new structured or mortgage-based contracts. Despite its increasing importance
and wide applicability, the Monte Carlo method has received much less attention in the
litterature than lattice models. One reason for this is, of course, the low order of convergence

 which tends to make practical usage painfully slow.

In modern finance, the prices of the basic securities (the underlying state variables) are often
modelled by specifying one or more Stochastic Differential Equations (SDEs). The pricing of,
for example, an option that depends on one or more of these basic securities can, under the
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assumption of no arbitrage, be expressed as the expected value of its discounted payouts.
Where this expectation is taken with respect to an appropriate transformation of the original
probability measure.

The Monte Carlo method lends itself naturally (as shown above) to the evaluation of security
prices represented as expectations. The Monte Carlo approach consist of the following steps:

Simulate sample paths of the underlying state variable/s (underlying asset
price and interest rate) over the relevant time horizon. Where the simulation
is performed under the risk-neutral measure.  
Evaluate the discounted cash-flows of the security on each sample path, as
determined by the structure of the security in question
Average the discounted cash-flows over the sample paths

In principle this method computes a multi-dimensional integral - the expected value of the
discounted payouts over the space of sample paths.

It might be worth pointing out that in the case of time-dependent SDEs for interest rate
models we have to condition the path-sampling process - a method to solve this problem will
be developed  later in this section.   

Before continuing, let me for a moment dwell on the pricing of contingent claims using the
risk-neutral density pricing approach . For a derivative asset with payoff defined by H(y(T))24

and price g(y,t,T) we have:

Where p(y(T)) is the risk-neutral density function. Formula 71 represents the price at time t of
a contingent claim that has a payoff defined by H(y(T)) at time T which is a function of the
process that governs the underlying state-variable - here represented by y.  

Since the risk-neutral density pricing approach expresses all asset prices as the discounted
value of their expected payoff formula 71 is identical to formula 5. Equation 71 (and therefore
equation 5) is very powerful due to the fact that any derivative security may be priced by this
approach . 25

 The risk-neutral density function p(y(T)) is also known as Green’s function or the fundamental PDE24

solution. p(y(T)) also satisfies the Kolmogorov forward (or Fokker-Planck) equation with a boundary condition given
by the Dirac delta-function, see Cox and Miller (1965 chapter 5) and sections 2 and 3 in this paer.   

 This is also true in the case of multivariate contingent claims. The only difference between valuing25

multivariate and univariate claims is that the payoff function for the multivariate claims involves the prices of
multiple underlying assets, and the expectation is taken over all the underlying asset prices. The solution to formula
71 is now found by computing a multi-dimensional integral.         
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The central point in the valuation of derivative securities is the expression for the risk-neutal
density function p(y(T)) - which is implied from the SDE/s for the underlying state variable/s. 

In this paper we have considered two different assumptions about the spot-rate process -
which both turned out to imply a normal risk-neutral density function . 26

 
In connection with the pricing of stock-options the most common assumption is to assume a
lognormal risk-neutral density for the stock price - that is adopt the assumption from Black
and Scholes (1973). 

The normal risk-neutral density assumption for interest rate models and the lognormal risk-
neutral density assumption for stock models is not neccesarily the appropriate assumption to
use, as departures from both the normality and lognormality are well documented in many
financial time-series, see for example Bollerslev, Engle and Nelson (1993). These
assumptions are primarily used for practical reasons because of their great tractability.

An alternative approach could therefore be to use a non-parametric approach in the
determintion of the density function. One approach could be to use the kernel estimator to
determine the empirical density function, for additional information see Scott (1992 chapter
6), Ait-Sahalia (1996a,1996b) and Campbell, Lo and Mackinlay (1997 chapter 12 section
12.3) . 27

An important issue in connection with Monte Carlo simulation is how to improve the
efficiency without the need to make N (the number of paths) unreasonable large - and
therefore computation time too slow for practical purposes.   

Using Monte Carlo simulation we can express the value of g(y,t,T) as:

Where K is the dimension of the problem - that is the number of time-steps used in the

idiscrete time approximation of the SDE. g (K) is the discounted value of the payoff

iconditioned on the ith sample path. Furthermore we have that g (K) is derived from the
random variables, as:

 Assuming a normal risk-neutral density function for the interest rate model does not neccesarly imply26

that interest rates can become negative - it does imply that the state variable can become negative but the probability
of negative interest rates depends on the relationship between the state variable and the spot-rate (se section 2).    

A number of techniques for estimating state prices have been proposed in the context of option pricing,27

see for example Jackwerth and Rubenstein (1996) and Rosenberg (1997). Both these approaches imply the risk-
neutral density from quoted options prices. Other related works are Andersen and Brotherton-Ratcliffe (1998) which
utilises a Crank-Nicholson finite-difference scheme and Dupire (1994) who uses the explicit finite-difference scheme. 
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1 2 KWhere z (i), z (i),...,z (i) is an independent sequence of standard Gaussian variables and 
S: U  6 U is a well-behaved function which is a function of the used discretization scheme . k 28

To enhance the efficiency of the Monte Carlo simulation, two routes can be taken (or
combinations hereof):

Reduce the variance of the sampled variance

Overcome the  barrier

Different variance reduction techniques have been developed to increase precision. Two of the
classical variance reduction methods are the control variate approach and the antithetic variate
method. Recently, moment matching, importance sampling, empirical martingale simulation
techniques, the Brownian-Bridge method, conditional Monte Carlo methods and variance
reduction by Girsanovs transformation have been introduced in finance litterature, see for
example Boyle, Broadie and Glasserman (1995),  Duan and Simonato (1998), Caflisch,
Morokoff and Owen (1997) and Schoenmakers and Heemink (1997) .29

To overcome the  barrier a Quasi-Monte Carlo simulation can be employed. This

method uses a determinstic sequence that is more uniform than random . 30

This can best be explained by rewriting equation 73 as:

1 2 KWhere u (i), u (i),...,u (i) is an independent sequence of standard uniform U(0,1)-variables
and Q: U  6 U is a well-behaved function . k 31

 By this we mean - which kind of discretization has been used for the SDE - this will be explained in28

more detail later in this section.

 In Appendix G, I will briefly explain the different variance reduction techniques used later in this paper.  29

 Using the word random - does not mean truly random as the “random” numbers are generated by a30

deterministic algorithm and are described as pseudorandom numbers. The pseudorandom number generator used in
the examples in section 9 is an example of the linear congruential kind introduced in 1948 by the mathematician D.
H. Lehmer. It depends on two numbers, 16.807 and 2.147.483.647. The first is 7 , a primitive root of the second,5

which is Eulers prime, 2 . We have repeated the results obtained in this paper using the Mersenne twister (see31

http://en.wikipedia.org/wiki/Mersenne_twister), but the results we get are nearly identical.

 The transformation from Gaussian to uniform variates can be accomplished by inverting the cumulative31

Gaussian distribution or through the inverse of the Box-Mueller transformation.
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Using 74 the expectation of g(y,t,T) can be written as an integral over the k-dimensional
hypercube:

Formula 75 is identical to formula 72 except that we have not specified which sampling
scheme has been used. If the sampling scheme is Monte Carlo (that is, based on a
pseudorandom number generator) we know that the expected error in formula 75 is

independent of the dimension k and proportional to . To improve this convergence

criterium, several deterministic sampling algorithms have been suggested instead of Monte
Carlo simulation. 

Specific algorithms for generating quasi-random numbers has been suggested, for example
Sobol (1967), Halton (1960) and Faure (1982), see Press, Teukolsky, Vetterling and Flannery
1992 (chapter 7) for a good description of these methods.

Due to Niederreiter (1992 page 20) one can show (the Koksma-Hlawka Inequality) that under
technical conditions on the function Q, the Sobol and Halton sequences generate errors which

decrease with N  - at least as .  -1 32

For small dimensions the discrepancy for quasi-random number generators appears to be

, ignoring logarithmetic factors, for all N. For large dimensions, the discrepancy

behaves initially like - as for the random number sequence - converging only

to for very large values of N.

The value of N appears to grow exponentially with the dimensions - which implies that in
high dimensions - unless N is extremely high - quasi-random number sequences are no more
uniform than random number sequences. Thus the Koksma-Hlawka bound does not imply that
quasi-random number sequences are more efficient than random number sequences for
moderate values of N and large dimensions K.

It is usually the case that Quasi-Monte Carlo methods are superior to Monte Carlo simulation

 Which is smaller than the error for Monte Carlo simulation because the error bound  is32

smaller than  as N 6 4. 
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(or at least no worse), see for example Paskov (1996), Acworth, Broadie and Glasserman
(1997) and Caflisch, Morokoff and Owen (1997) - even in high-dimensionel situations.
Furthermore, the results from Paskov (1996) indicate that the Sobol sequence frequently
outperforms other kinds of quasi-random number sequences. 

So far we have discussed varies aspects in connection with Monte Carlo simulation and
mentioned ways to improve the efficiency. Let us now turn our attention to the SDE we wish
to simulate:

which can be recognized as being identical to formula 1 - for the diffusion coefficient defined
as ó(y,t) = ó and the drift coefficient defined as  . 

For the purpose of simulation let us instead consider the following diffusion process (SDE):

Generally speaking, a diffusion process is an arbitrary strong Markov process with continous
sample paths. In our framework, a diffusion process is given as a strong solution  of an SDE33

driven by the underlying Brownian motion W.       

With respect to discrete time approximations of continous time processes, it is important to
distinguish between strong and weak convergence. The weak convergence criterion does not
(as the strong convergence) require a pathwise approximation of the Ito-process, but only an
approximation of the probability distribution (see Kloeden and Platen (1995 chapter 4, section
9.6 and 9.7).   

In Kloeden and Platen (1995 parts V and VI) it is shown that the strong and weak convergence
criteria leads to the development of different sampling schemes which are only efficient with
respect to one of the two criteria. This means that a given sample scheme usually has different
orders of convergence with respect to the two criteria. 

We will here consider three different strong convergence sampling schemes, the Euler
scheme, the Milstein scheme and the 1.5 strong Taylor scheme. Futhermore we will consider
two weak convergence sampling schemes, the Euler scheme and the 2. order Milstein scheme. 

 A strong solution to formula 77 requires that the SDE  satisfies the Lipschitz condition, the linear growth33

bound and initial value condition. It is furthermore required that the coefficient in the SDE is continuous - with imply
measurability, see Kloeden and Platen (1995, sections 4.5 and 4.6).   
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Before I go through the three different sampling schemes let me make the following
definitions. 

We will here consider a time-discretization ô of the time interval [t,T]:

Where K denotes the number of discretization intervals . As we only consider

the case of equidistant discretization points, we have that    for all k.  

8.1 The Euler scheme

The Euler discretization scheme is given by:

Where  is the N(0,ä) distributed increments of the Wiener process W on 

k k+1[ô ,ô ].

This discretization scheme represents the simplest strong Taylor approximation and attains the
order or convergence 0.5, see Kloeden and Platen (1995 section 10.2). 

Furthermore, we have that the Euler weak approximation is of a form identical to equation 79,
however, here the order of convergence is 1, see Kloeden and Platen (1995 section 14.1).      

8.2 The Milstein scheme - strong 1. order  Taylor approximation 

The Milstein discretization scheme is defined as:

which (as seen from the equation) is obtained by adding the term  to the Euler

scheme.

In Kloeden and Platen (1995 section 10.3) it is shown that the Milstein scheme converges
strongly with order 1.

8.3 The order 1.5 strong Taylor scheme
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The order 1.5 strong Taylor scheme can in abstract form be written as :34

Where the footsigns (x) represent partial derivatives with respect to x. The additional random
variable ÄZ is defined by the following double integral:

where we have that the random variable ÄZ is distributed as  . Furthermore we

have that the covariance .

For our particular SDE - given by formula 77 - we can simplify formula 81and get the
following expression for the order 1.5 strong Taylor scheme:

8.4 The order 2 weak Milstein scheme 

The order 2 weak Milstein scheme can in abstract form be written as :35

Where the footsigns (x) represent partial derivatives with respect to x. The variable ÄZ is

 The order of convergence is shown in Kloeden and Platen (1995 section 10.4).34

 The order of convergence is shown in Kloeden and Platen (1995 section 14.2)    35
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defined in formula 82. Comparing formula 84 to formula 81 it is easily seen that the order 2
weak Taylor approximation is equal to the order 1.5 strong Taylor approximation if the last
term in line 2 in equation 81 is removed .  36

For our particular SDE, we actually have that the order 1.5 strong Taylor approximation is
equal to the order 2 weak Taylor approximation - that is equal to formula 83. 

Before deciding to use either the higher order strong-or weak-discrete approximations  it is37

important to clarify the aim of a simulation. The following question should be answered:

Is a good pathwise approximation of the Ito process required or is the approximation of some
functional of the Ito process the real objective?

In many cases, also the examples considered in section 9, the weak discrete-time
approximation is the appropriate one as we in many cases are just interested in the probability
distribution and its moments at given times T .         38

An interesting point to emphasize at this point is that equation 77 is actually a fairly general
formulation  for one-factor interest rate models with a time-dependent drift term as we by39

making appropriate choices for F(t,y) (as mentioned in the beginning of section 2) get the
Extended Vasicek model from Hull and White (1990) (F(t,y) = y), Black and Karisinski
(1991) (F(t,y) = e ), the Quadratic interest rate model (F(t,y) = y ) and the Cox, Ingersoll andy 2

Ross (1985) model for . 

From the points discussed so far it is possible to conclude that the efficiency of simulating the
diffusion process defined by the SDE in formula 77 is a function of the following:

The discretization scheme
The Monte Carlo simulation procedure         

In section 9 we will for the Extended Vasicek model and the Quadratic interest model for the
case of a call and put option on a zero-coupon bond analyse some combination of

 Higher order strong-and weak discretization schemes can of course also be derived but for strong36

schemes above 1.5 and weak schemes above 2 the expressions get pretty complicated. As the expansions to higher
order approximations of the SDE leads to non-trivial multiple stochastic integrals. An atractive alternative to the
truncated Taylor series expansion - at least in the case of weak discretizations shemes - is to use Richardson or
Romberg extrapolation, see Kloeden and Platen (1995 page 285).   

 We are here referring to discrete schemes of higher order than Euler schemes.  37

 A situation where we would be interested in a pathwise approximation of the Ito process is in the case of38

filtering. 

 Expanding to the case of more complex drifts specifications or for that sake diffusion coefficients is39

relatively straightforward. This issue will however not be pursued here - as the formulation chosen here covers the
typical assumptions used in the literature.
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discretization schemes and Monte Carlo methods. Furthermore we will as comparison price
the same instruments analytically and by using a lattice approach.

Before that we will in the rest of this section show a method to condition the path-sampling
process in order to ensure that the initial yield-curve is matched.

8.5 Constrained Monte Carlo simulation   

Our basic SDE is (as shown above) defined as:

Let us assume that we have split the time interval [t,T] into K discretization intervals of an

equal size, that is . Furthermore we assume that we have performed N simulations

of the SDE. 

That is we have an NxK matrix of simulated values for x - which we will denote the
diffusion-matrix. 

It might be worth mentioning that the procedure described below is independent of the chosen
discretization scheme and the Monte Carlo method employed in the construction of the
diffusion matrix - which of course makes the procedure extremely general and quite flexible.

Given is also the yield-curve (or equally the discount function), which means that we know
the price P(t,kä), for all k = [1,K] and where P(t,kä) = 1 for t = kä.

We now wish to construct a new diffusion matrix (RD-matrix) for the spot-rate, F(t,y) = r,
where y = x + ö(t). That is we now introduce the correct, time-varying drift. To do this we
will change the values of each cell in the diffusion-matrix. The change of the diffusion-matrix
will however be equal for all k’s as ö(kä) is only time-dependent and not path-dependent.

The method - which is a forward-induction principle - can be described as : 40

Step 1: Column 1 in the RD-matrix is known from the yield-curve and is defined as 

1. Where we therefore have that ö(1) = r .

Step 2: We will now introduce the concept of Arreu-Debreu prices. 

An Arreu-Debreu is a security that has a payoff of 1 at time kä in state n = [1,N]. In

 Forward-induction in connection with Monte Carlo and time-dependent spot-interest rate models might40

have been around for some time but until now this technique has not (as far as I know) been described in the
literature. 
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general we have that the vector of Arreu-Debreu prices at time kä can be written as:

    

We have that Q(t,kä) = 1 for t = kä, and  represent the forecasted vector of spot-

rates for the period kä - (k+1)ä.  

Step 3: The true vector of spot-rates can now be derived from the following equation:

     

In some case we can solve this expression directly for ö(kä) - this is for example the
case in the Extended Vasicek. When this is not the case we need to estimate ö(kä)
using a minimization algorithm - this can however (in most cases) be done in 1-2
iterations.

In some cases it is even possible to derive an analytical expression for ö(t). In these
cases (as pointed out in section 7) we did not need to use forward-induction in
calibrating the lattice as we could determine ö(t) analytically. This is however only
possible for the Quadratic interest rate model, see formula 55 and for the extended
Vasicek model, see Appendix E formula 6.

This approach could also be utilized here. If that was the case the same implications
mentioned in connection with the lattice method in the end section 7 would apply
here.            

Step 4: Repeating Step 2-3 for all k > 1 builds the diffusion RD-matrix. Where the following
equation by construction is now true for all k = [1,K]:

 

kWhere RD  is the k’th row in the diffusion RD-matrix with a length equal to N. This
equation just states that the average price from the sampled process is equal to the
corresponding market price for all k = [1,K].   

From the description above it follows that the method designed here - for the case of path-
dependent simulation of the interest rate process - is very similar in spirit to the Hull and
White (1994) lattice-building procedure.  

9: Some pricing examples

In this section we will calculate European options-prices for both the Extended Vasicek model
and the Quadratic Interest rate model. 
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In this connection we assume that the yield-curve is defined as: .

Given this term structure we will now price 3-year call-and put-options where the underlying
security is an 8-year zero-coupon bond. 

From the yield-curve we can deduce that the forward-price P(3,8) = 67.53. Therefore we have
chosen to calculate the option-prices for the following selection of strike-prices: 52.53, 62,53,
67.53, 72.53 and 82.53. For both models we have assumed that ê = 0.05 and ó = 0.01.

In table 1 we have shown the analytical values of the options for both the Extended Vasicek
model and the Quadratic Interest rate model:

Table 1: Analytical Option Prices

Call option prices Put option prices 

Exercise Prices The Extended 
Vasicek Model

The Quadratic
Interest Rate

Model

The Extended
Vasicek Model

The Quadratic
Interest Rate

Model

52,53 12,877 12,877 0,000 0,000

62,53 4,576 4,311 0,283 0,019

67,53 1,647 0,847 1,647 0,847

72,53 0,354 0,015 4,647 4,307

82,53 0,003 0,000 12,881 12,877

In the case of the Extended Vasicek model we have also calculated the option prices by
performing a simulation under the T -adjusted probability measure - where T  symbolises theF F

expiry-date of the option (that is T  = 3). More precisely we have transformed the ExtendedF

Vasicek model into the Heath, Jarrow and Morton framework - which mean that it is possible
to write the forward-price P(T ,T) as:  F

pWhere ó (t,T) is the bond-price volatility - which is related to the forward-rate volatility
through the following relationship:

What we have done is simulated the forward-price P(T ,T) using equation 86. We haveF
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employed the following Monte Carlo simulation methods: Crude Monte Carlo, Antithetic
Monte Carlo, Stratified Sampling and Empirical Martingale Simulation (EMS) .41

We have performed B batches of N simulations, for B = 100 and N = 1000. Provided that B is
sufficiently large, the Central Limit Theorem implies that the batch error is approximately
Gaussian. The sampled variance can under this assumption be calculated as:

Where  is the estimated/simulated option-price for the b’th batch-run.

Table 2: Simulated Call-option prices in the Extended Vasicek Model

Excerci
se
Price 

Crude
Monte
Carlo

Std.
Error  42

Antith
etic
Monte
Carlo

Std.
Error

Stratifi
ed
Samp-
ling

Std.
Error

Empiri
cal
Monte
Carlo
Simula
tion

Std.
Error

52,53 12,864 0,127 12,877 0,006 12,878 0,002 12,877 0,001

62,53 4,572 0,125 4,573 0,025 4,576 0,002 4,578 0,023

67,53 1,647 0,083 1,648 0,041 1,647 0,001 1,649 0,033

72,53 0,350 0,033 0,350 0,023 0,354 0,002 0,351 0,028

82,53 0,003 0,003 0,003 0,002 0,003 0,001 0,003 0,003

 In Appendix G these methods are briefly explained. 41

 Std. Error is calculated as the square root of the sampled variance specified in formula 88.  42
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Table 3: Simulated Put-option prices in the Extended Vasicek Model

Excerc
ise
Price 

Crude
Monte
Carlo

Std.
Error 

Antith
etic
Monte
Carlo

Std.
Error

Stratifi
ed
Samp-
ling

Std.
Error

Empiri
cal
Monte
Carlo
Simula
tion

Std.
Error

52,53 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000

62,53 0,284 0,030 0,284 0,019 0,284 0,001 0,284 0,025

67,53 1,655 0,071 1,650 0,037 1,647 0,001 1,648 0,039

72,53 4,660 0,106 4,645 0,018 4,647 0,001 4,647 0,026

82,53 12,869 0,142 12,880 0,006 12,880 0,001 12,880 0,003

From these two tables it can be concluded (as expected) that Crude Monte Carlo simulation
performs worst. Furthermore it follows that of the variance reduction methods employed here
Stratified sampling is the most efficient method, and EMS performs marginally better than
Antithetic. It is usually the case that the Antithetic variates technique is the variance reduction
method which is least efficient. 

The reason why the EMS variance reduction method does not perform better than it does can
be explained as follows: The main idea behind the EMS method is namely to adjust the
sampling in such a way that the average price of the underlying instrument is equal to the
expected price (forward-price) of the underlying instrument . As the sampling using formula43

86 is performed under the T -adjusted probability measure - which in a sense is to move theF

discounting outside the expectation - we have therefore already lowered the uncertainty in the
sampling procedure, as we have :44

 Se Appendix G.43

 The terms in the first expectation in formula 89 can be recognized as the Radon-Nikodym derivative (the44

Plikelihood ratio process) which under technical conditions for ó (t,T) accordingly to Girsanov Theorem relates the

TFexisisting probability measure Q to a new equivalent probability measure (in this example Q ), see Musiela and
Rutkowski (1997 Appendix B.2).    
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From this it follows that the technique employed using formula 86 in the simulation procedure
is equal to the measure transformation method developed by Andersen (1995) in connection
with Monte Carlo simulation of one-factor non-linear time-homogenous interest rate models.   
  
Before we calculate the prices using Monte Carlo simulation for both the call-and put-options
for the two different weak discretization schemes for the SDE from section 8 we will first
calculate the option-prices using a lattice-model. 

We will if nothing else is mentioned (if possible ) be using the Hull and White (1994) lattice45

approach.      

Table 4 : Call-and Put-option prices in the Extended Vasicek Model 46

using the Hull and White (1994) Lattice approach

Call-Option prices

Number of
time-steps

8 16 32 64 128

52,53 12,880 12,879 12,878 12,878 12,878

62,53 4,603 4,579 4,574 4,579 4,576

67,53 1,631 1,645 1,649 1,650 1,649

72,53 0,383 0,362 0,357 0,358 0,356

82,53 0,004 0,003 0,003 0,003 0,003

 See the discussion at the beginning of section 7 for cases where that is not possible. It is however of45

importance to mention here that the probability of not being able to use the Hull and White procedure to match the
initial yield-curve - is larger in lattice-based models than in Monte Carlo based models. The reason for is because the
interest-space that a lattice-based method spans is larger than the one covered in a Monte Carlo procedure. In contrast
to this the interest-space that a Monte Carlo method covers is finer than the one covered by the lattice-based
methodology. The conclusion now follows as the probability - of not being able to use the Hull and White procedure -
is bigger the lower the interest rates, see formula 54.               

