14 research outputs found

    Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey.

    Get PDF
    This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to successfully simulate various phenomena such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH. The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of the more apparent problems, and a discussion on prospects for future work

    Lagrangian Neural Style Transfer for Fluids

    Full text link
    Artistically controlling the shape, motion and appearance of fluid simulations pose major challenges in visual effects production. In this paper, we present a neural style transfer approach from images to 3D fluids formulated in a Lagrangian viewpoint. Using particles for style transfer has unique benefits compared to grid-based techniques. Attributes are stored on the particles and hence are trivially transported by the particle motion. This intrinsically ensures temporal consistency of the optimized stylized structure and notably improves the resulting quality. Simultaneously, the expensive, recursive alignment of stylization velocity fields of grid approaches is unnecessary, reducing the computation time to less than an hour and rendering neural flow stylization practical in production settings. Moreover, the Lagrangian representation improves artistic control as it allows for multi-fluid stylization and consistent color transfer from images, and the generality of the method enables stylization of smoke and liquids likewise.Comment: ACM Transaction on Graphics (SIGGRAPH 2020), additional materials: http://www.byungsoo.me/project/lnst/index.htm

    Multiphase SPH simulation for interactive fluids and solids

    Get PDF
    This work extends existing multiphase-fluid SPH frameworks to cover solid phases, including deformable bodies and granular materials. In our extended multiphase SPH framework, the distribution and shapes of all phases, both fluids and solids, are uniformly represented by their volume fraction functions. The dynamics of the multiphase system is governed by conservation of mass and momentum within different phases. The behavior of individual phases and the interactions between them are represented by corresponding constitutive laws, which are functions of the volume fraction fields and the velocity fields. Our generalized multiphase SPH framework does not require separate equations for specific phases or tedious interface tracking. As the distribution, shape and motion of each phase is represented and resolved in the same way, the proposed approach is robust, efficient and easy to implement. Various simulation results are presented to demonstrate the capabilities of our new multiphase SPH framework, including deformable bodies, granular materials, interaction between multiple fluids and deformable solids, flow in porous media, and dissolution of deformable solids

    A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations

    Get PDF
    We introduce a unified particle framework which integrates the phase-field method with multi-material simulation to allow modeling of both liquids and solids, as well as phase transitions between them. A simple elasto-plastic model is used to capture the behavior of various kinds of solids, including deformable bodies, granular materials, and cohesive soils. States of matter or phases, particularly liquids and solids, are modeled using the non-conservative Allen-Cahn equation. In contrast, materials---made of different substances---are advected by the conservative Cahn-Hilliard equation. The distributions of phases and materials are represented by a phase variable and a concentration variable, respectively, allowing us to represent commonly observed fluid-solid interactions. Our multi-phase, multi-material system is governed by a unified Helmholtz free energy density. This framework provides the first method in computer graphics capable of modeling a continuous interface between phases. It is versatile and can be readily used in many scenarios that are challenging to simulate. Examples are provided to demonstrate the capabilities and effectiveness of this approach

    Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Larionov, E., Batty, C., & Bridson, R. (2017). Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph., 36(4), 101:1–101:11. https://doi.org/10.1145/3072959.3073628We propose a novel unsteady Stokes solver for coupled viscous and pressure forces in grid-based liquid animation which yields greater accuracy and visual realism than previously achieved. Modern fluid simulators treat viscosity and pressure in separate solver stages, which reduces accuracy and yields incorrect free surface behavior. Our proposed implicit variational formulation of the Stokes problem leads to a symmetric positive definite linear system that gives properly coupled forces, provides unconditional stability, and treats difficult boundary conditions naturally through simple volume weights. Surface tension and moving solid boundaries are also easily incorporated. Qualitatively, we show that our method recovers the characteristic rope coiling instability of viscous liquids and preserves fine surface details, while previous grid-based schemes do not. Quantitatively, we demonstrate that our method is convergent through grid refinement studies on analytical problems in two dimensions. We conclude by offering practical guidelines for choosing an appropriate viscous solver, based on the scenario to be animated and the computational costs of different methods.Natural Sciences and Engineering Research Council of Canad