 It is here worth noting that we in the calculation of the option-prices using the lattice approach have46

made use of the fact that we have a closed form solution for the bond-price, for further details see Appendix H.          
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Put-Option prices

52,53 0,000 0,000 0,000 0,000 0,000

62,53 0,308 0,285 0,281 0,286 0,284

67,53 1,628 1,643 1,649 1,650 1,649

72,53 4,673 4,653 4,648 4,650 4,648

82,53 12,880 12,880 12,880 12,880 12,880

As is obvious from table 4, the convergence is very fast using a lattice-based methodology.

We have in table 5 performed the same calculations for the Quadratic interest rate model.  As
was the case for the Extended Vasicek model we have also here used the fact that it is possible
to get a (semi) closed form solution for the bond-price . 47

Table 5: Call-and Put-option prices in the Quadratic Interest Rate Model 
using the Hull and White (1994) Lattice approach                     

Call-Option prices

Number of
time-steps

8 16 32 64 128

52,53 12,879 12,878 12,878 12,877 12,877

62,53 4,313 4,313 4,311 4,312 4,311

67,53 0,841 0,845 0,846 0,847 0,847

72,53 0,015 0,017 0,015 0,015 0,015

82,53 0,000 0,000 0,000 0,000 0,000

Put-Option prices

52,53 0,000 0,000 0,000 0,000 0,000

62,53 0,019 0,020 0,019 0,020 0,019

67,53 0,840 0,844 0,846 0,847 0,847

72,53 4,306 4,308 4,308 4,307 4,307

82,53 12,876 12,877 12,877 12,877 12,877

 For elaboration see Appendix H.47
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Again we see, as was the case for the Extended Vaiscek model, a fast convergence to the true
result.

As our first step we have now in comparison calculated the call-and put-option prices for both
the Extended Vasicek model and the Quadratic interest rate model using crude Monte Carlo
simulation for the following number of steps: k=[8,16,32,64,128]. We have performed the
calculation for the two different weak discretizations scheme for the SDE which was shown in
section 8.    

We have performed B batches of N simulations, for B = 100 and N = 1000, and have used the
constrained MC-technique presented in section 8.4 in order to ensure that the initial yield-
curve is matched for all k for each batch. Furthermore we have - as when using the lattice-
based approach - used the knowledge that we can obtain a (semi) closed form solution for the
bond-price.

The calculated put-option prices for the Extended Vasicek model are shown in table 6 and for
the Quadratic interest rate model in table 7. The calculated call-option prices for the two
models are shown in Appendix I.    

Table 6: Put-option prices in the Extended Vasicek Model 
using Constrained Crude  Monte Carlo Simulation                     

K=8 Std.
Error

K=16 Std.
Error

K=32 Std.
Error 

K=64 Std.
Error

K=128 Std.
Error

Euler Discretization scheme - order 1 weak Taylor approximation

52,53 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001

62,53 0.278 0.019 0.280 0.025 0.285 0.023 0.276 0.023 0.275 0.021

67,53 1.552 0.033 1.609 0.043 1.627 0.040 1.640 0.036 1.637 0.036

72,53 4.466 0.025 4.569 0.031 4.603 0.020 4.630 0.021 4.632 0.020

82,53 12.639 0.008 12.765 0.006 12.825 0.005 12.854 0.006 12.866 0.008

Milstein Discretization scheme - order 2 weak Taylor approximation

52,53 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000

62,53 0.265 0.017 0.271 0.026 0.283 0.022 0.284 0.016 0.278 0.021

67,53 1.572 0.041 1.603 0.042 1.624 0.039 1.633 0.041 1.647 0.033

72,53 4.465 0.031 4.553 0.027 4.601 0.030 4.628 0.028 4.635 0.025

82,53 12.642 0.008 12.761 0.005 12.825 0.008 12.852 0.007 12.865 0.006
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Table 7: Put-option prices in the Quadratic Interest Rate Model 
using Constrained Crude  Monte Carlo Simulation                     

K=8 Std.
Error

K=16 Std.
Error

K=32 Std.
Error 

K=64 Std.
Error

K=128 Std.
Error

Euler Discretization scheme - order 1 weak Taylor approximation

52,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

62,53 0,017 0,006 0,018 0,006 0,018 0,005 0,021 0,005 0,018 0,004

67,53 0,763 0,024 0,804 0,016 0,819 0,020 0,835 0,022 0,844 0,022

72,53 4,089 0,005 4,199 0,004 4,255 0,004 4,280 0,005 4,292 0,004

82,53 12,650 0,002 12,766 0,002 12,822 0,002 12,849 0,002 12,864 0,002

Milstein Discretization scheme - order 2 weak Taylor approximation

52,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

62,53 0,017 0,004 0,018 0,005 0,018 0,006 0,019 0,005 0,020 0,004

67,53 0,767 0,016 0,795 0,020 0,825 0,019 0,840 0,019 0,842 0,018

72,53 4,088 0,004 4,201 0,004 4,254 0,003 4,279 0,005 4,294 0,004

82,53 12,650 0,002 12,767 0,002 12,822 0,002 12,850 0,002 12,864 0,002

 
First of all it is easy to see that the rate of convergence is much slower than in the lattice-
based method. 

From the put-option prices shown in tables 6 and 7 compared to the call-option prices in
Appendix I, we have the following general indication:

The convergence for put-option prices is a process which starts out with a
price lower than the true price and then rises towards the true price as a
function of the increasing number of steps.
The convergence for call-option prices is a process which starts out with a
price higher than the true price and then falls towards the true price as a
function of the increasing number of steps. 

The possible explanation for this phenomenon is that there is a tendency for the simulation
procedure  to calculate/estimate the highest bond-price for the lowest number of steps - that48

is the convergence starts out with a higher bond-price and then fall towards the true price as a
function of the increasing number of steps. This explains the indications mentioned above.

 This is actually also the case for the simulations I have performed for time-homogenous SDE spot-rate48

models. 
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Looking at the results for the two different discretizations schemes it is difficult to conclude
anything in general.

In the case of simulation of spot-rate models where the spot-rate process is governed by a
time-homogenous SDE, we usually have a much clearer picture - namely that using higher
order schemes in the sampling process in general matters . From the results we obtain for49

time-dependent SDE’s of the particular kind used here - no clear picture is available.      

Which respect to time-dependent SDE’s (of the kind analysed here) we cannot in general see a
more efficient convergence rate when using higher order schemes. This must be because of
the procedure that forces the average price for each k = [1,K] to match the price P(t,kä)
observed in the market. Remember, namely that this is done by adjusting each element in the
basic diffusion-matrix column-wise - that is as a change of drift. This procedure to match the
initial yield-curve must therefore dominate over the sampling scheme.

It could be interesting to look at a couple of variance reduction schemes to see if they make
the convergence rate faster. With the above results in mind it is however not clear beforehand
if this will increase the efficiency.

For this purpose we will consider two different kinds of variance reduction methods :50

Variance reduction by using the Brownian Bridge Process
Variance reduction by Girsanovs transformation  

Both these methods are very efficient, in the case of simulating spot-rate processes under the
assumption of a time-homogenous SDE .                            51

Because of the unclear conclusion in connection with the use of different discretizations
schemes for the SDE, we have only performed the calculations using the Euler discretizations
method.

When using the Brownian Bridge method, we encountered some “strange” results. The results
are shown in Appendix J. It is however worth pointing out that we have not been able to find
any reason why the simulated options-prices in some cases seem to diverge instead of
converge. 

 These results can be obtained by contacting the author. The time-homogenous spot-interest rate model49

we have tested is the Ornstein-Uhlenbeck process of the kind specified in equation 85. Similar results has been
obtained by Giles (2007) - for the valuation of a range of options in the Black-Scholes model.    

 These two variance reduction techniques is explained in Appendix G.50

 Results indication that these variance reduction methods is efficient for spot rate models that are time-51

homogenous can be obtained from the author. It is however in this connection worth mentioning that by far the most
efficient method of those employed was the Girsanov’s transformation.      
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Our results using the method on a time-homogenous spot-rate model behaved as expected. It
was clearly superior to Crude Monte Carlo simulation using the Euler scheme and slightly
better than Crude Monte Carlo simulation using the 2. order weak Milstein. 

The only difference between our simulations with the time-homogenous spot-rate model and
the result in Appendix J, is that we in Appendix J have constrained the Monte Carlo
simulation in order to match the current yield-curve. Why that should make the Brownian
Bridge method diverge in some cases is not obvious, and is left for further research.                  

In tables 8 and 9 we have shown the result for both the Extended Vasicek model and the 
Quadratic interest rate model - when using Girsanovs transformation in the simulation
procedure.
 
Table 8: Call-and Put-option prices in the Extended Vasicek Model 

using Constrained Girsanovs Transformation Monte Carlo Simulation              

K=8 Std.
Error

K=16 Std.
Error

K=32 Std.
Error 

K=64 Std.
Error

K=128 Std.
Error

Call-Option prices

52,53 13,120 0,009 12,997 0,007 12,939 0,008 12,907 0,008 12,894 0,009

62,53 4,802 0,028 4,692 0,029 4,626 0,024 4,601 0,022 4,592 0,033

67,53 1,800 0,035 1,715 0,037 1,674 0,036 1,669 0,055 1,657 0,043

72,53 0,423 0,033 0,373 0,022 0,368 0,033 0,365 0,035 0,359 0,034

82,53 0,006 0,004 0,004 0,005 0,003 0,003 0,003 0,003 0,002 0,003

Put-Option prices 

52,53 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,001

62,53 0,271 0,025 0,272 0,021 0,284 0,024 0,277 0,023 0,280 0,024

67,53 1,553 0,032 1,601 0,033 1,621 0,028 1,649 0,045 1,632 0,033

72,53 4,464 0,025 4,567 0,031 4,602 0,026 4,623 0,029 4,639 0,023

82,53 12,639 0,008 12,761 0,005 12,822 0,007 12,850 0,008 12,865 0,008

Table 9: Call-and Put-option prices in the Quadratic Interest Rate Model 
using Constrained Girsanovs Transformation Monte Carlo Simulation 

K=8 Std.
Error

K=16 Std.
Error

K=32 Std.
Error 

K=64 Std.
Error

K=128 Std.
Error

Call-Option prices
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52,53 13,104 0,002 12,989 0,003 12,933 0,002 12,905 0,002 12,891 0,002

62,53 4,538 0,006 4,423 0,006 4,364 0,006 4,337 0,006 4,324 0,006

67,53 0,996 0,020 0,913 0,016 0,885 0,018 0,866 0,020 0,854 0,021

72,53 0,023 0,005 0,018 0,005 0,016 0,006 0,016 0,004 0,014 0,004

82,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Put-Option prices 

52,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

62,53 0,017 0,004 0,019 0,005 0,019 0,005 0,020 0,005 0,018 0,005

67,53 0,764 0,016 0,804 0,019 0,827 0,020 0,836 0,018 0,845 0,017

72,53 4,089 0,004 4,201 0,004 4,254 0,004 4,281 0,004 4,293 0,004

82,53 12,650 0,002 12,767 0,002 12,822 0,002 12,851 0,002 12,864 0,002

              
If the results in tables 8 and 9 are compared with respectively tables 6 and 7 and the results in
Appendix I we can deduce the following:

    No clear variance reduction is obtained using Girsanovs transformation, ie
no substantial fall in Std. error

    The convergence to the true option-price is not remarkably faster using
Girsanonv’s transformation 

Employing Monte Carlo simulation for spot-rate models with a time-dependent drift that
through the constraining method ensures a perfect match of the yield-curve for all steps does
not seem as straightforward as in the case of time-homogenous spot-rate models. With
straightforward - I mean, variance reduction is not easily obtained - at least not through
conventional techniques.  

Analysing the pricing of options on zero-coupon bonds using Monte Carlo and the Hull and
White lattice-based approach, we can conclude the following:
     

It seems as if the constraining method dominates over the variance reduction
schemes (at least the ones employed here) and that it also dominates over
the discretization schemes - that is a Crude Monte Carlo method using
Eulers discretizations scheme does the work as well as anything else we
came up with
The Hull and White lattice-based approach is superior to the Monte Carlo
simulation    

Of course it is possible that by employing other tricks in connection with Monte Carlo
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simulation we might get better results - maybe even results that can rival the lattice-based
methods. Quasi-random number sequences is a next natural step to take, or other variance
reduction techniques - such as stratified sampling - but that is left for further research.   

The whole idea of introducing Monte Carlo methods for time-dependent spot-rate models was
to be able to price path-dependent securities in a more natural setting, as lattice-based method
is not directly suitable for this kind of problem. From the results in this paper on a fairly
simple instrument, we however encountered some problems when we tried to reduce the
variance in the Monte Carlo simulation procedure. Because variance reduction in connection
with Monte Carlo method is extremely important, there is a need for finding techniques which
are effective in connection with time-dependent spot-rate models. The methods we tried here -
which usually are very efficient - did not perform as promised/expected.         

The only direct difference between the Hull and White lattice-based method and the
Constrained Monte Carlo method introduced here - is how each of the procedures constructs
the time-space dimension for the basic interest rate process x. From this it seems clear that the
controlled method that is inherent in the lattice-based methodology gives a superior
representation of the process than what is possible with Monte Carlo. The only logical
explanation for this phenomonen must be that the spot-rate process is Markovian. 

From this we conclude:

Markovian spot-rate models are best represented by a method that takes into
account the Markovian nature in the process - that is lattice-based methods  
Monte Carlo are not as efficient as lattice-based procedures for time-
dependent Markovian spot-rate models, as Monte Carlo methods do not take
into account the Markovian nature - Monte Carlo is doing precisely the
opposite - as Monte Carlo methods by nature are non-Markovian.

I do not have any knowledge of any research that compares Monte Carlo pricing methods to
lattice-based pricing methods for time-homogenous Markovian spot-rate models - but relying
on the conclusion above it would not be a surprise if the same conclusions were reached .        52

      
In general it is worth pointing out that the pricing of path-dependent contingent claims does
not rely on the assumption that the spot-rate process is non-Markovian - that is, the need for a
non-Markovian pricing technique does not neccesarily indicate that the spot-rate process
needs to be non-Markovian. 

This indicates that when pricing path-dependent instruments we have to decide on the
following two things:

1: How do we most efficiently construct the time-space dimension of the
interest rate process?

 This could be an interesting line of research.52
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2: Given that, how do we most efficiently utilize the constructed time-space
dimension to price a path-dependent contingent claim?

  
For the pricing of path-dependent contingent claims there is a tradition for using Monte Carlo,
because Monte Carlo methods by nature - like the problem at hand - is non-Markovian. 

Doing that we do not distinguish between the two points mentioned above - but treat them as
if they were one and the same. This is however not the case, as explained above. This does not
neccesarily mean that Monte Carlo is not the most efficient method, it just indicates that we
perhaps should re-think the problem - maybe there is a more efficient solution?.
      

10: Conclusion              

Two of the main results in this paper were: First we showed how to determine the T-forward
adjusted risk-measure using the concept of fundamental solution to linear PDEs. That is, it
turned out to be possible to derive the T-forward adjusted risk-measure without the use of
Girsanovs theorem, which is the traditional approach, see for example Karoui, Myneni and
Viswanathan (1993).         

The other main result was that we were able to carry the analysis of the Quadratic interest rate
model further than Jamshidian (1996) by relying on the Fourier transformation in order to
obtain the fundamental solution for the PDE. 

In that connection we showed how it was possible to derive the price of a discount bond and
the price of an option on a discount bond. This was also as an example done for the extended
Vasicek model. Using the idea from Hull and White (1990), we showed how it was possible
to fit the model to the initial term structure.

The next  two parts of the paper focused on implemention issues.

In that connection, we designed a special discrete time model for the Quadratic interest rate
model, as it in some cases was not possible to use the trinomial approach from Hull and White
(1994). 

After that we focused on pricing techniques for path-dependent interest rate contingent claims.
We focused in that connection on Monte Carlo simulation of spot-rate models with a time-
dependent drift. The third main result in the paper was to introduce a forward-induction
technique that made it possible to constrain the Monte Carlo simulation for the matching of
the initial yield-curve.

When using Monte Carlo simulation for time-dependent spot-rate models, we encountered
problems obtaining variance reduction - by methods that in the case of time-homogenous
spot-rate models are very effective. Further research is obviously needed in connection with
Monte Carlo simulation of time-dependent spot-rate models.      
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Finally we compared lattice-based pricing method to Monte Carlo simulation procedures for
the pricing of European put-and call-options on zero-coupon bonds for both the Extended
Vasicek model and the Quadratic interest rate model.

In that connection we concluded:

Markovian spot-rate models are best represented by a method that takes into
account the Markovian nature in the process - that is lattice-based methods  
Monte Carlo are not as efficient as lattice-based procedures for time-
dependent Markovian spot-rate models, as Monte Carlo methods do not take
into account the Markovian nature - Monte Carlo is doing precisely the
opposite - as Monte Carlo methods by nature are non-Markovian.

With respect to the pricing of path-dependent claims, no clear conclusion was drawn. It was
however suggested that before deciding on a method (Monte Carlo or lattice-based method), it
was of importance to separate the problem, as follows:   

How do we most efficiently construct the time-space dimension of the
interest rate process?.
Given that, how do we most efficiently utilize the constructed time-space
dimension to price a path-dependent contingent claim?

From this we deduce that, even though Monte Carlo is the natural method to use when pricing
path-dependent interest rate contingent claims, it might not be the most efficient one - at least
not when the spot-rate is Markovian.            
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Appendix A

We seek a solution A(t,T,ò) and B(t,T,ò) that simultanously satisfies the following set of

ordinary differential equation :

with respect to the boundary conditions A(T,T,ò) = iò and B(T,T,ò) = 0. 

We will start with the second equation in formula 1 as we can here find a unique solution for

A(t,T,ò). It is easily seen that A(t,T,ò) is of the following form:

where k is the constant which can be found by using the boundary condition, hence we get:

By plucking formula 3 into the first equation in formula 1 and rearranging terms we get:
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(94)

Where k is the constant. Applying the boundary condition it can be seen that B(t,T,ò) is given

by (as k = 0):

Formula 23 in the main text now follows directly from equation 3 and 5. 
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Appendix B

We seek a solution A(t,T,ò), B(t,T,ò) and C(t,T,ò) that simultanously satisfies the following set

of ordinary differential equation :

with respect to the boundary conditions B(T,T,ò) = -iò and A(T,T,ò) = C(T,T,ò) = 0.

We will start with equation no. 3 in formula 1 as this is only a function of C(t,T,ò). C(t,T,ò) is

known to be the solution to the following integral:

which by employing a few tricks yields:

We will now turn our attention to the second equation in formula 1 as the only unknown here

is B(t,T,ò), more precisely we are seeking a solution to the following first order ODE:

where it follows that B is given by:
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The only problem here is the integral . In order to faciliate a solution let me first

rewrite C(t,T) as:

We can now easily derive  using the substitutions-rule which yields:

By plucking formula 7 into formula 5 and doing a little algebra, we find that B(t,T,ò) can be

written as:

The constant k can be found by employing the boundary condition B(T,T,ò) = -iò, hence we

find the following expression for B(t,T,ò):
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(104)

Now we only have to determine A(t,T,ò) to have a solution to the system of ODE´s from

formula 1, and it turns out that A(t,T,ò) with respect to the boundary condition can be written as:

Formula 39 and 40 in the main text now follows directly from equation 3,9 and 10.
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Appendix C

From formula 45 in the main text, we have that the price at time t of a call-option with expiry

at time T  written on a discount bond that matures at time T, for t < T  < T, in the QuadraticF F

interest rate model is given by:

This can be rewritten as:

If we integrate formula 2 for all z for which the payoff is positive, we will be able to express

the price of the call-option in terms of the cumulative normal distribution. From the main text

we know that z has to be found as the root in a second order equation, more precisely we find

that z is positive for values of z lying in the following interval:

From this relation it it clearly seen that for Dis # 0, the payoff H(z) will never be positive  -

that is the value of the option has to be equal to zero (0). If instead Dis > 0 we can integrate

formula 2 over the region Lower < z < Upper.

The last integral in formula 2 is easy found as this can be expressed as:

80



The normal class of arbitrage-free spot-rate models

(109)

(110)

(111)

From the first integral in formula 2 it follows that z has to multiplied by

. Which means that we need to multiply the variance and the bounds

with , hence the first integral can be rewritten as :53

As   we get the following

expression:

All in all this means that the call-options price is given by:

Using a similar technique it is possible to derive the price of a put-option, hence we get:

 Se for example Gut (1995).53
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Appendix D

We are interested in a solution ø(T) that satisfies the following integral equation:

If it is possible to write K(s,v) as  then equation no. 1 can be recognized as a

linear second order Volterra integral with a seperable kernel . In that connection, it is known54

that a linear second order Volterra integral with a continous and bounded kernel has a solution

for every continous function F(T).    

 We are therefore seeking a solution of the following form: 

Let us then take a more close look at the following integral equation:

This formula can (after lengthly calculation) be shown to be possible to rewrite as follows:

We are then in a situation were we have to find a solution ø(T) that satisfies the following

linear second order Volterra integral:

 See Pipkin (1991) chapter 5.54
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In the case of a seperable kernel (as here) the integral equation can be solved as follows. First

we differentiate formula 5 with respect to T, which yields:

If we then use formula 5, we can express  as:

If we then pluck formula 7 into formula 6, we get:

That is ø(T) can be found by solving an ordinary differential equation subject to the boundary

condition that ø(0) = F(0).  The solution to this equation can with respect to that be written as:
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The last integral in formula 9 can be rewritten as follows by using partial integration:

Which means that:

If we pluck the expression for W(T) from formula 8 into this formula and simplify we finally

find that ø(T) for all T is given by:

Which is identical to formula 55 in the main text.
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Appendix E

From equation 51 in the main text we have that  and furthermore, we

have from formula 24 that the state-variable (y) in the extended Vasicek model is governed by

the following stochastic process under the T-forward-adjusted probability measure:

As r(T) = y(T) + ø(T) we have:

Now we want to express the stochastic process for the instantaneous forward rate under the

TQ -probability measure in terms of the value of the state-variable (including ø(T)) at time T,

that is:

Combining formula 2 and formula 3 yields:

For t = 0 we then find that ø(T) is defined by:

Which under the assumption that ê(t) and ó(t) are time-independent yields:

If we want to find an expression for B(t,T) and A(t,T) in the extended Vasicek model it is

most efficient to use the following relationship:
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T T tWhich means that B (t,T) and A (t,T) can be found by collecting powers of r , which yields:

If this expression is integrated from 0 - T (under the assumption of constant ê(t) and ó(t)) and

plucked into formula 25 in the main text the result will be identical the result from Hull and

White (1993c).  

Another way to derive the expression for B(t,T) and A(t,T) which actually is easier as it does

not involve much integration because we are cabable of writing the definitions of B(t,T) and

A(t,T) in terms of B(0,T), B(0,t) and B(0,T), B(0,t), the technique is as follows:

We have the following well known result:

This can alternatively be written as:

1 1We have from formula 30 in the main text (for T  = T ) that the price P(T ,T) under theF

probability measure  can be written as:

Combining this equation with formula 10 and collecting terms of equal power in y, we get the

1 1following formulas for B(T ,T) and A(T ,T):
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For t = 0 we have that B(0,T) = ln P(0,T) more precisely we get the following expressions for

1 1B(T ,T) and A(T ,T):

In order to have a fully defined model, we now only have to find the expression for A(0,T) for

all T.

We can get the expression for A(0,T) by using formula 8 and find that A(0,T) is defined as:

1It might not be obvious but formula 13 (together with formula 14) evaluated at t = T , and

under the assumption that ê(t) and ó(t) are time-independent yields identical results for B(t,T)

and A(t,T) as the expression from formula 8. 
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Appendix F

In terms of forward-rates we can in abstract form write the Quadratic Interest rate model as :55

tWhere the process for y  is defined by the following SDE :56

tThe term structure appears as a quadratic function of the factor y  - which follows a Vasicek

ttype process. Let us in this connection remark that the unconditional correlation of   and y

is not 1 - as a consequence of this the Quadratic Interest rate model behaves - from an

empirical point of view - like a linear two-factor model.

Let us therefore consider the following two-factor linear model :57

From this it can be seen that the Quadratic Interest rate model can be thought of as a linear

factor model, where . 

tIn general we can write the vector process for f  as:

In particular we have:

1 2 The expression for b (t,T), b (t,T) and a(t,T) can be derived from formula 37 in the main text. 55

 Se formula 32 in the main text. 56

1 2 Where the functional form for b (t,T), b (t,T) and a(t,T) can be derived from the closed form solution57

1t 2tfor zero-coupon bond prices which is implied by the SDE for the two-factors f  and f  and their linear connection

with the spot-rate, i.e,  - where x is a Boolean vector.    
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And, since  we have:

Equation 5 and 6 imply that:

t t tFrom this we can deduce that the matrix (S(f )S(f ) ) is linear in terms of f  - if and only if T

t does not depend on f . This is the explanation why the Quadratic Interest rate model

1tneeds a deterministic volatility for the state-variable. Furthermore, the drift for f  should be

t 1linear in f , and then ê  = 0. 

This means that the Quadratic Interest rate model is equivalent to a two-factor linear

2tframework where there is only one state-variable f  - following a Vasicek process. That is, the

2tterm structure depends linearly on f  and  .

To conclude these results, let me remark that the Quadratic Interest rate model appears a

particular kind of two-factor linear model, satisfying:

where there exists a quadratic function g such that:

That is the Quadratic Interest rate model can be thought of as a particular case of the class of

linear factor models.
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Appendix G

In this Appendix I will shortly present the different variance reduction methods that I have

employed in some of the examples in section 9.

This Appendix will consist of two parts. 

The first part will discuss the variance reduction methods I am using in simulating the

forward-price in the Extended Vasicek model under the T -adjusted probability measure. TheF

problem considered here can be recognized as a 1-dimensional simulation problem.     

The second part will present the variance reduction methods which were used in connection

with sampling the spot-rate process from a discretization of the SDE. This problem can for

this reason considered a K-dimensional simulation problem, where K is the number of steps.

As we only consider equidistant discretization points, we have that the time-step ä is equal to

, for T-t being the total sampling interval.

This does not neccesarily mean that the methods employed in part 1 cannot be used on the

problem considered in part 2. Actually there is nothing to stop us from doing exactly that. 

On the other hand the approaches I will discuss in part 2 are not useful for the particular type

of 1-dimensional problem I am considering. This will be obvious from the presentation in part

2.  

The variance reduction method I will discuss in part 1 is:

Antithetic variates 

Stratified sampling

Empirical Martingale simulation

For the more complex simulation problem considered in part 2 I have chosen two new

methods which looks promising:

The Brownian Bridge technique

Girsanovs transformation
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Part 1: Variance Reduction Techniques - I  58

The equation we are considering in this example is given by formula 86 in the main text, ie.:

nWhere . Let us in that connection denote z , for n = [1,N], the vector of

random-numbers simulated from the distribution N(0,1).     

Antithetic variates:

One of the simplest and most widely used variance reduction methods in finance is the

method of antithetic variates. 

nThe method of antithetic variates is based on the observation that if z , has a standard normal

ndistribution, then so does -z .  

Let us now assume that we have simulated the bond-price P(T ,T) for a given N - let us denoteF

this simulated price as P (T ,T). If we now also simulate the price where we have replaced+ F

n neach z  with -z  - and denote this price P (T ,T) - then we have that an unbiased estimator of- F

the forward price is given by:

We have that the random inputs obtained from the collection of antithetic pairs are more

regularly distributed than a collection of 2N independent samples. In particular, we have that

the sample mean over the antithetic pairs will always equal the population mean of 0, whereas

the mean over finitely many independent samples is almost surely different from 0. 

 The discussion in this section relies mainly on Duan and Simonato (1998) and Boyle, Broadie amd58

Glasserman (1995).  
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More precisely we have the following relationship, because  P (T ,T) and P (T ,T) has the+ F - F

same variance:

   

From formula 3 it follows that   if

.  

Because we need twice as many replications to calculate/estimate  - that is twice the

amount of work. We require the following inequality to hold in order for antithetic variates to

have increased the efficiency,  - which because of equation

3 simplifies to the following requirement;  - that is the two

simulated prices should be negatively correlated .   59

Stratified sampling:

The idea behind stratified sampling is as follows: stratified sampling seeks to make the inputs

to the simulation more regular than random inputs. In particularly it forces certain empirical

probabilities to match theoretical probabilities .  60

Let us consider N simulated normal random numbers. The empirical distribution of an

1 2 3 Nindependent sample (z , z , z ,...., z ) will look only roughly like the normal density function,

the tails of the distribution - which often is the most important part - will inevitably be under

represented. 

Using stratified sampling we can force exactly one observation to lie between the (n - 1)  andth

n  percentile, for n = [1,N]. This will - by construction - produce a better match to the normalth

distribution. 

 A proof that this requirement is always met is given in Boyle, Broadie and Glasserman (1995).59

 This is in a sense similar to the idea behind moment matchning methods - which force the empirical60

moments to match the theoretical moments, see Barraquand (1994).     
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The way we have chosen to implement this method is as follows: First we generate N

1 2 3 Nindependent uniform random variates (u , u , u ,...., u ) - uniform on [0,1]. The vector of

independent  normal random variates can now be derived from the following formula:

Where N  is the inverse of the cumulative normal distribution.-1

The reason that this works is because   falls between the (n - 1)  and nth th

percentile of the uniform distribution and percentiles are preserved by the inverse

transformation.

Empirical Martingale simulation:

The basic idea behind the Empirical Martingale Simulation (EMS) method from Duan and

Simonato (1998) can be explained this way:

Lets us for this purpose consider the exponential part of equation 1:

TFUnder the Q -probability measure we have that the expected value of  is 1. Of course for a

finite number of simulated normal random variates the average value calculated in formula 5

is almost surely different from 1. 

The idea in the EMS-method is, because of this observation, to adjust each element in the

1 2 3 N nvector (a , a , a ,...., a ), for  - that is each a  can be recognized as a particular

realisation of the exponential part in equation 5. The adjustment is done to ensure that we for

all N have that: .

From this it follows that EMS bears some resemblance to the moment matching method of

Barraquand (1994). However, the EMS method is entirely different from the moment

matching method because of the following reason: For the EMS the correct first moment in

simulation is ensured by the use of a multiplicative adjustor instead of an additive one as in
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moment matching . This difference is very important as asset prices typically (as here) are61

modelled as exponential martingales. From this it follows that the multiplicative adjustment

ensures no domain violation, whereas the additive adjustment cannot.   

Part 2: Variance Reduction Techniques - 2  62

The equation we are considering here is given by formula 84 in the main text, ie:

where  is distributed as N(0,ä). Therefore we have that

.

As mentioned above we assume that K is the number of steps, and the time discretization

points are of an equal length ä. Furthermore we denote each discretization point as kä, for k =

[1,K]. Lastly we assume that we for each k perform N simulations.

The Brownian Bridge technique:

As far as I know the only other work that uses the Brownian Bridge method to reduce the

effective dimensionality is Caflisch, Morokoff and Owen (1997). Let me for that reason

explain the idea behind using the Brownian Bridge method in some detail :63

1For convenience I will assume that the number of time-steps is a power of 2. Let Z(n) = (z (n),

2 3 Kz (n), z (n),...., z (n)), for n = [1,N], be a vector of independent normal random variates - that

is Z(n) can be seen as a particular path for the SDE over the interval [ä,Kä].

This vector we will use to construct a Brownian Bridge simulated Wiener process, which we

k 0will denote B , for k = [0,K]. In particular we have that B  = 0. We will in the construction

assume that the quality of the simulated normal random variates drops with the dimension

number .64

 When moment matching is applied to asset prices.61

 The discussion in this section relies mainly on Caflisch, Morokoff and Owen (1997) and Schoenmakers62

and Heemink (1997).  

 The descriptions of the Brownian Bridge method rely on Caflisch, Morokoff and Owen (1997) and63

Karatzas and Shreve (1988, section 2.3). 

 This is generally the case, at least in the case of quasi-random number sequences.64
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As the variance of a Wiener process is linear in the time-length - the first point to generate

Kwill be B , ie:

We have now got both the starting point and the end point for the Wiener process. Viewing

these as fixed points, we can think of the Wiener process as being “tied-down” - this can be

recognized as a Browning Bridge process. 

The next point to simulate will be the one that has the highest variance, which for the

0 KBrownian Bridge process is the midpoint of the interval. Conditioned on B  and B , the

midpoint is normally distributed as , which mean that we can simulate the

midpoint by setting:

We now have two endpoints and a midpoint. This can in a sense be thought of as two

consecutive Brownian Bridge processes - conditioned on each of the intervals.

Again we will simulate the process where the variance is highest, that is at the midpoints of

each of the two intervals.

kIn general we have that each B  can be derived from the following formula (if K is of the

power of 2) :65

kAfter having simulated our K+1-dimensional vektor B  for each k = [0,K], we can construct

our simulated Wiener process from this. Actually we have that we can form K-simulated

Wiener increments as follows:

 See also equation 5.2 in Caflisch, Morokoff and Owen (1997).65
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Accordingly to Corollary 2.3.4 in Karatzas and Shreve (1988) this should produce paths that

are asymptotical Wiener paths. 

This new constructed vector of Wiener increments can now directly be used instead of 

 in our simulation procedure.         

 

Variance reduction using Girsanovs transformation:

I will now turn my attention to the Girsanovs transformation technique as a means of reducing

the variance in the simulation procedure.

This method is based on a Girsanov transformation of the original SDE for x. 

Equation 6 can alternatively be written as:

The basic idea in the weak discretizations scheme is to approximate the functional:

where h is a specific function and time s = 0.  If we have that the function h and the drift-and

diffusion-coefficients in formula 11 are sufficiently smooth, then the function u satisfies the

Kolmogorov backward equation, ie:

Subject to the end condition for all x å U, and where the operator L  is defined0

as:
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Using Girsanovs theorem we can transform the underlying probability measure P, so that the

process  is defined by:

is a Brownian motion with respect to the transformed probability measure  with Radon-

Nikodym derivative:

Under the change of probability measure the Ito process  satisfies the stochastic differential

equation:

Furthermore we have that the process È satisfies the equation:

It is obvious that the process  in equation 17 is an Ito process with respect to  with the

same drift-and diffusion coefficients as the Ito process x in formula 11. From this and

equation 16 it follows that:

This indicates that by estimating the expectation of the random variable om the right hand side

of equation 19 we are evaulating the functional given in 12. 

Furthermore this result is independent of  the function v. The question is therefore how to

choose v to get the most efficient variance reduction.
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Given the Radon-Nikodym derivative, we can by using Ito’s lemma deduce that the product

 under the probability measure P, follows:

What we hope for is that the variance of the right side of equation 19 is much smaller than the

variance of u(s,x). It follows immediately from formula 20 that this variance is reduced to

zero if   satisfies:

In which case we have :66

That is the variable is non-random and therefore the variance is reduced to zero. 

For the construction of the parameter function in 21 we need to know the solution u of the

Kolmorogov backward equation. 

In our particular case it happens to be possible to obtain the solution - the procedure is as

follows:

Let us assume that x represents the spot-rate and we want to derive the price of a zero-coupon

bbond - P (t,T), for all T = [1,ô] where ô is the maximum maturity date. The end condition for

the Kolmogorov backward equation  will in that case be .        67

From Duffie (1992 Appendix E) we have that the Feynman-Kac solution to the Kolmogorov

backward equation under the above assumption - if it exists - can be written as:

 The proof is here obmitted, but can be derived from the SDE’s from equation 17 and 18, together with66

21 and 13, see Kloeden and Platen (1995 section 16.2).  

 It should here be stressed that the Kolmogorov backward equation in the case of the pricing of zero-67

coupon bonds given a spot-rate process is not identical to the one specified in formula 14. For our purpose - namely
figuring out the functional from for v - this is not of importance, as will be apparent in the derivation. It would be
important if we tried to solve the PDE directly - but here we are utilising a probabilistic approach.    
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As x is normally distributed, the solution to 23 can be written as:

We know that the expected value and variance for , can be written as:

where we on purpose have specified the drift in an abstract form.

From this we can easily derive the functional form for v as  - it follows

directly from formula 21, 24 and 25 - and the result is:

The two processes we are interested in, can now be expressed as:
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From 22 we have that , for all T = [t,ô]. 

bIt should be stressed that P (t,T) is not the price we are interested in, instead I will refer to

bP (t,T) as our basic price - just as x is our basic interest rate process. The “true” price is

bderived by appropriate adjustment of the basic process x for each T in order for P (t,T) to be

equal to the market price P(t,T).      

  

It now  follows that using Girsanovs transformation in the simulation procedure requires the

simultanous simulation of the two processes in formula 27.   

In the main text - section 8 - we showed what the different discretizations schemed looked

like for the SDE for x. Deriving the discretizations schemes for the process is

straightforward and is for that reason left for the reader.    

tDeriving the actual form for the correction process È  for the Euler scheme is straightforward,

for that reason I will just show the order 1.5 strong Taylor discretization scheme as the others

can be derived from here, ie:
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It follows now that the order 1 strong Milstein will be equal to the order 2 weak Milstein, and

furthermore is given by the first line in equation 28 .   68

P Symbolizing v by ó (t,T) is not a coincidence, as the procedure here is based on a reverse application of68

Girsanovs transformation for a shift of probability measure. It is namely well known from the theory of contingent
claim pricing that arbitrage-free pricing under the T-adjusted probability measure - for the Ornstein-Uhlenbeck

P Pprocess  - results in a likelihood-ratio process for ó (t,T). ó (t,T) can because of that be recognized as the bond-price
volatility in the Vasicek model and in the Extended Vasicek model - because the bond-price volatility is independent
of the long-term mean value (è or è(t)).       
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(176)

Appendix H

We have that both the Extended Vasicek model and the Quadratic interest rate model is

analytically very tractable. 

The (semi) analytical expression for the Quadratic interest rate model is given in proposition

no. 1 in the main text.

With respect to the Extended Vasicek model, can we from equation 13 in Appendix E derive

the analytical solution for the price of a zero-coupon bond, ie.

Which is identical to the analytical expression for the Hull and White model, see Hull (1993

page 404).

Using the analytical properties for these two models when pricing derivative securities is

clearly efficient - both in terms of calculation speed and convergence rate. The reason for this

can be explained as follows:

Let us now assume we for example wish to calculate the price of a 3-year Bermudan  call-69

option on a 10-year zero-coupon bond.

If no analytical expression is available for the spot-rate process  we choose as our basic70

pricing model - then this means we have to simulate  the spot-rate process all the way out to71

 The holder of a Bermudan option, also known as a limited exercise, mid-Atlantic or semi-American69

option, has the right to exercise the option on one or more possible dates prior to its expiry.

 

 Which for example is the case for the Black and Karisinski model.70

 Using the phrase “simulate”, we are referring to either a Monte Carlo simulation procedure or a lattice-71

based method.   
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(177)

(178)

(179)

10 years. If on the other hand an analytical expression is available for the bond-price then we

 only  have to simulate the spot-rate process out to the time of expiry of the option - in this

case 3-years.

In the analytical expression for the bond price in formula 1, the variable r is the instantaneous

spot-rate. This is of course also true for the Quadratic interest rate model - namely that the

spot-rate in the analytical expression is the instantaneous spot-rate.

However; in the Hull and White initial yield-curve matching-procedure the interest rates are

Ät-period rates - that is equal to ä in the examples in section 9. 

This means that we cannot just simulate the spot-rate process out to - for example - 3 years and

then directly use the vector of simulated spot-rates and pluck them into the analytical

expressions.          

First we have to transform the Ät-period spot-rates into instantaneous spot-rates.

ÄLet now r  be the Ät-period spot-rate at time T  and r be the instantaneous spot-rate at time T .F F

Using equation 1 we have the following relationship in the case of the Extended Vasicek

model:

So that:

In the case of the Quadratic interest rate model, we have:

From this we can deduce that r can expressed as follows as a function of the Ät-period spot-

rate:
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(180)

In the calculation performed in section 9 for both the Extended Vasicek model and the Quadra-

tic interest rate model, we have used equation 3 and 5 respectively in order to transform the Ät-

period spot-rates into instantaneous spot-rates. 

These derived instantaneous spot-rates are then used in connection with the analytical

expression for each of the models to calculate the forward-price from the options exercise date

to the bonds maturity date. 

This technique was used both in connection with the lattice-based pricing approach and the

constrained Monte Carlo simulation approach. 
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Appendix I

Table 1: Call-option prices in the Extended Vasicek Model 

using Constrained Crude  Monte Carlo                     

K=8 Std.

Error

K=16 Std.

Error

K=32 Std.

Error 

K=64 Std.

Error

K=128 Std.

Error

Euler Discretization scheme - order 1 weak Taylor approximation

52,53 13,120 0,008 12,995 0,006 12,939 0,007 12,907 0,007 12,892 0,007

62,53 4,810 0,025 4,685 0,025 4,620 0,023 4,600 0,024 4,592 0,030

67,53 1,799 0,051 1,735 0,042 1,682 0,038 1,667 0,036 1,663 0,046

72,53 0,412 0,032 0,386 0,026 0,369 0,028 0,354 0,030 0,357 0,033

82,53 0,005 0,004 0,003 0,003 0,004 0,003 0,004 0,003 0,004 0,004

Milstein Discretization scheme - order 2 weak Taylor approximation

52,53 13,124 0,009 12,996 0,007 12,937 0,007 12,909 0,006 12,889 0,009

62,53 4,798 0,029 4,692 0,029 4,635 0,030 4,601 0,027 4,597 0,031

67,53 1,794 0,046 1,721 0,041 1,679 0,037 1,658 0,040 1,662 0,044

72,53 0,421 0,030 0,381 0,029 0,360 0,028 0,345 0,033 0,356 0,026

82,53 0,005 0,004 0,004 0,003 0,004 0,005 0,003 0,004 0,003 0,003

Table 2: Call-option prices in the Quadratic Interest Rate Model 

using Constrained Crude  Monte Carlo                     

K=8 Std.

Error

K=16 Std.

Error

K=32 Std.

Error 

K=64 Std.

Error

K=128 Std.

Error

Euler Discretization scheme - order 1 weak Taylor approximation 

52,53 13,104 0,003 12,988 0,002 12,932 0,002 12,905 0,002 12,890 0,002

62,53 4,537 0,007 4,422 0,006 4,365 0,006 4,338 0,008 4,324 0,006

67,53 0,986 0,023 0,921 0,025 0,875 0,020 0,865 0,024 0,860 0,019

72,53 0,024 0,005 0,018 0,005 0,016 0,005 0,016 0,004 0,016 0,004

82,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Milstein Discretization scheme - order 2 weak Taylor approximation

52,53 13,104 0,002 12,988 0,002 12,932 0,002 12,904 0,002 12,891 0,002
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62,53 4,535 0,005 4,421 0,006 4,366 0,007 4,339 0,005 4,325 0,005

67,53 0,991 0,019 0,913 0,022 0,882 0,018 0,868 0,016 0,855 0,014

72,53 0,024 0,005 0,018 0,005 0,015 0,005 0,015 0,004 0,016 0,005

82,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
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Appendix J

Table 1: Call-and Put-option prices in the Extended Vasicek Model 

using Constrained Brownian Bridge Monte Carlo Simulation 

K=8 Std.

Error

K=16 Std.

Error

K=32 Std.

Error 

K=64 Std.

Error

K=128 Std.

Error

Call-Option prices

52,53 13,135 0,008 13,006 0,010 12,950 0,007 12,918 0,009 12,904 0,006

62,53 4,840 0,027 4,723 0,034 4,677 0,028 4,640 0,031 4,629 0,031

67,53 1,902 0,042 1,805 0,047 1,756 0,049 1,745 0,052 1,715 0,047

72,53 0,455 0,034 0,427 0,038 0,408 0,035 0,398 0,035 0,392 0,024

82,53 0,006 0,004 0,007 0,006 0,005 0,003 0,005 0,004 0,004 0,004

Put-Option prices 

52,53 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000

62,53 0.296 0.025 0.309 0.025 0.311 0.027 0.310 0.026 0.318 0.024

67,53 1.627 0.038 1.668 0.036 1,680 0.036 1.709 0.045 1.687 0.038

72,53 4.503 0.035 4.590 0.025 4.630 0.025 4.654 0.028 4.665 0.019

82,53 12.629 0.008 12.757 0.007 12.810 0.006 12.842 0.005 12.857 0.006

Table 2: Call-and Put-option prices in the Quadratic Interest Rate Model 

using Constrained Brownian Bridge Monte Carlo Simulation 

K=8 Std.

Error

K=16 Std.

Error

K=32 Std.

Error 

K=64 Std.

Error

K=128 Std.

Error

Call-Option prices

52,53 13,109 0,002 12,992 0,003 12,936 0,002 12,908 0,003 12,895 0,002

62,53 4,543 0,006 4,429 0,007 4,374 0,008 4,344 0,006 4,332 0,007

67,53 1,038 0,020 0,956 0,022 0,917 0,025 0,904 0,026 0,889 0,024

72,53 0,028 0,005 0,023 0,006 0,021 0,006 0,020 0,005 0,019 0,005

82,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Put-Option prices 
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52,53 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

62,53 0,021 0,005 0,021 0,004 0,022 0,006 0,022 0,007 0,022 0,005

67,53 0,797 0,020 0,839 0,020 0,855 0,020 0,875 0,024 0,876 0,021

72,53 4,090 0,005 4,203 0,005 4,256 0,005 4,281 0,003 4,294 0,004

82,53 12,646 0,002 12,763 0,002 12,818 0,002 12,846 0,002 12,861 0,002
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EMPIRICAL YIELD-CURVE DYNAMICS,
 SCENARIO SIMULATION AND RISK-MEASURES

Claus Madsen

Abstract: This paper has two objectives. First we will construct a general model for the
variation in the term structure of interest rates, or to put it another way, we will define a
general model for the shift function. Secondly, we will specify a Risk model which uses the
shift function derived in the first part of the paper as its main building block. 

Using Principal Component Analysis (PCA) we show that it takes a 4 factor model to explain
the variation in the term structure of interest rates over the period from the beginning of 2002
to early-2012. These 4 factors can be called a Slope factor, a Short-Curvature Factor, a Short
Factor and a Curvature Factor. 

Using the methodology of Heath, Jarrow and Morton (1990) we now specify a 4-factor model
for the dynamic in the term structure of interest-rates. 

This 4-factor model is afterwards being extended to have a stochastic volatility part, which we
assume is to be modelled with a GARCH(1,1) process. The resulting 4-factor yield-curve
model belongs to the class of USV (unspanned stochastic volatility) models, as the volatility
part is un-correlated with the PCA model for the variation in the yield-curve.

Our Risk-Model relies on the scenario simulation procedure of Jamshidian and Zhu (1997).
The general idea behind the scenario simulation procedure is to limit the number of portfolio
evaluations by using the factor loadings derived in the first part of paper and then specify
particular intervals for the Monte Carlo simulated random numbers and assign appropriate
probabilities to these intervals (states). 