    A Physically Consistent Implicit Viscosity Solver for SPH Fluids

    Get PDF
    In this paper, we present a novel physically consistent implicit solver for the simulation of highly viscous fluids using the Smoothed Particle Hydrodynamics (SPH) formalism. Our method is the result of a theoretical and practical in‐depth analysis of the most recent implicit SPH solvers for viscous materials. Based on our findings, we developed a list of requirements that are vital to produce a realistic motion of a viscous fluid. These essential requirements include momentum conservation, a physically meaningful behavior under temporal and spatial refinement, the absence of ghost forces induced by spurious viscosities and the ability to reproduce complex physical effects that can be observed in nature. On the basis of several theoretical analyses, quantitative academic comparisons and complex visual experiments we show that none of the recent approaches is able to satisfy all requirements. In contrast, our proposed method meets all demands and therefore produces realistic animations in highly complex scenarios. We demonstrate that our solver outperforms former approaches in terms of physical accuracy and memory consumption while it is comparable in terms of computational performance. In addition to the implicit viscosity solver, we present a method to simulate melting objects. Therefore, we generalize the viscosity model to a spatially varying viscosity field and provide an SPH discretization of the heat equation

    An Efficient Geometric Multigrid Solver for Viscous Liquids

    Get PDF
    We present an efficient geometric Multigrid solver for simulating viscous liquids based on the variational approach of Batty and Bridson [2008]. Although the governing equations for viscosity are elliptic, the strong coupling between different velocity components in the discrete stencils mandates the use of more exotic smoothing techniques to achieve textbook Multigrid efficiency. Our key contribution is the design of a novel box smoother involving small and sparse systems (at most 9 x 9 in 2D and 15 x 15 in 3D), which yields excellent convergence rates and performance improvements of 3.5x - 13.8x over a naïve Multigrid approach. We employ a hybrid approach by using a direct solver only inside the box smoother and keeping the remaining pipeline assembly-free, allowing our solver to efficiently accommodate more than 194 million degrees of freedom, while occupying a memory footprint of less than 16 GB. To reduce the computational overhead of using the box smoother, we precompute the Cholesky factorization of the subdomain system matrix for all interior degrees of freedom. We describe how the variational formulation, which requires volume weights computed at the centers of cells, edges, and faces, can be naturally accommodated in the Multigrid hierarchy to properly enforce boundary conditions. Our proposed Multigrid solver serves as an excellent preconditioner for Conjugate Gradients, outperforming existing state-of-the-art alternatives. We demonstrate the efficacy of our method on several high resolution examples of viscous liquid motion including two-way coupled interactions with rigid bodies.This work was supported in part by the Rutgers University start-up grant, the Ralph E. Powe Junior Faculty Enhancement Award, and the Natural Sciences and Engineering Research Council of Canada (RGPIN-04360-2014, CRDPJ-499952-2016)

    An adaptive variational finite difference framework for efficient symmetric octree viscosity

    Get PDF
    While pressure forces are often the bottleneck in (near-)inviscid fluid simulations, viscosity can impose orders of magnitude greater computational costs at lower Reynolds numbers. We propose an implicit octree finite difference discretization that significantly accelerates the solution of the free surface viscosity equations using adaptive staggered grids, while supporting viscous buckling and rotation effects, variable viscosity, and interaction with scripted moving solids. In experimental comparisons against regular grids, our method reduced the number of active velocity degrees of freedom by as much as a factor of 7.7 and reduced linear system solution times by factors between 3.8 and 9.4. We achieve this by developing a novel adaptive variational finite difference methodology for octrees and applying it to the optimization form of the viscosity problem. This yields a linear system that is symmetric positive definite by construction, unlike naive finite difference/volume methods, and much sparser than a hypothetical finite element alternative. Grid refinement studies show spatial convergence at first order in L∞ and second order in L1, while the significantly smaller size of the octree linear systems allows for the solution of viscous forces at higher effective resolutions than with regular grids. We demonstrate the practical benefits of our adaptive scheme by replacing the regular grid viscosity step of a commercial liquid simulator (Houdini) to yield large speed-ups, and by incorporating it into an existing inviscid octree simulator to add support for viscous flows. Animations of viscous liquids pouring, bending, stirring, buckling, and melting illustrate that our octree method offers significant computational gains and excellent visual consistency with its regular grid counterpart.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (RGPIN-04360-2014, CRDPJ-499952-2016) and the Rutgers University start-up grant
    corecore