Our overall conclusion is the following:

• The Jamshidian and Zhu scenario simulation methodology is best suited for the
calculation of the Risk-Measure ETL - less for VaR

• We find that the scenario simulation procedure is computational efficient, because
we with a limited number of states is capable of deriving robust approximations of
the probability distribution

• We also find that it is very useful for non-linear securities (Danish Mortgage-
Backed-Bonds MBBs), and argue that the method is feasible for large portfolios of
highly complex non-linear securities - for example Danish MBBs

• Backtesting the Risk-Model setup during 2008 showed some very promising
results as we were able to capture the extreme price-movements that were
observed in the market            

Keywords: Multi-factor models, PCA, empirical yield-curve dynamics, APT, VaR, ETL,
Risk-Model, Stochastic Volatility, Monte Carlo simulation, scenario simulation, non-linear
securities - Danish MBBs  
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Empirical Yield-Curve Dynamics, 
Scenario Simulation and Risk-Measures1

1. Introduction

This paper has two objectives. First we will construct a general model for the variation in the
term structure of interest rates, or to put it another way, we will define a general model for the
shift function. Secondly, I will specify a Risk model which uses the shift function derived in
the first part of the paper as its main building block. 

This general model of the variation in the term structure of interest rates is assumed to belong
to the linear class, and, moreover, the factors that determine the shift function are independent;
the model is therefore comparable to the Ross (1976) APT model.

The traditional approach to describing the dynamics of the term structure of interest rates is
either by defining the stochastic process that drives one or more state variables, such as Cox,
Ingersoll and Ross (1985), Vasicek (1977) and Longstaff and Schwartz (1991), or by
postulating one or more volatility structures for determining the dynamics of the initial term
structure of interest rates, such as Heath, Jarrow and Morton (1991). 

However, the approach used in this paper to describe the dynamics of the term structure of
interest rates is an empirical approach in order to derive the number of factors needed to
describe the variation in the term structure of interest rates. Our reference period will here be 2
January 2002 - 2 January 2012. 

The approach follows along the lines of Litterman and Scheinkman (1988) and in that
connection we will relate the approach to the Heath, Jarrow and Morton framework. We show 
in that connection that the PCA method can be thought of as a tool for specifying/determining
the spot rate volatility structure using a non-parametric approach.

In the second and by far the largest part of the paper we will turn our attention to Risk-Models.
The reason being that Risk Measures have three very important roles within a modern financial
institution:

1. It allows risky positions to be directly compared and aggregrated
2. It is a measure of the economic or equity capital required to support a given

level of risk activities
3. It helps management to make the returns from a diverse risky business

 I thank Kostas Giannopoulos for comments to the GARCH estimation and VaR in general.     1
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directly comparable on a risk adjusted basis   

Our approach to the calculation of VaR/ETL is a simulation based methodology which relies
on the scenario simulation framework of Jamshidian and Zhu (1997). 

The general idea behind the scenario simulation procedure is to limit the number of portfolio
evaluations by using the factor loadings derived in the first part of the paper and then specify
particular intervals for the Monte Carlo simulated random numbers and assign appropriate
probabilities to these intervals (states).

We find that the scenario simulation procedure is computational efficient, because we with a
limited number of states are capable of deriving robust approximations of the probability
distribution. Compared to Monte Carlo simulation another important feature with the scenario
simulation procedure is that we have more control over the tails of the distribution - which for
Risk models is important.
         
The paper is organized as follows: In section 2 we will specify the relationship between the
shift function and price sensitivities in a fairly general way. After that in section 3 we will
specify a multi-factor term structure model in the Heath, Jarrow and Morton framework and
show how the volatility structure is related to the shift function.   

Section 4 and 5 will be focusing on the estimation of the non-parametric volatility structure
(the shift function) using PCA. After that, in section 6, we will compare price sensitivities in
the traditional one-factor duration model with price sensitivities derived from the empirical 4-
factor yield-curve model.

The rest of the paper (section 7) will concentrate on scenario simulation and VaR/ETL. We
will here start with a short introduction to VaR/ETL and at the same time discuss some of the
different approaches that has been proposed in the litterature.

Next we will turn our attention to a practical example using a simple portfolio of government
bonds. For that portfolio we will compare the scenario simulation model with the full Monte
Carlo simulation procedure.

The promising results we obtain here leads us to address the problem of Risk-Calculations for
non-linear securities. More precisely we turn our attention to VaR/ETL for Danish MBBs, with
as far as we are aware of, only has been considered by Jacobsen (1996). We conclude here that
the methodology is both efficient and feasible to use for large portfolios of non-linear
securities - because even for complex instruments like Danish MBBs the computational burden
is acceptable.    

2. The traditional approach - Duration models

The traditional approach to calculating the sensitivities of interest-rate-contingent claims as a
function of changes in the initial term structure is to apply a fairly basic assumption - namely
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(1)

(2)

(3)

(4)

that term structure movements only appear as additive shifts to the initial term structure.

The price of a coupon bond can generally be expressed as follows:

jWhere R(t,T) is the initial term structure and F  is the j'th cash flow of the bond.

An expression of the marginal change in this bond, assuming that the term structure
movements are defined by a shift function S(t,T), can be formulated as follows :2

oWhere k (S(t,T)) is the price risk, Q (S(t,T)) is the curvature, È  is the time sensitivity of thek k k

bond, i.e. the bond theta, ëS(t,T) is the size of the impact on the initial term structure, ô is the
time to maturity, Äô is the chosen time-change unit for which the time sensitivity is desired to
be computed, and S(t,T) is a specific term structure shift function - as of now left unspecified.

2.1 The relationship between the initial term structure and the shift function  

Initially the price of a bond is given by formula 1. Following the impact on the initial term
structure caused by the shift function S(t,T) the price of this bond can be formulated as:

Now define a function f(ë) as follows:

Where f(ë) is an expression of the change in the bond price when the initial term structure

changes from R(t,T) to ëS(t,T). In addition, as for ë = 1, , this

implies that we want to determine the second-order approximation to f(ë) in point ë = 1.

The f(ë) function can be written as a second-order Taylor expansion around ë = 0, as follows: 

 If we disregard yield-curve changes of higher order than 2 and time changes of higher order than 1.2
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(5)

(6)

As f(0) = 0 (see formula 3). 

Based on formula 4, it can be deduced that a computation of  for ë = 1, yields the

desired first-order approximation, and the corresponding argumentation can be used for the
second-order approximation.

Bearing this in mind, the price risk (k (S(t,T))) and the curvature (Q (S(t,T))) can bek k

formulated as follows:

Where the traditional approach is to let S(t,T) be equal to 0.01, i.e. an additive shift in the term
structure of 1%.

Now it can be seen that S(t,T) = 0.01 causes the sensitivities stated in formulas 2 to degenerate
into the traditional key figures in a duration/convexity approach, however extended by
including the sensitivity to a shortening of maturity . 3

Thus, in this connection it can be deduced that once the shift function is known (is
determined/specified), it is possible to calculate relevant and consistent key figures.

3. A multi-factor model for the bond return

Let us first recall some properties about the HJM framework as this will be our starting point
when specifying a bond return model.

The dynamic in the zero-coupon bond-prices P(t,T), for t < T # ô,  is assumed to be governed
by an Ito process under the risk-neutral martingale measure Q:

 In the rest of paper I will however only focus on the sensitivity that is a function of the shift-function -3

thus I will disregard time-sensitivities. 
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(7)

(8)

(9)

(10)

Where we have that P(0,T) is known for all T and  P(T,T) = 1 for all T. Furthermore r is the

Prisk-free interest rate, and ó (t,T;i) represents the bond-price volatility, which can be associated

with the i'th Wiener process, where is a Wiener process on (Ù,F,Q), for dQ = ñdP and ñ is

ithe Radon-Nikodym derivative. We also have that Ã (t) represents the market-price of risk that
can be associated with the i'th Wiener process.

pIn order to derive the following results it is not necessary to assume that ó (t,T;i) for i =

p{1,2,...m} is deterministic. It is sufficient to assume that ó (t,T;i) is bounded, and its
derivatives (which are assumed to exist) are bounded.   

Formula 7 can be rewritten as:

The solution to this process can be expressed as:

and: 

Where equation 10 follows from the horizon condition that P(T,T) = 1.

The drift in the process for the bond-price - r in formula 7 - can now be eliminated if we
consider the difference between the process defined in formula 9 and the process that follows
from the horizon condition (formula 10), ie:
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(11)

(12)

(13)

The process for the forward-rates, can also be derived - namely by using formula 11, ie:

Where ó (t,T;i) is defined as , and can be recognized as being a measure for theF

forward rate volatility. 

We furthermore assume that the volatility function satisfies the usual identification hypothesis,

1 2 mthat   is non singular for any t and any unique set of maturities [T ,T ,...T ]. 

The spot-rate process is easily found from the process for the forward rate, ie:

That is, the spot-rate process is identical to the forward-rate process, except that in formula 13
we have simultanous variation in the time and maturity arguments.

It may be seen from formulas 12 and 13 that the process for the interest rates is fully defined by
the initial yield-curve and the volatility structure, which is precisely the main result of the
Heath, Jarrow and Morton (1991) model framework. 

From this we can deduce that there are the following relationships between the bond price
volatility structure and the shift-function:

117



Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures

(14)

(15)

It can now be seen that the shift function is identical to the volatility structure of the spot rate
structure. In this connection, it can therefore be deduced that the traditional 1-factor duration
model given by additive impacts on the term structure of interest rates can be formulated as
follows: 

Where this formulation of the spot rate volatility structure is identical to the continuous-time
version of the Ho and Lee model. 

This result can be seen to clash with Ingersoll, Skelton and Weil (1978), who postulate that
under the no arbitrage assumption the term structure of interest rates cannot change additively
without the term structure of interest rates being flat. Thus, it can be concluded that this
assertion is not valid, where this is also shown by Bierwag (1987b), however in a completely
different framework

In determining the shift function S(t,T) there are, in principle, two methods, as was also shown
by Heath, Jarrow and Morton (1990), namely to either make a pre-defined specification of the
functional shape of the volatility structures (the implicit method) , or to estimate them4

historically - that is determine the volatility structure empirically . 5

The first method is the principle used in option theory and will not be the approach used in this
paper; instead I intend to use historical data to determine the volatility structures - that is a
non-parametric approach.

4. Principal Component Analysis (PCA)  

It is now assumed that the shift function is to be determined by considering the historically
observed movements in the term structure of interest rates; in addition, it is assumed that the
estimation length (i.e. the number of times the term structure of interest rates is to be observed
in the estimation) is equal to L, where l = {1,2,....,L} is the l'th observed variation of the term
structure of interest rates. Furthermore, only a finite number of points on the term structure of
interest rates are used. The number of points/interest rates is P, where p = {1,2,...,P} is the p'th
interest rate and where the terms to maturity of these P interest rates cover the entire maturity
spectrum from t-T.

 See for example Amin and Morton (1993).4

 This is not to be understood in the sense that it is not possible to estimate the parameters that describe the5

functional shape of the volatility structures by using historical data, as this is of course possible; see Heath, Jarrow
and Morton (1990) "Contingent Claim Valuation with a Random Evolution of Interest Rates".
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(16)

(17)

(18)

It is now assumed that the shift function S(t,T) can be written as a linear factor model, as
follows :6

pWhere v (t,T;i) is a function consisting of m-independent risk factors, where a risk factor is

pdefined for each p (i.e. each point/interest rate used in the estimation); in matrix form v (t,T;i)

lcan therefore be understood as being defined by P-rows and m-columns. In addition dF (t,T)

prepresents the change in the risk factors v (t,T) across the entire estimation length L, i.e. in

lmatrix form dF (t,T) is therefore defined as a matrix with m-rows and L-columns. Furthermore,

på (t,T) is an error element that is assumed to be normally distributed, so that ,
where it is assumed that the error elements are independent of the interest rate variation, so that
V is a diagonal variance matrix, which can be formulated as follows in matrix form:

pThat is, å (t,T) is a PxP matrix. Where the more V deviates from the 0 matrix, the less correctly
will the model describe the original data material.  

The model constructed here can also be formulated as a function of the bond yield, as follows:

Where it can be seen that this model formulation is identical to the Ross (1976) APT model
(The Arbitrage Pricing Theory), with the quantity  being better known as the i'th factor

loading. 

The difference between how we have formulated the APT model and the traditional APT
model is that we have no factor-independent Rate-Of-Return (apart from the residual element).

 This is of course not the only formulation of the shift function imaginable; for a brief review of models6

related to this formulation, please refer to Appendix A.
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(19)

We focus namely on modelling/estimating the total Rate-Of-Return of the bonds, and not the
excess rate-of-return, where the excess rate-of-return is defined as the Rate-Of-Return that
exceeds the risk-free interest rate.  

In addition, it should be mentioned at this point that we have not made any kind of explicit
definition of the individual factors F; the explanation is that this analysis will not focus on
estimating spot rate volatility structures that have a specific pattern, but on the other hand on
identifying the number of linear independent parameters that explain the variation in the term
structure of interest rates historically.

In connection with the estimation of the model, we have used formula 16 as my starting point.
The model is estimated by constructing a matrix of historical variations in the term structure of

linterest rates, after which the loading matrix  and the factor values dF (t,ô;i) are

estimated using the Principal Component Analysis (PCA).

The underlying idea of PCA is to analyze the correlation structure (the correlation matrix), that
is, the starting point is to find the correlation matrix on the basis of the matrix of historical
interest changes, after which it is standardized in such a way that the diagonal consists of 1's,
which means that the dispersion matrix is equal to its correlation matrix. The principal factor
solution to the estimation problem is then:

where  respectively represent the eigenvalues  of the7

correlation matrix and the associated standardized orthogonal eigenvectors. In addition, K is a
matrix containing the eigenvectors by columns and Ë is a diagonal matrix with the eigenvalues
in the diagonal. As the correlation matrix is an estimate of the squared loading matrix, the
squared loading matrix is defined by formula 19. 

In this formulation it is assumed that the number of factors is known in advance, namely m. If
this is not the case, the factors that are attributable to the highest eigenvalues are selected until
there is a satisfactory description of the data material, where Kaiser's theorem suggests that all
the factors that have an eigenvalue higher than 1 are to be chosen.

As a factor loading is a vector of correlation coefficients, this means that the best interpretable
factor loadings are achieved when they are either close to 0 (zero) or 1 . This can be achieved8

by rotating the factors, the main rule being that a new estimate for the loading matrix can be
obtained - without changing the explanatory degree at row level, or for that matter at column

 In this connection we have used Jacobi's algorithm to solve the eigenvalue problem.7

 It can therefore also be concluded that the individual loadings relate to the explanatory degree, in fact,8

the explanatory degree of the individual factors is given by the squared loadings.

120



Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures

(20)

level - by multiplying the principal factor solution by an orthogonal matrix. In this connection
we have chosen to use Kaiser's Varimax method for rotating the factors.

The generation of the factor values is the last point missing. Where this can be done in the

following way , for L being the loading matrix and D(s) being the original

interest rate variation matrix (with the number of rows equal to P and the number of columns
equal to L), however in a standardized form, i.e. each column has a mean value equal to 0
(zero) and a standard deviation of 1 . In conclusion, it should be stressed that these9

considerations regarding PCA are taken from Harman (1967).
  
Lastly, with respect to the model defined in formulas 16 and 17, the individual factor loadings
are assumed to be constant, whereas the factor values (factor scores) are time-dependent. 

This indicates that - assuming that the residual element is negligible - the factor values can be
understood as being a time-dependent weighting parameter which, in principle, can be fixed at
1% when risk parameters are to be calculated. Where this means that the shift function can be
formulated as follows:

Which results in term structure shifts being measured in terms of standard deviations, which is
also a relevant calculation unit when bearing formula 14 in mind. The determination of risk
parameters in this multi-factor model will be discussed in more detail in section 6.

5. Estimation of the Volatility Structure

The analysis period has been selected to cover every Wednesday over the period 2  January
2002 - 2 January 2012, based on the yield-curve estimated using the methodology of B-
Splines, see for example Webber and James (2000).  

We are using the following vector of maturity dates as our key-maturity dates:
[0.083,0.25,0.5,1,2,3,4,5,7.5,10,12.5,15,20,25,30] - that is P = 15.

In the table below are shown the ordered eigenvalues for each of the 15 potential factors.

Eigenvalue Degree of Explanation
9,66 64,37
2,04 78,00
1,47 87,81
1,04 94,74

 In the construction of this expression of the factor values, the residual matrix has been disregarded, as9

will appear. This means that it is implicitly assumed that so many factors are being selected that the entire variation in
the data material has been described.
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0,27 96,56
0,23 98,09
0,10 98,76
0,07 99,23
0,05 99,54
0,03 99,72
0,02 99,87
0,01 99,93
0,01 99,99
0,00 99,99
0,00 100,00

According to Kaiser’s theorem one should select all the factors that have an eigenvalue higher
than 1, which in our case means the first 4 eigenvalues. Selecting 4-factors will explain
approximate 95% of the total variation in the yield-curve over the analysed time-period - this is
assumed to be sufficient.

Figure 1 below show the estimated  factor loadings (for the 4 most important factors) before
the varimax rotation and figure 2 show the factor loadings after we have performed the
varimax rotation:

Figure 1 Estimated Factor Loadings - Original 
(2. January 2002 - 2. January 2012)
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Figure 2 Estimated Factor Loading - after Varimax Rotation
(2. January 2002 - 2. January 2012)

In figure 3 below we have shown the degree of explanation for each of the factors :10

Figure 3 Degree of Explanation (2. January 2002 - 2. January 2012)  

 From now on when we use the phrase factor loading we refer to the factor loadings that are obtained10

after the varimax rotation. 
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Thes
e 4
facto

rs can be interpreted as: a slope factor, a short-curvature factor, a short factor and a curvature
factor. It is here interesting to mention, that no matter how we slice and dice our data, this
meaning that if we for example select the period from 2. January 2002 to 2. January 2008 we
still get the same 4 factors. 

As can be seen in the graphs above, the result we obtain are somewhat different from what
normally has been reported in the litterature, for example Dahl (1989) using Danish data,
Litterman and Scheinkmann (1988) and Garbade (1986) using American data, and Caverhill
and Strickland (1992) using English data, which conclude that empirically 3 factors exist that
describe the dynamics of the term structure of interest rates. 

Lord and Pelsser (2006) concluded the following in their study of the fact that traditionally 3-
factors are observed, namely: A Level Factor, a Slot Factor and a Curvature Factor: 

“...we analysed the so-called level, slope and curvature pattern one frequently observes when
conducting a principal components analysis of term structure data. A partial description of the
pattern is the number of sign changes of the first three factors, respectively zero, one and two.
This characterisation enables us to formulate sufficient conditions for the occurrence of this
pattern by means of the theory of total positivity. The conditions can be interpreted as
conditions on the level, slope and curvature of the correlation surface. In essence, the
conditions roughly state that if correlations are positive, the correlation curves are flatter and
less curved for larger tenors, and steeper and more curved for shorter tenors, the observed
pattern will occur. 

As a by-product of these theorems, we prove that if the correlation matrix is a Green’s
or Schoenmakers-Coffey matrix, level, slope and curvature is guaranteed. An unproven
conjecture at the end of this paper demonstrates that at least slope seems to be caused by two
stylised empirical within term structures: the correlation between two contracts or rates
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decreases as a function of the difference in tenor between both contracts, and the correlation
between two equidistant contracts or rates increases as the tenor of both contracts increases.

...we can conclude that the level, slope and curvature pattern is part fact, and part artefact. It
is caused both by the order and positive correlations present in term structures (fact), as well
as by the orthogonality of the factors and the smooth input we use to estimate our correlations
(artefact).”

So the reason for the difference we observe here, is probably given by the fact that we are
employing a B-Spline estimation algorithm (which are very flexible and able to capture both
the long end of the yield-curve and the short end simultanously), while the other studies use (if
it is mentioned at all) less flexible functional forms for the yield-curve, like for example the
Nelson and Siegel (1988) model or extensions hereof like the Svensson (1994) model.

To investigate that observation we have re-done the estimations of the PCA-model for the
same period 2. January 2002-2. January 2012, but now for the following set of interest-rate
maturities: [1,2,3,4,5,7.5,10,12.5,15,20,25,30]. If our observation is correct we would expect to
get 3 factors, namely: A Level Factor, a Slot Factor and a Curvature Factor. The result are
shown below:

Estimated Factor Loadings (No Rotation) and a subset of maturities (2. January 2002 - 2.
January 2012)

The first 5 eigenvalues are: 

Eigenvalue Degree of Explanation
9,52434 79,36953
1,44311 91,39544
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(21)

(22)

(23)

0,54039 95,89866
0,25575 98,02987
0,09443 98,81678

From the above we can actually see that now the results obtained are identical with what is
normal reported in the litterature - namely 3-factors that explan more than 95% of the variation
in the yield-curve which can be interpreted as: A Level Factor, a Slope Factor and a Curvature
Factor.
 

6. Measuring of Risk in a multi-factor shift function model 

The shift function in this 4-factor term structure model can now be formulated as follows:

m mwhere v , for m = {1,2,3,4} is the vector of factor loadings and dw  is the vector of factor
scores.  

In this connection, the vector sensitivities can be formulated as follows for the coupon bond
P (t,T):k

where this can be regarded as the factor duration.

The factor convexity has the following form:

These two equations deserve a few comments. 

mTo fully understand these relations we first note that if we disregard v , for each m, then the
equations degenerate into the portion of returns of the bond which result from a unit change (a
standard deviation, S(t,T) = 1%) in the whole yield-curve. The factor model on the other hand
tells us that a unit change to the factor does not change the yield-curve by one percent - but by

mv  percent. 
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From this we can deduce that in order to find the total impact on bond returns from a factor
change, we need to scale by a weight that is exactly equal to the appropriate factor loading.      

6.1 A practical example - risk factors in the 4-factor term structure model compared
with the risk factors in the traditional 1-factor duration model

In order to illustrate the difference between the traditional approach in calculating price
sensitivities (i.e. S(t,T) = 0.01), and the price sensitivities generated by this 4-factor model the
table  below shows the risk calculated using modified duration and the factor duration for a
wide range of Danish Government bonds.

Table 1: Duration and Factor Sensitivities (2. January 2012)

Isin Instrument-Name Mod. Duration Factor 1 Dur Factor 2 Dur Factor 3 Dur Factor 4 Dur
DK0009922593 4 Ink st 2012 -0,869 -0,119 0,768 -0,001 -0,307
DK0009920894 5 Ink st 2013 -1,824 -0,524 0,684 0,043 -1,466
DK0009922833 2 Ink st 2014 -2,812 -1,020 0,432 0,121 -2,523
DK0009921439 4 Ink st 2015 -3,656 -1,632 0,606 0,171 -3,151
DK0009922759 2.5 Ink st 2016 -4,636 -2,477 0,909 0,220 -3,705
DK0009902728 4 Ink st 2017 -2,800 -1,242 0,667 0,132 -2,217
DK0009921942 4 Ink st 2017 -5,352 -3,126 0,964 0,256 -4,052
DK0009922403 4 Ink st 2019 -6,930 -4,685 0,965 0,334 -4,708
DK0009922676 3 Ink st 2021 -8,673 -6,484 1,149 0,383 -5,198
DK0009918138 7 Ink st 2024 -9,524 -7,577 1,263 0,236 -4,941
DK0009922320 4.5 Ink st 2039 -18,076 -16,151 1,268 -0,002 -5,517

The most interesting to note in this table is the fact that the degree of sensitivity a given bond
has to a particular (risk) factor has got nothing to do with the importance of this (risk) factor -
this issue will be discussed later in section 7.4.

One can from the table see that this 4-factor model measure the risk at the relevant
segments/parts of the yield-curve where the risks of each securities are more logically
attributable than what is the case for the traditional 1-factor duration model.  For example the
short bullet bond 4 Ink st 2012 is more sensitive to factor 2 than the other 3-factors as the
maturity date of that bond occur at a time where factor 2 has more influence than the other 3-
factors, see Figure 2. 

This ends the first part of the paper - namely determining the number of factors that drive the
evolution in the yield-curve using an empirical approach.

In the next section we will explain how we - for the current analysis - have defined to setup our
Risk-Model framework.
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7. Risk-Models - a Short Survey

VaR is probably the most important development in risk management. This methodology has
been specially designed to measure and aggregate diverse risky positions across an entire
institution using a common conceptual framework. Even though these measures come under
difference disguises e.g. Banker Trusts Capital at Risk (CaR), J.P. Morgans Value at Risk
(VaR) and Daily Earnings at Risk (DeaR), they are all based on the same foundation. Even
though different institutions has come up with their own names the one that seems to be most
commonly used is VaR - which is the name we will be using here.  

Definition 1:

Risk Capital is defined as the maximum possible loss for a given position (or portfolio)
within a known confidence interval over a specific time horizon. 

VaR plays three important roles within a modern financial institution:

! It allows risky positions to be directly compared and aggregrated
! It is a measure of the economic or equity capital required to support a given

level of risk activities
! It helps management to make the returns from a diverse risky business

directly comparable on a risk adjusted basis   

Even though there are some open issues regarding its calculation, VaR is nevertheless a very
useful tool for helping management to steer and control diverse risk operation.

The problem with VaR is that there is a variety of different ways to implement the definition of
Risk Capital (see Definition 1) each having distinct advantages and weaknesses. In order to get
a better grasp of the trade-offs implicit in each method - it is important to understand which
kind of components Risk Capital is built around. 

Risk Capital comprises of the following two (2) distinct parts:

! The sensitivity of a position’s (portfolio’s) value to changes in market rates
! The probability distribution of changes in the market rates over a predefined

reporting horizon  

Given these assumption - VaR is (usually) defined as the maximum loss within the 99%
confidence interval over at 10-day time period (Basel II) - for Market Risk calculations .11

In the following table we have listed the 3 most common methods used when calculating VaR
- together with their advantages and disadvantages:

 Recently there has been talk about changing from the use of VaR to the use of ETL, for more about11

ETL see below.
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Method RiskMetric Delta-GammaTM

Methods12

Simulation Based
Methods

Description Assume that asset returns
are normally distributed,
implying linear pay-off
profiles and normally
distributed portfolio
returns :13

Assume that asset returns
are normally distributed,
but pay-off profiles are
approximated by local
second order terms

Approximate probability
distribution for asset
returns based on
simulated rate
movements, either
historically or model
based 

Advantage Simplicity. Simplicity.
Captures second order
effects.

Captures local and non-
local price movements.
Takes into account fat
tails, skewness and
kurtosis.
With Monte Carlo
simulation, we have
flexibility to select a
probability distribution.
With historical
simulation we do not
need to infer a
probability distribution. 

Disadvantage Assuming normality of
returns ignores fat tails,
skewness and  kurtosis.
Ignores higher order
moments in sensitivities.
Captures only risks of
local movements for
linear securities. 
Does not capture risks of
non-local movements.

Assuming normality of
returns ignores fat tails,
skewness and  kurtosis.
Does not capture risks of
non-local movements.

Computationally
expensive - for Monte
Carlo simulation.
With Monte Carlo
simulation then we need
to select a probability
distribution.
With historical
simulation then we
cannot select a
probability distribution.

 This method is due to Wilson (1994). 12

 á = 2.54 if we wish to calculate VaR at the 99% confidence level, Ät = unwind period, V = vector of13

volatilities and C is the correlation matrix.    
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It is not directly mentioned in this table but in general it is assumed that the expected return is

zero (0), ie: . This assumption is related to the fact that it is the standard to

measure Risk over a “short” time interval, for longer periods (unwinding periods) one should
not employ the zero expected return assumption! 

The issue that has been mostly widely discussed in the literature with respect to VaR is how to
derive appropriate volatility estimates? - see for example Alexander (1996). We will not here
discuss that issue but will address it in section 7.3. 

Another very important issue in connection with Risk-Calculations is how to derive a reliable
correlation matrix? The problem with estimating and modelling the correlation matrix can be
summarized as follows:

! Correlations coefficients are highly unstable and their signs are ambiguous
! If for example we have 15 interest rates we need to keep track of (model)

 correlation coefficients

! We need a long data period in order to have enough degrees of freedom to
estimate a reliable correlation matrix. There is however no guarantee that the
resulting matrix satisfy the multivariate properties of the data - we might
even encounter a correlation matrix that is not positive definit   

These observations have inspired research to reduce the dimensionality - where a common
suggested method is PCA - like the one we performed in section 4 and 5 in this paper. The nice
property in this context is - as mentioned in section 5 - that even though the correlation
coefficients are highly unstable the factor loadings are extremely stable .      14

Barone-Adesi, Bourgoin and Giannopoulos (1997) has suggested an interesting approach to
worst case scenarios. This method is based on historical returns combined with a GARCH
approach (actually a AGARCH-model) for forecasting purposes. The procedure does not
employ the correlation matrix directly as the correlation is embedded indirectly in the historical
simulation procedure - which is a very neat property of their method.    

7.1 VaR contra ETL

Artzner,  Delbaen, Eber and Heath (1999) showed that VaR is not what is termed a coherent
risk-measure. Where the definition of a coherent risk-measure is a risk-measure that satisfies:

 The Factor ARCH approach of Engle, Ng and Rothschild (1990) is also in this spirit - see Christiansen14

(1998) on Danish data.
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Properties 1, 3 and 4 are well-behavedness properties to rule out strange outcomes. The most
important property is the sub-additivity property. 

The sub-additivity property tell us that a portfolio made up of subportfolios will have a risk
that is not more than the sum of the risks of the subportfolios: 

• This reflects an expection that when we aggregrate individual risk, they
diversify or, at worst, do not increase – the risk of the sum is always less than
or equal to the sum of the risks

This sub-addivity property spells trouble for VaR as VaR is not sub-additive - except by posing
particulary restrictions on the profit/loss distribution.

One risk-measure candidate which is coherent is ETL (expected tail loss) .  15

ETL is defined as the average of the worst 100(1-á)% of loses, that is:

In case the profit/loss distribution is discrete ETL can be calculated as:

From this we can deduce that ETL is the probability-weighted average of the tail losses –
which suggest that ETL can be estimated as an average of  ”tail VaRs”.

For the above reason we will be both considering VaR and ETL when calculating risk-
measures.

For our implementation of a Risk model we will limit ourselves to domestic interest rate data -
but extending to multiple currencies is of course possible, this will however not be treated in
this paper.  

 This is sometimes also referred to as Tail-Loss or CvaR (Conditional Value-at-Risk), we however15

prefer ETL.
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(24)

Our Risk approach is based on the following basic assumptions:

! We will build our VaR/ETL approach on top of our empirical yield curve
dynamics model from section 4 and 5, for elaboration see section 7.1   

! We will estimate the volatility structure using the GARCH approach, see
section 7.3

! Our approach is a simulation based method which follows along the lines of
Jamshidian and Zhu (1997) , see section 7.216

! One could say that we combine the methodology of Barone-Adesi, Bourgoin
and Giannopoulos (BABG) (1997) , with the simulation based approach from17

Jamshidian and Zhu (JZ) (1997) 
! We will impose the restriction that the expected price change in a discount bond

is equal to the price change with arises through the combined effect of a
shortening of maturity and a movement down the yield-curve. This means that
we will assume that the expected yield-curve will be equal to the initial yield-
curve

7.1 An Empirical Multi-Factor Model   

iBefore continuing it is worth mentioning that we have the following relationship between dW

i(the Wiener process) and dw  (the factor scores), for i = [1,2,3,..,P], and P = number of key-
rates (maturities) (in our case 12) :18

ithis equation arises because dW  .N(0,1) and as we have normalized the correlation matrix19

ithen  and therefore dw  .N(0,1). That is, the factor scores are assumed to be

standardised normal distributed variables.   

The equal sign in the last equality in formula 24 becomes an approximation sign for P > 4 -
where 4 is the number of factors. As follows we have limited ourselves to a 4-factor model as
we are using Kaiser’s theorem to select the number of factors, see section 4. Furthermore we

 Se also Frey (1998).16

 One might add that the approach from Hull and White (1998) is quite similar to the BAGS model.17

 For these derivations, we note that if we consider the factor loadings before the varimax rotation - then18

the correlation matrix is given by KK  and K K = diag(ë) - if K is the factor loading matrix. It should here be stressedT T

that if we consider the factor loadings after varimax rotation then  K K will only be equal to diag(ë) if the vector ofT

eigenvalues are being recalculated from the factor loading matrix after rotation.   

 In the case that we have not normalized the correlation matrix then ë is the vector of eigenvalues for the19

correlation matrix. This is however only true if we do not perform varimax rotation of the factors.   
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(25)

(26)

assume that the approximation error this gives rise to in equation 24 is negligible.      

As mentioned above the volatility parameters can be obtained directly from the estimated
eigenvalues - that is however not the approach we will employ here. We will instead use a
GARCH(1,1) model to estimate the volatility structure and use this model to derive volatility
forecasts that is to be used in connection with our VaR/ETL calculations, for more see section
7.3 and section 7.4.

This means that our model setup will belong to the type of models that normally is referred to
as unspanned stochastic volatility (USV) models (see for example Casassus, Collin-Dufresne
and Goldstein 2005).

A number of papers have investigated whether the existing models can capture the joint
dynamics of term structure and plain-vanilla derivatives such as caps and swaptions. Simple,
model-independent evidence based on principal component analysis suggests that there are
factors driving Cap and Swaption implied volatilities that do not drive the term structure.
Collin-Dufresne and Goldstein 2002 call this feature unspanned stochastic volatility,
simplified put, it appears that fixed-income derivatives such as Caps and Swaptions
cannot be perfectly replicated by trading (even in a very large number of) the underlying
bonds. That is, in contrast to the predictions of standard short-rate models - which assume that
bonds does span the bond market.

A model that exhibits USV, is a model where bond prices are insensitive to volatility-risk, and
hence cannot be used to hedge volatility-risk. In our case this is true because there is no
correlation between our GARCH (1,1) model for volatility and our PCA-model for the yield-
curve dynamic.

Using the results from section 3 we can now in abstract form express the dynamic in the yield-
curve as follows:

where S(t,T) is the shift-function matrix which in our case for all practical purposes can be
fixed to have 4 columns. Furthermore we have that ó(t,T) is a vector of volatilities. Where as
mentioned above the vector of volatilities ó(t,T) will be derived from a GARCH-model.

The drift in formula 25 depends on the expectation hypothesis, which means that the process
has been written under the original probability measure - the implication is that the model as it
is formulated in formula 25 is not appropriate for pricing purposes.

Using formula 24 and because for our purpose it is more convenient (and appropriate) to
assume a lognormal process, we can rewrite formula 25 as:
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(27)

or alternatively expressed in integral form:

We have assumed that ì(T) (for all T > t) is equal to the initial yield-curve. That is we assume
that the expected yield-curve is equal to the actual yield-curve.

This is a more intuitive assumption than using forward rates when our motive is to generate
yield-curve scenarios for future dates that are to be used as inputs in various valuation models.
The model setup is nevertheless arbitrage free as the uncertainty of each key rate is governed
by its own market price of risk - which implicitly are determined through the expectation
hypothesis. Again we stress that we are here working under the actual probability measure and
not under the risk-neutral probability measure.           

For longer time-horizons, the above formulation is not appropriate, due to the fact that we have
omitted mean-reversion in the drift specification - extension to a model which has mean-
reversion is however straightforward, but for our purpose the above formulation is sufficient.

7.2 Scenario Simulation

In order to simulate yield-curve movements, we can apply the Monte Carlo method to equation
27. If we now assume that we perform N simulations for each of the 4-factors - then the total
number of yield curves at a given point in time will be N . For N = 100 we will therefore have4

100,000,000 future yield-curves which is (more than) adequate in order to generate a
probability distribution of the future yield curves. Another approach is of course to perform a
Monte Carlo simulation directly in our 4-factor model, however still a fairly high number of
simulations is required in a 4-factor model in order to obtain a “precise” probability
distribution - especially as we are interested in the tails of the distribution.  

In general, it can be said that “brute force” Monte Carlo will require a substantial amount of
portfolio evaluation. This approach will for that reason not be of practical use, if firstly the
portfolio is fairly large and secondly if the portfolio contains a fair number of non-linear
instruments of moderate complexity, like for example Bermudan Swaptions, flexi-caps and/or
Mortgage-Backed-Bonds.

The interesting question is - how can we reduce the computational burden while at the same
time having a reasonable specification of the future yield-curves probability distribution?

As shown by Jamshidian and Zhu (1997) this is possible. The argumentation is as follows:

Let us suppose that x is a random variable with distribution P(x). In a Monte Carlo method, we
simulate N possible outcomes for the random variable x - where each simulated x has the same
probability. 
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(28)

(29)

i l uHowever, we have that numbers x ’s, for i = [1,2,...,N], that falls between x  and x  is

proportional to the probability . From this it follows that we can select a region

l u(x , x ] and assign a given probability for all numbers that fall inside this region. If we utilize
this procedure, it is possible for example to perform 100 simulations for each factor but we
only need to perform the portfolio evaluation at a limited number of states - more precisely at
the number of states that equal the number of predefined regions. 

A good candidate for a probability distribution is the multinomial distribution . If k + 1 states20

(ordered from 0 to k) are selected then the probability for a given state i is given by the
binomial distribution and can be expressed as:

For this distribution we have that there is a distance of  between two adjacent states, and

furthermore is the furthest state  standard deviation away from the center. 

Let us now assume that we only need to select nine (9) states for factor 1, five (5) states for
factor 2 and three (3) states for factor 3 . This gives us all in all 9 x 5 x 3 = 135 scenarios in21

which we have to evaluate our portfolios - which is independent of the number of Monte Carlo
simulations.    

Under this assumption we get the following probabilities for each of the states for the 3-
factors:

As the 3-factors are independent we have that their joint probability is defined by the products
of the three marginal probabilities.    
     
There has been discussing in the litterature about the robustness of the JZ approcimation, for

 See Cox and Rubenstein (1985).20

 In Jamshidian and Zhu (1997) they select 7,5 and 3 - but as they mention (their footnote 7) the21

determination of the appropriate number of states for each factor is an empirical question.  
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example Abken (2000), he states the following: “The outcomes for the
nonlinear test portfolios demonstrate that scenario simulation using low- and moderate
dimensional discretizations can give “poor” estimates of VaR. Although the discrete
distributions used in scenario simulation converge to their continuous distributions,
convergence appears to be slow, with irregular oscillations that depend on portfolio
characteristics and the correlation structure of the risk factors.” This observation is in line
which the oscillations seen in the pricing of long dated options using the Cox, Rox and
Rubenstein (1979) model, and something one should be aware of....we will address that issue
later. 

Gibson and Pritsker (2000) have the following comment: “We show that their method has two
serious shortcomings which imply it cannot accurately estimate VaR for some fixed-income
portfolios. First, risk factors chosen using principal components analysis will explain the
variation in the yield curve, but they may not explain the variation in the portfolio's value. This
will be especially problematic for portfolios that are hedged. Second, their discrete
distribution of portfolio value can be a poor approximation to the true continuous
distribution.”  They instead propose a Grid-based Monte Carlo approach on the (derived) risk-
factors for the portfolio in question. A similar approach is advocated by Chishti (1999).

We will look into these issues in section 7.4. 

7.3 Stochastic Volatility

As mentioned earlier we are using the GARCH(1,1) model to specify the volatility in our
multi-factor yield-curve model. To examplify this we have below in figure 4 shown the
volatility structure as of the 2 January 2012 that has been determined using the GARCH(1,1)
model:
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Figure 4 GARCH(1,1) Volatility Structure (2. January 2012)

For the interested reader we have in Appendix C briefly discussed the idea behind GARCH
and also explained how we have constructed the volatility structure.  

7.4 An Illustrative Example

In order to show how the approach works we have constructed the following example:

The portfolio we have selected is the following:

Table 2: Government Bond Portfolio as of 2. January 2012
Isin Instrument-Name Position Clean Price Accrued IR Dirty Price Value
DK0009920894 5 Ink st 2013 2500000 109,084 0,697 109,781    2.744.518,03 
DK0009902728 4 Ink st 2017 1500000 108,000 2,230 110,230    1.653.442,62 
DK0009922320 4.5 Ink st 2039 4000000 149,520 0,627 150,147    6.005.881,97 

Total Value:  10.403.842,62 

From table 2 it follows that the value of the portfolio as at 2 January 2012 is 10.403.842,62 kr.
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We now wish to determine the distribution of the portfolio for a 10-day horizon using the
approach we have specified above for our 4-factor model. Given this distribution we can then
derive our VaR estimate give our model setup.

As comparison benchmark we have used Monte Carlo to simulate 250.000 yield-curves for our
10-days horizon for our 4 factor-model and calculated the joint probability distribution.

The purpose of this is in order to investigate the approximation error in the Jamshidian and
Zhu (1997) model for calculation VaR - and in that connection address some of the issues that
has been stated in litterature, as explained by the end of section 7.2. 

Before we show the results we need to address one more issue - namely the building of a yield-
curve given the price of zero-coupon bonds at the following fixed maturity dates:
[0.083,0.25,0.5,1,2,3,4,5,7.5,10,12.5,15,20,25,30]. 

For that purpose we are using the maximum smoothness approach of Adams and Deventer
(1994), see Appendix C for an elaboration.  

The results are stated in the table 3  below:

Table 3: Comparison of scenario simulation vs Monte Carlo simulation
MC(250.000) States(9,5,3,3) States(7,5,3,3) States(9,7,5,3) States(9,5,3)

Sample 250000 405 315 945 135
Mean -0,012 -0,013 -0,013 -0,013 -0,011
Standard Deviation 0,956 1,651 1,450 1,652 1,622
Maximum 4,068 3,005 2,622 3,053 2,645
Minimum -4,519 -3,299 -2,851 -3,371 -2,858

States(7,5,3) States(9,5) States(13,11,7,5) States(7,7,7.7)
Sample 105 45 5005 2401
Mean -0,011 -0,011 -0,014 -0,014
Standard Deviation 1,417 1,634 2,021 1,517
Maximum 2,257 2,642 3,967 3,062
Minimum -2,415 -2,853 -4,539 -3,420

From the results in table 3 we conclude the following:

• The scenario simulation procedure generates a mean that is very close to the mean
derived from the Monte Carlo simulation - this is the case for all the 8 scenario
simulations

• The standard deviation in the scenario simulations is in all cases higher than the
standard deviation obtained in the Monte Carlo simulation  

• We also observe that the range of obtained values (the distance between maximum
and minimum) is higher in the Monte Carlo simulation compared to the scenario
simulations           

Before we start investigating the VaR numbers we have below in figure 5 make a comparison
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between the True CDF (as obtained from Monte Carlo) and JZ Approximation.

Figure 5: Comparison of the True CDF and the JZ Approximation 

The main conclusion from this figure is the following:

• The less number of factors we select the more oscillation we see
• The less number of states for the factors the more oscillation we see
• We can also deduce that the scenario simulation will under estimate the VaR

number (this is in line with the results from Gibson and Pristker (2000)) - the
question is how much?

Knowing the probability distribution makes it straightforward to calculate VaR/ETL. This is
done below in table 4.  
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Table 4: A comparison of Risk-Measures
MC(250.000) States(9,5,3,3) States(7,5,3,3) States(9,7,5,3) States(9,5,3)

VaR(99) 10-Day -2,297 -2,200 -2,107 -2,215 -1,965
ETL(99) 10-Day -2,647 -2,665 -2,654 -2,554 -2,978

States(7,5,3) States(9,5) States(13,11,7,5) States(7,7,7.7)
VaR(99) 10-Day -2,114 -1,873 -2,210 -2,191
ETL(99) 10-Day -2,631 -5,173 -2,551 -2,453

From table 4 we find:

• Yes, VaR will be underestimated using the JZ simulation technique - in our case
with an error that lies between 3-17%

• A big surprise is that, as a rule of thumb the ETL estimate is significant better than
the VaR estimate. The only exception is the much higher ETL for the case:
States(9,5)  

In interesting question is how can that be?

In the MC method each simulation has the same probability for occuring, that is not the case in
the JZ approach - here the probability for any given observation is defined as the product of
being in a given state for each of the factors. 

What happens with the JZ in case there is not “enough” states is that some of the observations
in the tails will be derived from products of probabilities for being in states for one or more
factors where the state is not “far enough” away - in terms of standard deviations - from the
centre. In connection to this is that we are bound to get quite a few observations in the tails and
that the profit loss distribution will oscillate .22

To conclude how many states we need to get reliable ETL estimates is real hard to say, but it
seems like if we; 1) select a suitable number of states for each factor; 2) that all factors are
taken into account and 3) that our sample size is significantly larger than 1/(1-quantile) then
we will get fairly reliable ETL estimates .23

To perform a detailed analysis of this interesting subject lies however outside the boundaries of
this paper, we will for the current analysis assume this and will for the rest of the paper be
using the JZ model with States(7,5,3,3).

The analysis performed in this section gives rise to the following conclusion:

• The scenario simulation procedure is computationally very superior to the 

 We did some more calculations in order to investigate this phenomenon (like for example22

States(7,5)) and we see the same problem in all the cases - namely “much” to high ETL number.

 A similar observation was done in connection with figure 5.23
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Monte Carlo simulation procedure
• It is easier with scenario simulation to obtain good estimates for ETL than for

the point estimate - VaR. Which is good news as ETL also is a better risk-
measure than VaR - see section 7

• There is also evidence that it is appropriate to select 7 x 5 x 3 x 3 states - at
least in our case 

Some closing remarks.

The scenario simulation procedure is so fast for simple (nearly) linear instruments that it rivals
the parametric approach. 

Actually to derive the return distribution using the scenario simulation for the case
States(7,5,3,3) takes less than 0.1 second all in all, where this includes:

• Determining the states
• Calculating the probability for realising a particular yield curve
• Calculating the 315 yield curves for the 15 maturities24

• Estimating 315 yield curves using the maximum smoothness approach of
Adams and Deventer (1994)

• Calculating the price distribution of each of the 3-bonds in the portfolio
• Calculation the mean, standard deviation etc
• Calculating VaR/ETL for a given confidence interval               

From this we conclude that there is no reason why we should be satisfied with a single number
from a risk-management point of view - when we can construct the whole probability
distribution with very little effort from a computational perspective. 

7.5 Scenario Simulation for Non-linear Portfolios

Of course scenario simulation is even more important for non-linear securities - or more
precisely to limit the number of calculations. 

We will for that reason turn our attention to some interesting non-linear securities - namely
Danish Mortgage-Backed-Bonds .25

Here we will not focus on a portfolio but instead select a few different MBBs and then use the
scenario simulation procedure to calculate the probability distribution for these securities. 

 One might note here, in case we had not been looking at such an extreme time-period as we did in24

the analysis here, the general result would have been that we only would need somewhat around 3-factors and the
most appropriate number of states being 9 x 5 x 3 - these results is because of lack of space omitted here.

 For a good introduction to Danish Mortgage-Backed-Bonds, see Karner, Kelstrup and Schelde (1998)25

and Kelstrup, Madsen and Rom-Poulsen (1999).  
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However, expanding to a portfolio approach is straightforward as the probability distribution
of a portfolio is just defined as the value-weighted sum of the probability distributions for each
of the securities in the portfolio. 

For the purpose of the following discussion we assume that a pricing model is available. We
will however here mention a few of the ingredients that are an integrated part of a pricing
model for Danish MBBs (and for that matter American MBBs):

• A yield-curve 
• A prepayment model for the behaviour of the debtors - we are here using the 

Madsen (2005) model
• A yield-curve model, we will here be using the same swap-curve model as

introduced in section 5
• A model for the volatility structure, we are implying the volatility parameters

from traded caps/floors
• A pricing model that uses the first four ingredients to calculate the price - we

are here using the Black and Karisinski (1991) model (Log-Normality
assumption) , though calibrated using the trinomial approach of Hull and White
(1994)

• An OAS-Model, that is a model that takes into account that OAS is a function
interest rate changes          26

As far as we know VaR for Danish MBBs has only been considered by Jacobsen (1996), his
method is however completely different than the methodology we employ in this paper.

Let me for that reason briefly mention a few stylized facts about Jacobsens approach: 

The main idea in Jacobsen is to construct a delta equivalent hedge portfolio of zero-coupon
bonds - that is a 1 order approximation. For that purpose he selects 17 key-rates  and using the27

triangular method of Ho (1992) it is possibly to construct 17 different shifts to the initial yield-
curve - where these shifts by definition are constructed in such a manner that the sum of the
shifts equals an additive shift to the yield-curve. This delta equivalent hedge portfolio is now
being used to calculate VaR measures using the parametric approach suggested in
RiskMetric  for linear securities - that is the delta equivalent cash-flow (DECF) is beingTM

treated as a straight bond.

This approach is very simple and the computational burden is acceptable - “just” 17 price
calculations - but there are some undesirable features in the methodology:

• Firstly, the DECF is not constant, it depends on all the information that is

 It lies outside the boundary of this paper to come into details about our MBB pricing model, and26

associated models, like our OAS-Model.

 The reason being that this is the number of maturities that RiskMetric operates with. TM 27

142



Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures

related to the pricing of MBBs (this is also pointed out by Jacobsen). This
means that it is only useful for calculating VaR over short periods and/or
limited yield-curve changes

• Secondly, it does not produce a probability distribution - which especially for
non-linear securities is of importance. Ofcourse we can construct a probability
distribution using the DECF approach - but because the DECF is not constant -
this probability distribution will not be of limited use

It could of course be argued that in the scenario simulation procedure advocated here we need
to perform 315 price calculations in order to derive the probability distribution - which
however still could be quit time-consuming for large portfolios of MBBs - at least relatively to
the DECF approach from Jacobsen.

8. Backtesting of our Model Setup 

In this section we will perform a backtest of out model setup for the period 2. January 2008 - 2.
January 2009.

We will test the abilities of our model setup to capture the “true” risk for the following 2
bonds.

Table 6: Backtest Portfolio (Date: 2. January 2008)
Isin Instrument-Name Clean Price Accrued IR Dirty Price
DK0009769895 6 NYK MBB 2041 98,800 0,099 98,899
DK0009918138 7 Stat Ink 2024 127,312 1,109 128,421

In figure 6 below we have shown the price pattern for the 2 above bonds over our backtest
period.

Figure 6: Price evolution for the period 2. January 2008 - 2. January 2009
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We have performed the following calculations:

Starting with the 2. January 2008 we have every 10-days for the whole year 2008 done the
following:

! Re-Estimated the PCA model, assuming 4-factors are to be selected and rotated the
factor loadings using the Varimax-Method

! Re-Estimated our Garch(1,1) model and forecastet the volatility structure for the
next 10-days

! Generate our 315 Yield-Curves using the JZ Approach with states(7,5,3,3) (as
described in the previous sections)

! Given the simuleted 31 Yield-Curves we will now price our 2 Bonds 10-day in the
future. 
" For the Government Bond that is straightforward as the value is only a function

of the yield-curve
" For our Mortgage Backed Bond, things are somewhat more complicated. The

procedure is as follows:
- We will first estimate the volatility parameters for our Log-Normal Hull-

White model using at-the-money Caps, and assume the estimated volatility
is constant over the next 10-days

- Using the estimated volatility parameters and each of the 315 (simulated)
yield-curves as inputs, we will now price the MBB 10-day in the future,
using our one-factor Log-Normal Hull-White model combined with our
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Prepayment-Model
! Knowing the 315 simulated values (prices) of our 2-Bonds 10-day in the future,

will allows us to calculate the Profit-Loss distribution, as we know the value of the
Bonds at the beginning of the 10-day period (=today)

! From the Profit-Loss Distributions determine VaR and ETL

These calculated risk-measures we wish to compare with the real-changes in the value of these
bonds - especially will it be interesting to see how the model has performed during the
Financial Crisis - notable autumn of 2008.

These data are shown in the following 2 figures.

Figure 7: Profit-Loss, VaR and ETL (DK0009918138)
(2. January 2008 - 2. January 2009)
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Figure 8: Profit-Loss, VaR and ETL (DK0009769895)
(2. January 2008 - 2. January 2009)
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From the above 2 figures we can draw the following conclusion:

! Number of breeches of our VaR number for the Government-Bond is 3 - expected
breeches is approximately 2.5

! The 3 breeches occur on the following 3 dates:
! 5. November, 6. November and 7. November

! The highest breech is less then 15% worse than anticipated by our VaR
number  

! There are no breeches of our ETL number for the Government-Bond
! Number of breeches of our VaR number for the Mortgage-Bond is 7 - expected

breeches is approximately 2.5
! The breeches occur on the following 7 dates:

! 18. September, 19. September, 13-17 of October
! The highest breech is approximately 37% worse than anticipated by our

VaR number
! There are 5 breeches of our ETL number for the Mortgage-Bond

! The breeches occur on the following 5 dates:
! 13-17 of October
! The highest breech is approximately 20% worse than anticipated by our

ETL number
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If we consider the results for our Government-Bond then we obtain very interesting results,
one might even say that it is incredible that our model setup is so robust that under such
extreme price movements we were witness to during the autumn of 2008.

The result obtained here is a strong indication that the model setup as defined in this paper is
of practical interest due to its ability to capture the risk under extreme market conditions.

When we turn our attention to the results for the Mortgage-Bond, the results are not nearly as
strong as for the Government-Bond. However, considering the fact that there are a lot more in
play in modelling a Mortgage-Bond, it is not really that surprising - where the most notable
problem during the financial crises was the following 2 facts:

! The market-marker arrangements for Mortgage-Bonds was suspended on several
occasions during this period, which means that no real trading was done

! The was a huge changes in OAS-Spread - which no OAS-Model was able to
capture, this can be seen in figure 9 below 

Figure 9: Evolution in OAS-Spread for DK0009769895 

If one takes that into account, we believe the results we obtain in our model setup also is very
promising in connection with Danish MBB’s.
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8. Conclusion

The first result in this paper was the construction of a general model for the variation in the
term structure of interest rates - that is we defined a model for the shift function. In this
connection we showed - using the Heath, Jarrow and Morton (1991) framework -  that the shift
function could be understood as a volatility structure - more precisely the spot rate volatility
structure.   

The class of shift functions considered in this paper was of the linear type, with independence
between the individual factors; the model was therefore comparable to the Ross (1976) APT
model.

Using PCA we showed that it took a 4-factor model to explain the variation in the term
structure of interest rates over the period from the 2. January 2002 to the 2. January 2012.
These 4 factors can be called a Slope factor, a Short-Curvature Factor, a Short Factor and a
Curvature Factor.

Because of the relationship between the volatility structure in the Heath, Jarrow and Morton
framework and the shift function implied from our empirical analysis of the evolution in the
yield-curve we concluded that PCA could be used to determine the volatility structure in the
Heath, Jarrow and Morton framework - a  non-parametric approach. 

We then extended this model setup by adding stochastic volatility. This we did by assuming
that the stochastic volatility was driven by a GARCH(1,1) model. Due to the fact that our
stochastic volatility process was independent of our yield-curve factor-model, means that the
extended model belonged to the class of USV (unspanned stochastic volatility) models.

In the last part of the paper we turned our attention to Risk model. Our approach to the
calculation of VaR/ETL was a scenario simulation based methodology with relied on the
framework of Jamshidian and Zhu (1997). This scenario simulation procedure builds on the
factor loadings derived from a PCA of the same kind we used in our analysis of the empirical
dynamics in the yield-curve. 

The general idea behind the scenario simulation procedure is to limit the number of portfolio
evaluations by using the factor loadings derived in the first part of paper and then specify
particular intervals for the Monte Carlo simulated random numbers and assign appropriate
probabilities to these intervals (states).

From our analyses of both straight bonds and Danish MBBs using the scenario simulation
procedure we conclude the following:

! The scenario simulation procedure is a computational effective alternative to Monte
Carlo simulation 

! The scenario simulation procedure is capable of producing reasonable good
approximations of the probability distributions with a limited number of states 
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! There is much better control over the extreme values in the scenario simulation than in
Monte Carlo simulation

! The scenario simulation procedure is more efficient than the parametric approach for
“linear” securities and it rivals the parametric approach for “linear” securities because
of the speed of calculation 

! We suggested using 7 x 5 x 3 x 3 states for the scenario simulation. Because we “only”
need to perform 315 re-evaluations of the portfolio the scenario simulation procedure is
feasible for large portfolios consisting of highly complex non-linear securities

! One last important feature is that we in the spirit of Barone-Adesi, Bourgoin and
Giannopoulos (1997) extended the scenario simulation procedure to include stochastic
volatility - in our case we showed that a Garch(1,1) was appropriate  

We also backtested our Risk-Model setup for the year 2008 on 2 bonds - a Government-Bond
and a Mortgage-Bond. The overall conclusion for this was:

! Our Risk-Model setup was able to capture the extreme movements influenced by the
financial crisis for our Government-Bond case - notable the autumn of 2008

! Our Risk-Model setup did not manage to completely capture the extreme price
movements for our Mortgage-Bond. Due to the fact that the reason for that was mostly
(if not entirely) because of the enormous changes on level of OAS, we found the model
indeed very promising  - both of term of efficient from a calculation point of view, to
its ability to capture the Risk of Mortgage-Bonds

More work is of course necessary - both with respect to backtesting the model and with respect
to the determination of the input to the scenario simulation procedure. 

In connection with the inputs to the scenario simulation method we especially need to address
the following:

! How to forecast the volatility? 
! In this paper we argued that GARCH is a logical method to utilize

! How to select the expected yield-curve at a given time-horizon?
! In this paper we suggested using the initial yield-curve as the expected yield-curve 

! Would it be possible to make our OAS-Model even more robust?
! More examination on the appropriate number of states that is used in the scenario

simulation method
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(30)

(31)

Appendix A 

In principle, the literature contains three different ways in which it has been proposed to extend
the traditional 1-factor duration model so that not only additive shifts in the term structure of
interest rates are considered. In this connection, we have decided not to include the literature
on stochastic term structure models.

The first class of models consists of the so-called multi-factor duration models, where they can
be formulated as follows if we consider a 2-factor duration model:

i i i1 i2Where PR  is the return of the i'th bond, a  is the risk-free return, b  and b  could be defined as

1 2the modified duration of a short bond and a long bond, respectively. In addition, F  and F  are

idefined as factors that relate to the first and second risk factors, which means that å  is the i'th

i2bond residual. An alternative formulation could be to let b  be defined as a spread duration.

1 2With respect to duration models, the situation is that these factor values (F  and F ) each
represent the relation between changes in these basic rates (or basis spreads) and the term
structure of interest rates itself; see, for instance, Ingersoll (1983).          

Models that can be classified as being of this type have been defined by Elton, Gruber and
Naber (1988), Reitano (1992), Bierwag (1987b) and Bierwag, Kaufmann and Latta (1987), and
moreover Bierwag, Kaufman and Toevs (1983).      

The other type of model is based on the functional form used in the estimation of the term
structure of interest rates. The first model introduced in this class was Chambers, Carleton and
McEnally (1988) . The fundamental condition underlying these models is the fact that the28

functional form of the term structure of interest rates has been chosen in such a way that the
unknown parameters that determine the term structure estimation are independent. One
obvious functional form of the term structure that complies with this requirement is
polynomial models, as follows:

jWhere j is the polynomial degree, n is the maximum degree, a  is the j'th coefficient and ô is the
term to maturity, i.e. T - t . From this can be clearly seen that there is independence between29

jthe individual unknown parameters, each single a . If a second-degree polynomial is
considered, then the impacts on the term structure of interest rates can be seen to be defined by

 In addition, reference can be made to Chambers and Carleton (1988), Prisman and Shores (1988),28

Steeley (1990) and Barret, Heuson and Gosnell (1992).

 This formulation can be seen to be identical to Chambers, Carleton and Waldmanns (1984) model, and29

was in fact tested on the Danish market by Tanggard and Jacobsen in a number of working papers in the late 1980's.
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(32)

an additive factor, a term structure slope factor and a term structure curvature factor.

The risks of interest rate contingent claims as a function of changes in these coefficients can
then to be measured, as these parameters uniquely determine the term structure of interest
rates. At this point, it should be mentioned that Steeley (1990) used a cubic-spline model as his
starting point, whereas Barret, Heuson and Gosnell (1992) use Nelson and Siegel's (1987)
model. The fact that Nelson and Siegel's model also fulfils the condition regarding
independence between the individual unknown parameters is not entirely the case, only to the
extent that the ô-parameter is determined explicitly.

However, note 2 from Chambers, Carleton and McEnally (1988) demonstrated, in connection
with the duration vector model, that the underlying principles of this model are only dependent
on the fact that changes in the term structure of interest rates can be described by a polynomial
of the n'th degree.

Where this leads us on to the third class of models, namely models that take the term structure
of interest rates for given and explicitly specify some sort of functional form to describe the
dynamics. At this point Garbade (1989) can be mentioned, which assumes that impacts on the
term structure of interest rates are defined by a polynomium of the n'th degree. If this is
formulated on the basis of the shift function, then this model can be expressed as follows:

Or to put it differently, the spot rate volatility structure can be described by a polynomial of the
n'th order. Where it is this last formulation of the shift function that is closest to the model
constructed in section 3 in the text. On the basis of formula 3, it can be seen that the traditional
1-factor duration model is achieved for n = 0, i.e. the impacts on the term structure of interest

0rates are of the order a .
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Appendix B

Some Statistics for the Relative Log-Returns
Table 1: (period: 2 January 2002 - 2 January 2012)30

Maturity 0,083 1 2 5 10 20 30
Centered Mean -0,04752 -0,04909 -0,05439 -0,04504 -0,03327 -0,03019 -0,03272
Centered Variance 24,39939 12,14947 3,42270 3,09164 1,43235 1,47645 1,75291
Centered Skewness 0,06600 -0,10737 0,41372 -0,53219 -0,25574 -0,38302 -0,77399
Centered Kurtosis 23,86390 34,53680 22,97702 26,91020 7,49355 13,17215 12,65991
Auto-Correlation 1 -0,39468 -0,39681 -0,05862 -0,14179 -0,00966 -0,02977 -0,00274
Box-Ljung 1 387,56906 391,74695 8,55047 50,02209 0,23223 2,20483 0,01865
Chi-Square 1 3,84315 3,84315 3,84315 3,84315 3,84315 3,84315 3,84315
Auto-Correlation 5 -0,01558 -0,06142 0,01129 0,07892 0,04331 0,01012 0,01490
Box-Ljung 5 399,11255 423,48431 29,10601 98,69074 17,54937 15,51930 8,62700
Chi-Square 5 11,07050 11,07050 11,07050 11,07050 11,07050 11,07050 11,07050
Auto-Correlation 10 0,01408 0,00389 -0,04445 -0,01647 0,01907 0,01418 -0,01201
Box-Ljung 10 417,93811 456,36793 55,14677 125,32822 27,87941 19,98903 14,43744
Chi-Square 10 18,30705 18,30705 18,30705 18,30705 18,30705 18,30705 18,30705
Auto-Correlation 20 -0,03383 0,02147 0,01308 -0,00758 -0,02019 -0,03006 -0,00193
Box-Ljung 20 429,77804 495,70763 91,63903 195,42823 48,20522 32,54401 31,63084
Chi-Square 20 31,41044 31,41044 31,41044 31,41044 31,41044 31,41044 31,41044
Auto-Correlation 50 -0,02594 0,01039 -0,01013 -0,01163 -0,00842 0,01712 0,01810
Box-Ljung 50 575,22287 616,44750 157,82031 255,73414 86,35404 83,97849 92,86378
Chi-Square 50 67,50061 67,50061 67,50061 67,50061 67,50061 67,50061 67,50061

In general we observe that there is (significant) evidence of GARCH effect especially in the
short end of the yield-curve - for short maturities.

In the next section we will briefly introduce the GARCH technique and in that connection
specify how we have chosen to forecast the volatility in this paper.

B.1 GARCH Models, A Survey    31

In theory there is no problem in finding useful estimations for the volatility, since volatility
estimates are in principle a reflection of how the variable in question is expected to fluctuate.
The direction of movements in the variable is in fact of no importance. The important thing ,
however, is how the variable fluctuates around its average value.

In practice, the volatility estimation is made complicated by a number of circumstances.

 Box-Ljung x is the Box-Ljung test statistics for the squared Auto-Correlation x - where x represents30

the number of lags. 

  We will not here try to reference the huge amount of litterature on the GARCH framework but instead31

refer to “Volatility - New Estimation Technique for Pricing Derivatives”, Risk Books 1998 and RiskMetrics  -TM

Technical Document (1995,1997). Some particular references will however be given in the section whenever
appropriate. On Danish data see in particular Pedersen (1996).
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Probably the most significant problem is the instability of the volatility over short time-
periods, i.e short estimation periods. On the other hand there is a certain degree of stability
when considering longer estimation periods. This means of course that if the volatility changes
to a relatively high degree, there is no reason to believe that volatility estimates achieved on
the basis of previously observed interest rate movements will reflect future actual interest rate
movements.

This has the implication that the assumption of constant volatility over the maturity spectrum
is clearly not consistent with the observation that the volatilities which we have observed in the
market are not constant.

This is illustrated in figure 1 below for the 1-year zero coupon rate :32

Figure 1 Historical Volatility (2. January 2007 - 2. January 2009)

 This data has been centered around the mean - that is we will determine volatility assuming a mean = 032

- so that the square root of the conditional second moment is in fact the volatility. This is a general assumption in the
asset pricing literature, corresponding closely to the notion of market efficiency and the random walk hypothesis.        

160



Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures

(33)

(34)

The maximum likelihood estimator is used to calculate the volatility, thus:

twhere r  is the interest rate at time t, n is the number of observations, ó is the volatility

tpr. day and y  represents the return.

From the discussion above we have that if the volatility estimator obtained from formula 33 is
to be useful for forecasting purpose, then:

    ! The interest rate volatility has to be constant
    ! The interest rates have to be lognormally distributed and for this reason the returns

be normally distributed  

More precisely we postulate the following model for the returns:

That is the returns are treated as a time series of independent, normally distributed stochastic
variables with a constant variance. 

Clearly this assumption is not valid - as seen from figure 1. What we instead see is that large
changes tend to be followed by large changes - of either sign - and small changes tend to be
followed by small changes  - of either sign.  This is often referred to as the clustering effect. 33

In general the following observation has been reported in the literature with respect to returns:

! Return distributions have fat tails and higher peak around the mean, that is we can
observe excess kurtosis (normal distribution = 3)

! Returns are often negatively skewed (normal distribution = 0)
! Squared returns often have significant autocorrelation

For our data (see table 1) there is evidence of excess kurtosis, positive skewness and
autocorrelation in the squared returns across the wbole maturity spectrum - though more
pronounced for shorter maturities. 

These findings indicates that a normal distribution assumption might not be appropriate when

 This was first observed by Mandelbrot 1963 - see Mandelbrot (1997).33
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(35)

(36)

modelling returns.   

The devotion to find more precise estimation techniques has inspired reseach in finance. Some
of the most notable approaches can be categorized as follows:

! Introducing other probability distributions, for an overview, see McDonald (1996)
! GARCH -type models, see Bollerslev (1986)34

! Stochastic volatility models, see for example Harvey, Ruiz and Shepard (1994)
! Application of chaotic dynamics, see LeBaron (1994)       
! MDE (Multivariate Density Estimation), see Boudoukh, Richardson and Whitelaw

(1997) 
! Jump Diffusion models, see for example J.P. Morgan (1997) 

In the academic literature GARCH-models have been the most popular - which is due to the
evidence that time series realizations of returns often exhibit time dependent volatility .35

Because of that we will restrict myself to discussing GARCH-models.

Since the introduction of GARCH in the literature a number of new models in this framework
have been developed. To name a few we could mention IGARCH, EGARCH and AGARCH.

Most financial studies conclude that a GARCH(1,1) is adequate, ie:

In order for a general GARCH process to be stationary we must have that the sum of the roots
lies inside the unit circle, more precisely we have the following stationarity condition for the
GARCH(1,1) model in formula 35; .

Using the law of iterated expectation the unconditional variance for a GARCH(1,1) can be
expressed as:

which can be recognized as a linear difference equation for the sequence of variances. 

Assuming the process began infinitely far in the past with a finite initial variance - then the
sequence of variances will converge to a constant:

 GARCH mean Generalized Autoregressive Conditional Heteroskedasticity - and it represents an34

extension of the ARCH-model from Engle (1982).

 It is of course possible to model time dependent volatility directly using stochastic volatility models and35

the MDE-approach - but as of now limited investigation is available. It is nevertheless an interesting alternative,
which however is left for future research.     
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(37)

(38)

(39)

(40)

which implies   in order for h to be finite. 

From this we have that even though the conditional distribution of the error is normal then the
unconditional distribution is non-normal - which is an very attractive feature of GARCH
models. 

An important property arises by inspecting equation 37, namely: shocks to the volatility decay
at a speed that is measured by á + â. Furthermore the closer to one (1) á + â is, the higher is
the persistence of shocks to the current volatility.   

For á + â = 1 the shocks to volatility will persist for ever and in this case the unconditional
variance is not determined. A process with such a property is known as an IGARCH -
Integrated GARCH. It is of special interest to focus a little on the IGARCH since as will
become apparent in a moment it is identical to the EVMA model  (apart from a constant) that36

is used in RiskMetric .TM

The EVMA (Exponentially Weighted Moving Average) places more weight on recent
observation - which will have the effect of diminishning the “ghost-features” which are
apparent in figure 1. This exponential weighting is done by using a smoothing constant ë -
where we have that the larger the value of ë the more weight is placed on past observations. 

The infinite EVMA model can be expressed:

To show the equivalence between the IGARCH and the EVMA model represented by formula
38 we first recall that the IGARCH(1,1) can be written as:

A repeated substitution in formula 39 yields:

 It is not equal to the EVMA in general but the IGARCH is equal to a particular EVMA model - which36

happen to be the one used in RiskMetric .TM
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(41)

If we compare formula 40 with formula 38 it follows that they are identical apart from a
constant.

One very powerful result with respect to GARCH is that GARCH models are not so sensitive
(as ARCH-models) to misspecification - because as Nelson (1992) shows, then even if the
conditional variance in a linear GARCH model has been misspecified - then the parameters of
the model are still consistent. Furthermore the GARCH model is not sensitive to the
distribution assumption - that is the parameters are still consistent if there is evidence of non-

normality in the squared normalized residuals , ie: . In this connection it is37

however worth mentioning that if we decide to estimate a GARCH model under a normal
distribution assumption - then we (normally) have to do a (< 99%) fractile adjustment of the
original data - this fractile adjustment is however not necessary if we assume for example a t-
distribution.

Before returning to the data in table 1, let me briefly mention a few of the non-linear GARCH
models and their implications :38

Engle and Ng (1991) propose the AGARCH  (asymmetric GARCH) which can be expressed39

as:

which has similar properties as the EGARCH from Nelson (1990) - but from an
implementaion point of view much simpler. The AGARCH has similar properties as the
GARCH model but unlike the GARCH model which explores the magnitude of one-period
lag-errors, the AGARCH model allows for the past error to have an asymmetric effect on the

t-1variance. For example if ã is negative then the conditional variance will be higher when å  is
negative than when it is positive. For ã = 0 the AGARCH model degenerates to the GARCH
model. Because of the ã-parameter the AGARCH model can - like the EGARCH model -
capture the leverage effect which has been observed in the stock market. The unconditional
variance for the AGARCH model has the following form:

 An investigation of the autocorrelation in the squared normalized residuals may also reveal model37

failure. Pagan and Schwert (1990) furthermore proposed to regress the squared normalized residuals against a

tconstant and h , ie: . If the forecast is unbiased, a = 0 and b = 1. In addition if a high R  is2

obtained by performing the regression - this will indicate that the model has a high forecasting power (for the
variance).         

 This section relies mostly on Giannopoulos (1995, section 4.2).38

 The QGARCH from Sentana (1991) is similar to the AGARCH model except for the sign of ã. 39
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(42)

(43)

(44)

(45)

which indicates that the stationarity condition for the AGARCH model is identical with the
condition for the GARCH model.

Lastly let me list a few other asymmetric GARCH specifications:

! The Threshold GARCH from Glosten, Jagannathan and Runkle (1991) and Zakoian
(1991), ie:

twhere I  is an indicator function defined as: . The reason why this model is

t-1referred to as a threshold model is because when ã is positive then negative values of å  will
have an additive impact on the conditional variance.  As in the AGARCH model then negative
errors have a greater impact on the variance if ã < 0.   
        

! The non-linear AGARCH from Engle and Ng (1991), ie:

! The VGARCH model from Engle and Ng (1991), ie:

B.2 Modelling the Volatility structure  

We will now return to the data in table 1. 

For all the date series we have estimated the GARCH(1,1) model and the IGARCH(1) model.

The volatility structure as at 2 January 2012 for each of the estimation approaches compared to 
the 60-and 90 day rolling window technique, is shown below in figure 2:
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Figure 2 Comparison of Volatility Structures

As seen from the figure the differences in volatility are more pronounced for short maturities. 

To illustrate this we have in figure 3 shown the volatility pattern for the 1-year rate over the
period 2. January 2007  - 2 January 2009:
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Figure 3 Evolution in the Volatility for the 1-year Interest Rate   

In connection with the estimation results we can report the following :40

! The persistence in volatility is comparable to what is usually reported in the literature.
Furthermore, our estimate of â is largest for the 1-month rate (0.92) and in general is
declining with maturity - however it never falls below 0.81

! All the time-series are stationary - 1 >> á + â   
! In most of the cases R  is higher in the GARCH model than in the IGARCH model -2

allthough little difference is observed. In general we have that R  is between 11-27% -2

with the highest R  for shorter maturities2

! For both the GARCH model and IGARCH model we observe that we can accept the
hypothesis of no autocorrelation in the squared normalized residuals 

! In general we have that the normalized residuals exhibit lesser excess kurtosis and less
skewness - that is we are close to the normal distribution (standardized normal
distribution) 

At the end of this Appendix we have shown a detailed description of our estimation results for
both the GARCH model and the IGARCH model for the 1-year interest rate.

 For reasons of space we have omitted the tables here - except for the 1-year rate -  but they can be40

obtained from the author.
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From our estimation results we have decided to use the GARCH model instead of the
IGARCH model, because of the following two observations:

! In most of the cases R  is higher in the GARCH model than in the IGARCH model 2

! In all cases Akaike’s Information Criterion (AIC) was in favor of the GARCH model    

Construction of a term structure of GARCH forecast for any time horizon can now be derived
from the estimated model. This is in general straightforward , and is performed iteratively41

using the appropriate variance specifications - though taking into account that for the j-step
ahead forecast for j > 1 the squared return is to be set equal to the variance for the j-1 step -
this is what we do in our calculations.   

Remark:

As mentioned by Alexander (1996) insufficient GARCH effect in data may lead to
convergence problems in the optimization procedure. This is true if the GARCH model is
being estimated using a variant of the BHHH-algoritm  - which seems to be the preferable42

optimization procedure suggested in the literature, see for example Greene (1993) and
Bollerslev (1986). We howerver did not encounter any convergence problems, probably for the
following reasons:

• There is significant evidence of GARCH effect in data
• We used the BFGS  as our main optimization procedure, which is much more robust43

than the BHHH

Lastly it is worth mentioning that the BFGS method was initialized with starting values
obtained from the downhill-simplex procedure.       

 Except for the EGARCH-model, see Alexander (1996).41

 See Berndt, Hall, Hall and Hausman (1974).42

 See Hald (1979). 43
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(46)

Appendix C

In this appendix we will briefly explain how we have designed our yield-curve interpolation. 

Why this is of importance can be formulated as:

! From the swap market it is possible to build a yield-curve using a bootstrapping
procedure - which ensures that all swaps and any included forward-and spot-rates are
priced perfectly. However, between observable data points, some yield-curve
smoothing techniques are neccesary

! If we use Monte Carlo simulation procedure (or any other sampling technique) to
generate interest rate paths from a subset of maturity points - then a smoothing
technique is needed to generate a continuous yield-curve at every time-step

These are probably the two most important reasons why a flexible, robust and appropriate
smoothing procedure has to be designed .  44

We have here selected the maximum smoothness approach of Adams and Deventer (1994).
Other methods exists, such as for example spline-methods - but the problems outlined in Shea
(1985) still remain. Shea has the following comments to forward-rates obtained by polynomial
splines  - namely that they are unstable, fluctuate widely and often drift off to very large
positive or even negative values.       

The yield-curve can either be formulated in terms of prices, spot-rates or forward-rates, ie:

where P(0,T), R(0,T) and f(0,T) are respectively the bond-price, the spot-rate and the forward-
rate.

The idea of Adams and Deventer is to determine the maximum smoothness term structure
within all possible functional forms.

If the maximum smoothness criteria is defined as the forward rate curve on an interval (0,T)
that minimizes the functional:

 Of course smoothing techniques can also be used directly to obtain the yield-curve from prices of44

coupon bonds - this issue will however not be addressed here - see instead Tanggaard (1997).  
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(47)

(48)

(49)

then Adams and Deventer show that the forward-rate model that satisfies the maximum
smoothness criteria from formula 47 while fitting the observed prices is a fourth-order spline
of the following special kind:

where m is the number of observed bond-prices.

The smoothness criteria and the requirement that we want to price the m bonds without
measurement error gives rise to the following 3m + 3 system of equations for the coefficients

i i ia , b  and c , for all i :45

It should be mentioned that the last two criteria have been selected for practical reasons - they
are not associated with the smoothness criteria or the zero (0) measurement requirement for the
observable bond-prices.
   
The last criteria ensures that the shortest observable spot-rate is equal to the shortest forward-
rate - a logical feature. The second last criteria makes restrictions on the asymptotic behaviour
of the yield-curve - more precisely it ensures that the slope of the forward-rate curve is zero (0)
at the endpoint of the last interval. 

As a final remark we might note that the algebraic linear system leads to a banded symmetric
diagonally dominant and positive definite linear system which can be easily solved using

 See Adams and Deventer (1994).45
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special algorithms, see Golub and Van Loan (1993, chapter 5).  

Let us finally illustrate the method with a simple example:

For that purpose we assume we know the prices for the following maturity dates:

Period Interest Rate Bond Price

3-Month 3,75 99,067

1-Year 4,25 95,839

2-Year 4,35 91,668

5-Year 4,56 79,612

7.5-Year 4,20 72,979

10-Year 4,75 62,189

15-Year 4,31 52,388

30-Year 5,65 18,360

            
In figure 1 below we have shown the spot-rate curve and the forward-rate curve using the
Adams and Deventer procedure. 

Figure 1 

The data might be a bit extreme but it serves to illustrate the maximum smoothness procedure.

171



 

 

 

 

Part II 

 

Chapter 6 

 

Can Danish households benefit from 

Stochastic Programming models? – An 

empirical study of mortgage refinancing in 

Denmark 



Can Danish households bene�t from

Stochastic Programming models? - An

empirical study of mortgage re�nancing in

Denmark

Kourosh M. Rasmussen∗ Claus A. Madsen† , Rolf Poulsen‡

August 2012

Abstract

A number of stochastic programming (SP) models on mortgage
choice and re�nancing for Danish households have been introduced
during recent years ( Nielsen & Poulsen (2004), Rasmussen & Clausen
(2004), Rasmussen & Zenios (2007)). A major Danish mortgage bank
has adapted this model framework. Whereas most mortgage banks
in Denmark today advise private home owners to �nance their prop-
erty with one loan only, our models suggest that most households are
better o� with two loans. With regards to re�nancing, our models sug-
gest a higher level of re�nancing activity than what is observed today.
The empirical study, which is the subject of this paper, is designed
to perform a historical ex-ante test of the advice generated by our
model framework for the period 1995-2010. We will compare SP-based
advice with current practice which is based on rules of thumb and
short-sighted forecasts. The study is tailored for the Danish market,
and it demonstrates the advantages that the Danish mortgage system
o�ers Danish household.1
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1 Introduction

The global �nancial crisis of 2008 which was triggered by the burst of
the house price bubble in the US in 2007, shows the need for:

1. More regulation in the US mortgage market.

2. More robust evaluation methods for borrowers creditworthiness.

3. Better advising of individual borrowers on their choice of mort-
gage loan and re�nancing.

The Danish housing market experienced a similar bubble and burst,
though with a slight delay compared to the US market. However all
Danish mortgage banks survived the crisis, since the foreclosures in
Denmark were not nearly as bad as those observed in the US. See Fig-
ure 1.

Figure 1: Delinquency rates for the period 1991 to 2012 in the USA and Denmark.
The graphs are based on delinquency data from the homepages of Realkreditrådet, for
Denmark, and the Federal Reserve Board for the USA.

There are a few considerable regulatory di�erences in between the
Danish and the US mortgage systems, and these di�erences have cer-
tainly contributed to the huge di�erence in between the number of
foreclosures in the two countries.

One major di�erence is that the Danish borrowers are liable to
repay their debt, regardless of the value of the collateral, so Danish
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banks need not worry about the so called jingle mails2, as soon as the
value of the house falls below the outstanding debt.

Another major di�erence is that, despite introduction of several
new mortgage products in Denmark in the period 1997 to 2004, some
of the most risky loan products, such as balloon loan (with no initial
payments for the �rst few years) were never introduced in Denmark.

Finally the Danish system o�ers complete transparency due to the
practice of the principle of balance. Principle of balance, is a corner-
stone of the Danish mortgage system, as practiced and enforced by the
mortgage loan act since the introduction of the Danish mortgage sys-
tem in 1797. The principle of balance is no longer enforced by law due
to the covered bond legislation of 2004 imposed by the EU. However
Danish mortgage banks still use the principle of balance for trans-
parency, competition and risk management reasons. This has practi-
cally been the case for almost all Danish mortgage loans, also after the
regulatory changes of 2004.

According to this principle there has to be an overall match between
the funding side and the loan side at any given time. This is why the
Danish mortgage system is also characterized as a match funding or a
pass-through system. The few specialized mortgage banks in Denmark
are intermediaries in between the investors in the one side and the bor-
rowers in the other side. Danish borrowers essentially issue mortgage
bonds via the mortgage banks, and the bonds are sold to investors.
The borrowers pay interest and principle payments on the issued bond
plus a markup of around 0.5 - 0.7 % as a risk premium and admin-
istration fee to the mortgage bank. The mortgage bank assumes only
the default risk on the side of the borrowers. This is, however, covered
mainly by the value of collateral. With maximum Loan to Value (LTV)
levels of 80 % for private houses, the value of the collateral should fall
by more than 20%, before the mortgage banks encounter any losses
in cases of foreclosures. Keeping in mind, that the borrowers, are still
held accountable for the debt they might have, after the foreclosure
is settled, the mortgage banks are running a relatively small risk in
Denmark. And that explains the relatively small markups.

The Danish mortgage market served the borrowers only with �xed
rate mortgages during the �rst 200 years of its history. Several new
mortgage loan products have been introduced since 1997 (See Fig-

2Jingle mails refer to envelopes containing house keys sent back to the mortgage
providers.
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Figure 2: Development of the distribution of the underlying bonds used as funding in-
struments behind the Danish mortgage loans in the period 1995 to 2010.

ure 2 on distribution of mortgage loans in Denmark since 1995). The
�gure shows, however, that two products dominate the market, the
adjustable rate mortgage (mostly with annual adjustments) and the
traditional long term �xed rate mortgages.

Another innovation was the introduction of Interest Only (IO) ver-
sions of all types of mortgage loans in 2004. The IO loans contributed
positively to the growth of the house price bubble in the period 2004
to 2007 in Denmark. Some central market players, such as the Danish
National Bank, have therefor proposed banning or partially banning
IO loans. IO loans, however, once used as a last resort, may prove to be
a useful instrument to avoid a foreclosure in times of �nancial distress.
This requires that IO loans are considered as part of an individual debt
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management strategy with high focus on assessing the risks associated
with them.

Despite a very robust and well functioning market, there is room for
improvement, in particular when it comes to advising home owners on
their choice of mortgage and the following re�nancing opportunities.
The advisory practice has not followed the rapid product development
seen in the period 1997-2007. In particular there is no consistent prac-
tice when it comes to risk management (on the borrower side) of the
very popular short term adjustable rate mortgages. The post crisis
extreme low interest rate regime makes development of such meth-
ods into an immensely urgent matter, since the new loans issued in
Denmark are by far of the type adjustable rate mortgages with an-
nual adjustments (F1 loans). If interest rates increase sharply within
the next few years, there is a serious risk that the foreclosure rates
in Denmark increase sharply as well, contributing to another wave of
house price declines and the consequences it will have on the rest of
the economy.

This paper focusses on improving advisory standards for mortgage
choice and re�nancing for the Danish market. In particular the focus is
on improving and extending the rules of thumbs used for re�nancing.
Re�nancing rules of thumbs have traditionally only dealt with re�-
nancing among �xed rate mortgages, but given that most borrowers
today opt for F1 loans there is a need for re�nancing rules which re-
duce the risk of holding F1 loans by looking into strategies which allow
movement from one type of loan to the other.

The contribution of this paper is the following:

1. Showing that the existing rules of thumb for re�nancing are of
little or no use.

2. Introducing a model-based re�nancing framework ensuring sig-
ni�cant re�nancing gains without adding risk.

3. Reducing the risk of holding a F1 loan by introducing strategies
which allow mixing �xed and adjustable rate loans.

The rest of this paper is organized in the following way. Section 2
explains the existing rules of thumb for re�nancing in Denmark.

Section 3 introduces the model framework used in this paper for
individual mortgage choice and re�nancing.

Section 4 compares the performance of the model-based advising
framework compared to the existing rules of thumb.
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Finally section 5 concludes the paper suggesting that future inno-
vations in the Danish mortgage market are likely to have special fo-
cus on risk management and advisory services. The existing mortgage
products o�er considerable potential for diversi�cation and individu-
alization in terms of risk and cost characteristics of the loans. This
potential is however not taken advantage of due to lack of e�ective
and personal consultancy tools and services. The framework suggested
in this paper suggests a foundation for such tools and services.

2 Re�nancing rules of thumb

Based on interviewing key analysts with overall responsibility for ad-
vising home owners on their choice of mortgage loan and re�nancing,
the rules of thumb for re�nancing of mortgage loans across the Danish
mortgage banks may be generalized as follows:

Re�nancing from a �xed rate loan to another �xed rate

loan with lower coupon:

• The coupon of the new loan should be 2 percent lower than the
coupon of the existing loan.

• The quarterly payments of the new loan should be at least 5
percent lower than the ones from the existing loan.

• The outstanding debt of the existing loan should be more than
DKK 500.000.

• The maturity of the existing loan should be greater than 10 years.

• The price of the new loan should be over 95.

Re�nancing from a �xed rate loan to another �xed rate

loan with higher coupon:

• At least 10 percent reduction in outstanding debt.

• The outstanding debt of the existing loan should be more than
DKK 500.000.

• The maturity of the existing loan should be greater than 10 years.

• The price of the new loan should be over 98.

This kind of re�nancing (to a higher coupon) makes sense in Den-
mark, since the borrower has the right to redeem the mortgage loan
by buying back the underlying bonds at the prevailing market price.
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This is referred to as the "buy back delivery option", even though this
is not really an option in a �nancial sense, but rather the access to the
features of the underlying bond.
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Figure 3: The graph shows how many percents of a given loan have been re�nance on
the dates that the re�nancing rules of thumb dictated that one holding such loans should
do so.

Figure 3 shows that historically observed re�nancing activities have
been extraordinarily high at around the dates for which the rules of
thumb have suggested that borrowers should re�nance. The graph indi-
cates that the re�nancing rules of thumb (at least the one for re�nanc-
ing from a higher to a lower coupons) are indeed known to borrowers
and that they act upon them.

Re�nancing from �xed rated to adjustable rate:
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This is normally done as a means of reducing the payments or as
an alternative to re�nancing to higher coupons. There is however no
rules of thumb governing this type of re�nancing. The advisors are re-
luctant to advise borrowers to re�nance to adjustable rate mortgages
since the risk pro�le of the borrower is thereby changed. Regardless
of this fact over half of all mortgage loans in Denmark are adjustable
rate mortgages with annual adjustments - F1 loans.

Next section describes a model-based alternative for generating per-
sonal re�nancing strategies.

3 Optimization Model

The main purpose of this paper is to test the performance of the re�-
nancing rules of thumb described in the last section. In order to do that
a few alternatives to the rules of thumbs are considered. One obvious
alternative is to do nothing all, a so called issue and hold strategy,
where the borrower just chooses a loan to begin with and stay with
the loan for a the whole period until the loan is redeemed due to other
reasons than re�nancing, for example selling the house.

Another, very unrealistic, alternative is to re�nance at all the right
times, so that the maximum re�nancing potential is gained. Obviously
this alternative is very unlikely to be realized in real life, since it re-
quires full foresight on future information on coupon and price move-
ments of the underlying bonds. Nevertheless this is a useful benchmark
which provides an upper bound for the re�nancing potential. If this
potential is not much more than what is gained by following the rules
of thumb or by not re�nancing at all, there will be then no reason to
try to develop more e�cient methods for re�nancing.

In this section therefore, a deterministic optimization model with
full foresight is developed �rst. This model is referred to as the crystal
ball benchmark. After that, the full foresight assumption is relaxed and
a stochastic model is developed to generate realistic ex-ante re�nancing
strategies.

3.1 The crystal ball benchmark model

The model explained in this section �nds the optimal re�nancing strat-
egy in the presence of full information about the future. Basically his-
torical data on bonds are used to �nd the strategy that minimizes the
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borrowers total borrowing costs for a given period.

The reason why this is not a trivial problem is the costs associated
with re�nancing. Especially the existence of the �xed transaction costs
(over 1000 EURO per re�nancing) makes this into a combinatorial
optimization problem.

The crystal ball benchmark model is described in the following.
The model is inspired by the formulations given in Nielsen & Poulsen
(2004), Rasmussen & Clausen (2004) and Rasmussen & Zenios (2007).

The crystal ball information is given on a time line with time points
t, where re�nancing is allowed. It is assumed that the model may only
re�nance 4 times a year (1/1, 1/4, 1/7 and 1/10).

There are two horizons to consider in the problem, one is the loans
maturity T and the other is the analysis period τ . It is always true
that τ ≤ T .

Input data:

At any given time point t, the following information on the any
loan i is given:

dt, discount factor at time t,

rti, coupon rate for loan i at time t,

Pti, origination price for loan i at time t,

Kti, redemption price for loan i at time t. The distinction between
the origination price Pti and the redemption price Kti is due to the
call option embedded in the Danish mortgage bonds. The following
relation holds between the two prices: Kti = min{1, Pti} for the �xed
rate callable bonds andKti = Pti for the adjustable non-callable bonds,

γt, tax reduction rate, given as a percentage of negative capital
income,

ca, administration costs, given as a percentage of the loans out-
standing debt,

c, variable transaction cost, given as a percentage of the loans out-
standing debt,

cf , �xed transaction costs associated with a re�nancing,

M , the big M constant, used when a binary variable is set to 1 in
the case of re�nancing, ensuring that the �xed costs are incurred.

Variables:

zti, outstanding debt for loan i at time t,
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yti, amount of originated bonds for funding loan i at time t,
xti, amount of redeemed bonds for repaying loan i at time t,

Zti =

{
1, If loan i should be originated or redeemed at time t,
0 otherwise,

Ati, principal payments for loan i at time t,
Ft, total loan payment at time t,
Rτ , value of outstanding debt (adjusted for bond price) at horizon

τ .

The crystal ball model is then de�ned as follows:
Object function:

The objective is to minimize the present value of the total loan
costs in the given analysis period:

min
[ τ∑
t=1

dtFt

]
+ dτRτ (1)

Initialization:

To begin with there should be originated enough bonds to
fund the needed cash V0 by the borrower and to pay the costs
associated with the origination:

∑
i∈U

P0iy0i ≥ V0 +
∑
i∈U

(
cy0i + cfZ0i

)
, (2)

In equation (3) the outstanding debt is set to be equal to
originated amount of bonds at the beginning:

z0i = y0i, for all i ∈ U. (3)

Balance equations:

Equation (4) is a balance equation, which sets the outstanding
debt for loan i at time t equal to the outstanding debt from time
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t − 1 less the principal payment in case of no re�nancing. If a
re�nancing takes place the equation initializes the outstanding
debt in the new loan, and deduces the redeemed amount from
the old loan:

zti = zt−1,i −Ati − xti + yti, for all i ∈ U, t = 1, . . . , τ. (4)

Equation (5) ensures that the redeemed amount and the costs
of re�nancing come from originating new loan:

∑
i∈U

(Ptiyti) =
∑
i∈U

(
Ktixti + c(yti + xti) + cfZti

)
, t = 1, . . . , τ − 1.

(5)

De�nition of loan payments (annuities):

Principal payments are de�ned in equation (6):

Ati = zt−1,i

[rt−1,i(1 + rt−1,i)
−T+t−1

1− (1 + rt−1,i)−T+t−1

]
, for all i ∈ U, t = 1, . . . , τ.

(6)

The total loan payment at time t is then de�ned in equation
(7) as the sum of principal payments as well as interest payments
and administration cost. The last two payments deduced by the
amount which is given as a tax rebate. The total repayment cost
at the end of the analysis period is given in equation (8).

Ft =
∑
i∈U

(
Ati + (1− γ)(rt−1,i + ca)zt−1,i

)
, t = 1, . . . , τ. (7)

Rτ =
∑
i∈U

(zτiKτi) (8)

Fixed costs:
The following equation ensures that the binary variable Zti is

set to 1 when there is re�nancing. If Zti = 1 then the �xed costs
are counted as part of the total cost of re�nancing.
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MZti − yti ≥ 0, for all i ∈ U, t = 0, . . . , τ. (9)

And �nally the non-negativity constraints are de�ned as fol-
lows:

zti, yti, xti ≥ 0 , Zti ∈ {0, 1} for all i ∈ U, t = 0, . . . , τ. (10)

The results of the above model are studied and compared to
the other strategies in section 4, but before that a realistic model
for generating personal re�nancing strategies is introduced in the
following.

3.2 Model-based re�nancing strategies

The optimization model which is used in this section is a varia-
tion of the model introduced in Rasmussen & Zenios (2007). It
is not the model, however, which is the focus of this paper, but
rather the test framework in which the model is used.

If the results of any model, in this case re�nancing strategies,
are to be used in real world, the creators of the model need to
substantiate that the strategies indeed will work better than the
existing practice, in this case the re�nancing rules of thumb. It is
not justi�able to advise borrowers to follow a new set of re�nanc-
ing strategies, before these strategies are tested in a simulated
framework and before enough insight is gained to justify trying
the strategies in the real world. This paper describes the simula-
tion framework for testing the model-based re�nancing strategies
and discusses the insights gained.

3.2.1 The idea behind the model

The optimal re�nancing model resembles, in its overall structure,
the crystal ball model. There is one main di�erence though, no
information about future is given, instead a number of scenarios
are generated.
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The optimization model is equipped with the following infor-
mation:

1. One loan or a portfolio of loans at the beginning of the pe-
riod.

2. Information about costs related to re�nancing.

3. A number of alternative loans which the borrower may re�-
nance the existing loan with.

4. Information about cost of the alternative loans in 200 di�er-
ent scenarios.

The scenario generation process is not the topic of this paper.
It is described in Rasmussen, Madsen & Poulsen (2011). The fo-
cus here is rather on the di�erences between model-based and rule
of thumb based re�nancing advice. The superiority of the model-
based re�nancing advice on a conceptual level may be summa-
rized as follows:

• Time horizon is explicitly taken into account.

• Risk of re�nancing is both measurable and manageable. Risk
is de�ned as the average of the α % highest total period costs
across the given scenarios.

• Mixing loans is allowed.

• The strategies are personal - borrower speci�c input is taken
into account.

The simulation framework is made of two sets of scenarios.
The �rst set of scenarios are to be considered as alternative his-
torical data. These are coherent alterations to historical data for
a given period - 2000 to 2010 for this paper. There are 250 of them
analyzed in this paper corresponding to performing back tests on
250 sets of historical data with a length of 10 years each. The
reason for simulating historical data is to avoid only performing
back tests on one single period. So alternative likely "historical"
data are generated for interest rates and bond prices.

The second set of scenarios are those used for the optimization
model. They are generated along each of the 250 "historical" sce-
narios in steps of a quarter of a year, allowing the optimization
model to come up with re�nancing suggestions along the way.
There are 200 of these scenarios at each step and they all have
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a horizon at 2010. Figure 4 demonstrates the analysis setup by
depicting only one of the "historical" scenarios and three of the
optimization scenario sets for three randomly picked quarters.
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Figure 4: In each quarter there is a scenario tree of interest rates and bond prices. Three

examples (out of 40) of such scenario trees are shown here for a simulation over the 10

year rate for the period 1995- 2005. The graphs is meant to illustrate the point with the

simulation optimization framework only.

3.2.2 Measuring risk

The risk of re�nancing is modeled here as the average of the 5 %
highest total period costs for any given optimization scenario set.

This risk measure is known as Conditional Value at Risk (CVaR)
illustrated in Figure 5. CVaR is a coherent risk measure (see
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Artzner et al. (1999)) and in an optimization setting can be for-
mulated linearly (see Rockafellar & Uryasev (2000)). Both prop-
erties are violated by other well known risk measures such as
Value at Risk and Variance. Besides CVaR measure the tail risk
- the idea is that if total costs after a given re�nancing are lower
than total costs of staying in the existing loan for the tail of the
scenario set, the re�nancing may be considered as robust - bene�-
cial almost no matter what happens. That is obviously a function
of how reasonable the scenarios are built - a topic which will be
studied in section 4.
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Figure 5: An illustration of the two risk measures CVaR and VaR. VaR is the biggest
loss that can happen with a given probability. CVaR expresses the average loss for the
scenarios where a loss higher than VaR is materialized.
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3.3 The mathematical formulation

The model for generating model-based re�nancing strategies is
described in the following:

The model is a single period (two-stage) stochastic program
where the scenario structure is de�ned on a starting point t0, and
a set of scenarios s. At any given starting point t0 (start of a new
quarter) there are set of loans i. The model is given an existing
loan that it might either maintain or re�nance to another loan.

Scenario data:
λ, risk weight, has values between 0 and 1. For λ = 0, the risk

neutral model, the average of total costs is minimized. For λ = 1
the CVaR of period costs is minimized.

Pt0,i, origination price for loan i at time t0,
Kt0,i, redemption price for loan i at time t0,
It0,i, outstanding debt for the existing loan i at time t0.
ps, probability of scenario s,
Os

i , total period costs for loan i at scenario s, for an initial
outstanding debt of 1,

c, variable transaction costs as a percentage of the loans out-
standing debt,

cf , �xed transaction cost in connection with a re�nancing,
M , The Big M constant.

Variables:
zt0,i, outstanding debt for loan i at the starting point t0,
yt0,i, amount of originated bonds for funding loan i at the

starting point t0,
xt0,i, amount of redeemed bonds for repaying loan i at the

starting point t0,

Zt0,i =

{
1, If loan i should be issued at the starting point t0,
0 otherwise,

ξ, Value-at-Risk (VaR) for a 100α% con�dence level,
CV aR(y;α), Conditional Value-at-Risk for a portfolio of loans

y = (yt0,i) for a 100α% con�dence level,
ξs+, the amount of the total costs on top of ξ for a scenario s.

If the total costs do not exceed ξ, the value of ξs+ will be zero.

The optimization model is then de�ned as follows:
Object function:
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The objective of the optimization model is to minimize the
average period cost of the loan for a predetermined risk level,
de�ned as a weight on CVaR:

min (1− λ)
[∑

i

∑
s

psyt0,iO
s
i

]
+ λCV aR(y;α) (11)

Re�nancing equation:
Equation (12) and (13) together ensure that re�nancing can

take place at time t0:

zt0,i = It0,i − xt0,i + yt0,i, for all i ∈ U. (12)

∑
i∈U

(Pt0,iyt0,i) =
∑
i∈U

(
Kt0,ixt0,i + c(yt0,i + xt0,i) + cfZt0,i

)
. (13)

Equation (12) sets the outstanding debt for loan i equal to
the amount of existing debt in case of no re�nancing. If there is a
re�nancing the existing loan must be repaid. In this case equation
(13) ensures that the repayment is funded by originating a new
loan. The outstanding debt for the new loan is registered then in
equation (12).

Fixed costs:
The following constraint makes sure, that the binary variable Zt0,i

is set to 1, if there is a re�nancing. If Zt0,i = 1 then the �xed costs
are entered as part of the total costs at the re�nancing.

MZt0,i − yt0,i ≥ 0, for all i ∈ U. (14)

CVaR constraints:
The two constraints 15 and 16 combined de�ne CVaR for pe-

riod costs. The linear formulation of CVaR in a CVaR minimizing
context is due to Rockafellar & Uryasev (2000).

188



ξs+ ≥
[∑

i

yt0,iO
s
i

]
− ξ, for all s ∈ S. (15)

CV aR(y;α) = ξ +

∑
s p

sξs+
1− α

(16)

Non-negativity constraints:
Finally the non-negativity constraints are given as:

yt0,i, xt0,i, ξs+ ≥ 0 , Zt0,i ∈ {0, 1} for all i ∈ U. (17)

With the model framework at hand the results of di�erent
strategies and benchmarks are compared in the next section.

4 Results

In this section, the results from applying the rules of thumb,
the crystal ball benchmark and the model-based strategies are
compared for the 250 simulated scenarios (including the actual
historical data as one of the scenarios) for the period 2000-2010
are studied for a loan with an initial value of 2.000.000 DKK
(approximately 270.000 EUR).

First these strategies are compared for the actual historical
data. Figure 6 shows the development in outstanding debt, loan
payments and the period's e�ective loan costs in percent (PEL)
for the three di�erent strategies in the top three graphs. The bot-
tom graph shows the strategy suggested by the stochastic pro-
gramming model of the last section for a risk averse borrower.
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Figure 6: The development in outstanding debt, payments, and the period costs of the

loan in percent are given here for the historical data from the period 2000-2010. The

performance of the extended rule of thumb, the risk-averse model-based strategy and the

crystal ball benchmark are compared.
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Note that the rule of thumb is denoted "rule of thumb 2". The
existing market rules as described in section 2 are extended here
with an extra condition ensuring that the total cost of the new
loan will not be higher than the total cost of the existing loan for
the given period. This enhances the result of the rules of thumb
for almost all simulated scenarios and makes the comparison with
the model-based strategies more fair, since many advisor use one
or other kind of break-even rule on top of the given rules of thumb.
Such rules enforce a minimum upfront reduction in payments or
outstanding debt to justify the re�nancing.

Note also that the result from the crystal ball model does
not consider F1 loan. The optimization is done among �xed rate
mortgage loans only. The maximum potential for re�nancing gain
is thereby even bigger when both types of loans are considered.

The observations made based on these results are the follow-
ing:

1. The potential re�nancing gain is sizable.

2. A risk-averse (CVaRminimizing) model-based strategy seems
to easily outperform the rules of thumb.

3. The model re�nances more often. It both takes advantage of
mixing loans as well as re�nancing when the interest rates
increase, in order to reduce outstanding debt

Next the above strategies are tested for all the simulated sce-
narios to see whether or not the results gained in Figure 6 are
robust across scenarios with varying interest rates.

Figure 7 shows how the various strategies are performing com-
pared with the crystal ball-benchmark and rule of thumb 2. The
re�nancing gain of any strategy is made relative to the no-re�nancing
strategy. The gain for the risk-neutral strategy (with F1 included
in the loan universe), minimizing average total costs, is compared
with that of the risk-averse strategy (not including F1 in the loan
universe), minimizing the CVaR of total costs.

It is clear that the risk-averse strategy clearly outperforms rule
of thumb 2 when it comes to generating risk-adjusted bene�ts to
the borrowers. The left tails of the distributions represent the
risk associated with the strategy. It appears that the risk-neutral
strategy has a higher risk compared with rule of thumb 2. Based
on that, and keeping in mind that the risk of re�nancing should
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Figure 7: Comparison of di�erent strategies across the simulated scenarios for the period

2000-2010.

not exceed that of the rules of thumb, the risk-neutral strategy
is ruled out as a practical strategy for advising even though the
strategy generates a nice average re�nancing gain.

Now after having ruled out the risk-neutral strategy the two
risk-averse strategies (with or without F1 in the loan universe)
are compared in �gure 8.

Due to diversi�cation e�ects the risk-averse strategy includ-
ing F1 in the loan universe, yields lower risk and higher return
comparing to the risk-averse strategy not including F1.

The observations based on these results may be summarized
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Figure 8: Comparison of the risk-averse strategies (with and without F1 in the loan

universe) for the period 2000-2010.

as follows:

• Rules of thumb are very risk-averse and they outperform a
no-re�nancing strategy.

• The risk-averse model-based strategy clearly outperforms
the existing re�nancing rules of thumb.

• Using F1-loans, once used in a portfolio together with �xed
rate loans, not only reduces the total costs, but also reduces
the risk of re�nancing.
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5 Conclusion

Jørgensen et al. (1996) argued in their paper from 1996 that rela-
tively simple claims on re�nancing gain (such as those formulated
in the re�nancing rules of thumb) lead to close to optimal deci-
sions.3 They do not, however, take into account borrowers pref-
erences with respect to horizon and risk aversion. What is more,
several new types of loan have been introduced, most notably
the adjustable rate loans, and that alone asks for new strategies
and risk management in connection with the borrowers mortgage
choice and re�nancing.

New methods for re�nancing should take horizon and risk ex-
plicitly into consideration. Once doing so, more re�nancing par-
ticularly when the interest rates go up, as well as mixing �xed
rate and adjustable rate loans in a portfolio, will enhance the re-
sult of re�nancing without risk.

Based on the results of the optimization and simulation frame-
work studied in this paper a new paradigm for mortgage choice
and re�nancing consultancy is introduced. The new paradigm
may be summarized as follows:

• Risk - risk of re�nancing should be measured and managed.

• Loan portfolios - instead of individual loans.

• Loan horizon and its inherent uncertainty should be consid-
ered.

• Focus on cost of borrowing - instead of presenting technical
details of loans.

• Responsiveness to change - a re�nancing strategy should re-
act to the observed changes of interest rates and bond prices.

The method framework introduced in this paper has the po-
tential to be used as the analytical backbone for this new consul-
tancy paradigm. In particular the results suggest so far that:

• Risk-averse model-based re�nancing strategies yield good
and robust results.

3The word "optimal" should be understood in an option pricing setting in a complete
market.
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• Both �xed rate and adjustable rate mortgages should be
used in a well diversi�ed portfolio of loans. That increase
the chance of successful re�nancing.

• It is important to look at the long term consequences of a
re�nancing, in particular more than 5 years.

• Too many re�nancings will drain the positive e�ect of re�-
nancing. Timing is important. Few but well analyzed re�-
nancings will almost certainly yield a better result than not
re�nancing at all.

• Rules of thumb are outdated and do not live up to the new
consultancy paradigm.

There is room for much more analysis in the Danish as well as
other mortgage markets with the aim of enhancing consultancy
services when it comes to mortgage choice of re�nancing. Many
more products exist than the two studied in this paper. However
the analysis framework of this paper may be reused when consid-
ering other loan types or market speci�c information.

Finally the purpose of using any model is gaining intuition.
Once the intuitions behind a model are well understood and for-
mulated in a coherent manner, the model itself may be left out
and the intuitions applied directly to the problem. Such a study
will be the subject of future work.
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Chapter 7: Conclusions 
 

Paper 1: The normal class of arbitrage-free spot-rate models 

 

Two of the main results in this paper were: First we showed how to determine the T-forward 

adjusted risk-measure using the concept of fundamental solution to linear PDEs. That is, it turned 

out to be possible to derive the T-forward adjusted risk-measure without the use of Girsanovs 

theorem, which is the traditional approach, see for example Karoui, Myneni and Viswanathan 

(1993).          

    

The other main result was that we were able to carry the analysis of the Quadratic interest rate 

model further than Jamshidian (1996) by relying on the Fourier transformation in order to obtain the 

fundamental solution for the PDE.  

 

In that connection we showed how it was possible to derive the price of a discount bond and the 

price of an option on a discount bond. This was also as an example done for the extended Vasicek 

model. Using the idea from Hull and White (1990), we showed how it was possible to fit the model 

to the initial term structure. 

 

We designed a special discrete time model for the Quadratic interest rate model, as it in some cases 

was not possible to use the trinomial approach from Hull and White (1994).  

 

After that we focused on pricing techniques for path-dependent interest rate contingent claims. We 

focused in that connection on Monte Carlo simulation of spot-rate models with a time-dependent 

drift. The third main result in the paper was to introduce a forward-induction technique that made it 

possible to constrain the Monte Carlo simulation for the matching of the initial yield-curve. 

 

When using Monte Carlo simulation for time-dependent spot-rate models, we encountered problems 

obtaining variance reduction - by methods that in the case of time-homogenous spot-rate models are 

very effective. Further research is obviously needed in connection with Monte Carlo simulation of 

time-dependent spot-rate models.       

 

Finally we compared lattice-based pricing method to Monte Carlo simulation procedures for the 

pricing of European put-and call-options on zero-coupon bonds for both the Extended Vasicek 

model and the Quadratic interest rate model. 

 

In that connection we concluded: 

 

 Markovian spot-rate models are best represented by a method that takes into account the 

Markovian nature in the process - that is lattice-based methods   

 Monte Carlo are not as efficient as lattice-based procedures for time-dependent Markovian 

spot-rate models, as Monte Carlo methods do not take into account the Markovian nature - 

Monte Carlo is doing precisely the opposite - as Monte Carlo methods by nature are non-

Markovian. 

 

With respect to the pricing of path-dependent claims, no clear conclusion was drawn. It was 

however suggested that before deciding on a method (Monte Carlo or lattice-based method), it was 

of importance to separate the problem, as follows:    
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 How do we most efficiently construct the time-space dimension of the interest rate process?. 

 Given that, how do we most efficiently utilize the constructed time-space dimension to price 

a path-dependent contingent claim? 

 

From this we deduce that, even though Monte Carlo is the natural method to use when pricing path-

dependent interest rate contingent claims, it might not be the most efficient one - at least not when 

the spot-rate is Markovian.             

 

As of now all work in connection with the multi-factor Quadratic interest model has been under the 

assumption of constant parameters in the SDEs, for example Laurance and Wang (2005) , so an 

interesting topic for future work (and a natural extension) is a multi-factor version of the model 

setup presented here and how to efficiently price derivatives in this more complex model setting.   

 

Another line of research is how to construct – if possible – a market model, along the lines of Brace, 

Gatarek and Musiela (BGM) (1997).  

 

Paper 2: Empirical Yield-Curve Dynamics, Scenario Símulation and Risk-Measures 

 

The first result in this paper was the construction of a general model for the variation in the term 

structure of interest rates - that is we defined a model for the shift function. In this connection we 

showed - using the Heath, Jarrow and Morton (1991) framework -  that the shift function could be 

understood as a volatility structure - more precisely the spot rate volatility structure.    

 

The class of shift functions considered in this paper was of the linear type, with independence 

between the individual factors; the model was therefore comparable to the Ross (1976) APT model. 

 

Using PCA we showed that it took a 4-factor model to explain the variation in the term structure of 

interest rates over the period from the 2. January 2002 to the 2. January 2012. These 4 factors can 

be called a Slope factor, a Short-Curvature Factor, a Short Factor and a Curvature Factor. 

 

Because of the relationship between the volatility structure in the Heath, Jarrow and Morton 

framework and the shift function implied from our empirical analysis of the evolution in the yield-

curve we concluded that PCA could be used to determine the volatility structure in the Heath, 

Jarrow and Morton framework - a  non-parametric approach.  

 

We then extended this model setup by adding stochastic volatility. This we did by assuming that the 

stochastic volatility was driven by a GARCH(1,1) model. Due to the fact that our stochastic 

volatility process was independent of our yield-curve factor-model, means that the extended model 

belonged to the class of USV (unspanned stochastic volatility) models. 

 

In the last part of the paper we turned our attention to Risk model. Our approach to the calculation 

of VaR/ETL was a scenario simulation based methodology with relied on the framework of 

Jamshidian and Zhu (1997). This scenario simulation procedure builds on the factor loadings 

derived from a PCA of the same kind we used in our analysis of the empirical dynamics in the 

yield-curve.  
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The general idea behind the scenario simulation procedure is to limit the number of portfolio 

evaluations by using the factor loadings derived in the first part of paper and then specify particular 

intervals for the Monte Carlo simulated random numbers and assign appropriate probabilities to 

these intervals (states). 

 

From our analyses of both straight bonds and Danish MBBs using the scenario simulation 

procedure we conclude the following: 

 

 The scenario simulation procedure is a computational effective alternative to Monte Carlo 

simulation  

 The scenario simulation procedure is capable of producing reasonable good approximations 

of the probability distributions with a limited number of states  

 There is much better control over the extreme values in the scenario simulation than in 

Monte Carlo simulation 

 The scenario simulation procedure is more efficient than the parametric approach for 

“linear” securities and it rivals the parametric approach for “linear” securities because of the 

speed of calculation  

 We suggested using 7 x 5 x 3 x 3 states for the scenario simulation. Because we “only” need 

to perform 315 re-evaluations of the portfolio the scenario simulation procedure is feasible 

for large portfolios consisting of highly complex non-linear securities 

 One last important feature is that we in the spirit of Barone-Adesi, Bourgoin and 

Giannopoulos (1997) extended the scenario simulation procedure to include stochastic 

volatility - in our case we showed that a Garch(1,1) was appropriate   

 

We also backtested our Risk-Model setup for the year 2008 on 2 bonds - a Government-Bond and a 

Mortgage-Bond. The overall conclusion for this was: 

 

 Our Risk-Model setup was able to capture the extreme movements influenced by the 

financial crisis for our Government-Bond case - notable the autumn of 2008 

 Our Risk-Model setup did not manage to completely capture the extreme price movements 

for our Mortgage-Bond. Due to the fact that the reason for that was mostly (if not entirely) 

because of the enormous changes on level of OAS, we found the model indeed very 

promising  - both of term of efficient from a calculation point of view, to its ability to 

capture the Risk of Mortgage-Bonds 

 

More work is of course necessary - both with respect to backtesting the model and with respect to 

the determination of the input to the scenario simulation procedure.  

 

In connection with the inputs to the scenario simulation method we especially need to address the 

following: 

 

 How to forecast the volatility?  

o In this paper we argued that GARCH is a logical method to utilize 

 How to select the expected yield-curve at a given time-horizon? 

o In this paper we suggested using the initial yield-curve as the expected yield-curve  

 Would it be possible to make our OAS-Model even more robust? 
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o More examination on the appropriate number of states that is used in the scenario 

simulation method 

 

 

Paper 3: Can Danish households benefit from Stochastic Programming models? – An 

empirical study of mortgage refinancing in Denmark 

 

Jørgensen et al. (1996) argued in their paper from 1996 that relatively simple claims on refinancing 

gain (such as those formulated in the refinancing rules of thumb) lead to close to optimal decisions. 

They do not, however, take into account borrower preferences with respect to horizon and risk 

aversion. Moreover, several new types of loan have been introduced, most notably the adjustable 

rate loans, and that alone asks for new strategies and risk management in connection with the 

borrowers mortgage choice and refinancing. 

 

New methods for refinancing should take horizon and risk explicitly into consideration. Once doing 

so, more refinancing particularly when the interest rates go up, as well as mixing fixed 

rate and adjustable rate loans in a portfolio, will enhance the result of refinancing without risk. 

 

Based on the results of the optimization and simulation framework studied in this paper a new 

paradigm for mortgage choice and refinancing consultancy is introduced. The new paradigm 

may be summarized as follows: 

 

 Risk, that is the risk of refinancing should be measured and managed 

 Loan portfolios, instead of individual loans. The key-word here is diversification 

 Loan horizon and its inherent uncertainty should be considered 

 Focus on cost of borrowing instead of presenting technical details of loans. 

 Responsiveness to change. What we mean is that a refinancing strategy should react to the 

observed changes of interest rates and bond prices. 

 

The method framework introduced in this paper has the potential to be used as the analytical 

backbone for this new consultancy paradigm. In particular the results suggest so far that: 

 

 Risk-averse model-based refinancing strategies yield good and robust results 

 Both fixed rate and adjustable rate mortgages should be used in a well diversified portfolio 

of loans. That increase the chance of successful refinancing 

 It is important to look at the long term consequences of a refinancing, in particular more 

than 5 years 

 Too many refinancings will drain the positive effect of refinancing. Timing is important. 

Few but well analyzed refinancings will almost certainly yield a better result than not 

refinancing at all 

 Rules of thumb are outdated and do not live up to the new consultancy paradigm 

 

There is room for much more analysis in the Danish as well as other mortgage markets with the aim 

of enhancing consultancy services when it comes to mortgage choice of refinancing. Many more 

products exist than the two studied in this paper. However the analysis framework of this paper may 

be reused when considering other loan types or market specific information. 
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The purpose of using any model is gaining intuition. Once the intuitions behind a model are well 

understood and formulated in a coherent manner, the model itself may be left out and the intuitions 

applied directly to the problem. Such a study will be the subject of future work. 

 

Thesis Conclusion 

 

In the 3 papers in this dissertation we have focused on 3 very interesting topics: 

 

1. Modelling the yield-curve for the purpose of pricing interest rate derivatives 

2. How to make “VaR” to work 

3. Applying modern optimization technique to support refinancing decisions 

 

All papers have been written, with the Financial Manifesto in mind, and interesting and useful 

results have been obtained: 

 

 In paper 1, I managed to carry the analysis of the Quadratic interest rate model further than 

Jamshidian (1996) by relying on the Fourier transformation in order to obtain the 

fundamental solution for the PDE. That the model was nearly as tractable as the Hull and 

White (1990) model was also shown. Lastly the pricing of interest rate derivatives was 

analysed, both analytical, using discrete time trees and Monte-Carlo 

 In paper 2, I showed a method for calculating Risk for portfolios containing Danish 

Mortgage Bonds, using a combination of GARCH-modelling and focused scenario 

generation procedures that it was possible to build a Risk-Model that does work – even in 

extreme cases! – it was tested during the financial crisis 

 In paper 3, we showed that applying a combination of an optimizing and scenario generation 

technique to the financial decision – When to refinance? was very promising.    
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