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Abstract: This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid
dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied
to a variety of different areas in science, computer graphics and engineering. It has been established as a pop-
ular technique for fluid based simulations, and has been extended to successfully simulate various phenomena
such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various
aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian
methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH.
The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of
the more apparent problems, and a discussion on prospects for future work.

1 INTRODUCTION

Fluid simulation is utilised in many applications in-
cluding video games, special effects in both film and
television, medical and military simulations, and vir-
tual reality. Some applications use a technique known
as offline rendering, where the scene or effect is ren-
dered by a large array of computers prior to its use
in the application. This can take a varying amount
of time depending on the complexity of the simula-
tion, and how many particles are used. The simula-
tion of fluids in real-time is a challenging area, with
early examples using SPH reproducing relatively sim-
ple scenes such as calm bodies of water, gas inter-
action, and static smoke or fog. More recent imple-
mentations consider more of the properties that influ-
ence fluid behaviour such as splashing, bubbles, cor-
rect pressure representation, mixing of different fluid
viscosities, and boiling and evaporation. As the avail-
able computing power has increased, achieving reli-
able frame rates in real-time simulations has become
possible. However, because the complexity of the
simulations has also increased there is still many areas
that could benefit from research and refinement.

The development of parallel computing, through
Application Programming Interfaces (APIs) such as
CUDA and OpenCL, has been widely accepted by
researchers for use in fluid simulation. In general
terms, a simulation is made up of n particles, and for

each particle a set of equations must be solved each
frame before the simulation can be updated and ren-
dered. Solving the equations on the CPU means that
these calculations are solved linearly, one after an-
other, which for large values of n would heavily in-
crease the time taken to process each update. Utilis-
ing parallel computing means that for any number of
n particles, each particle equation could be solved in
parallel, reducing the time taken to perform all calcu-
lations. Furthermore, some of the more complex pro-
cesses used in fluid simulation such as Nearest Neigh-
bour searching, and surface reconstruction/extraction
can be executed entirely on the GPU, discussed fur-
ther in Section 4.2.

Smoothed Particle Hydrodynamics is one of the
most popular methods in physically-based fluid sim-
ulation. As the subject of this paper, SPH was cho-
sen for a number of reasons: realistic simulations in
real-time are achievable; a number of commercial 3D
graphical applications for simulating fluid already use
SPH; and it is not only limited to fluid based appli-
cations, some recent research using SPH include -
the calculation of protein-ligand binding rates in Bio-
Physics (Pan et al., 2015), modelling the sound of a
rigid body falling on water in Acoustics (Zhang et al.,
2015), and for the estimation of sea wave impact on
coastal structures in Coastal Engineering (Altomare
et al., 2015).
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Figure 1: SPH simulation of a dam-break using 5000 particles executed entirely on the CPU averaging 40 fps.

2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics, herein referred to
as SPH, was outlined in a series of papers by (Lucy,
1977) and (Gingold and Monaghan, 1977) to simulate
nonaxisymmetric phenomena in astrophysics. Using
SPH, the authors were able to calculate spatial deriva-
tives using analytical differentiation of interpolation
formulae. This offered a vast improvement over other
methods such as Particle in Cell, which utilises a grid
structure in order to calculate the spatial derivatives.
Additionally, specific particle attributes such as mo-
mentum, or pressure gradients, are found by sets of
differential equations with the latter being calculated
as the force between particle pairs.

Due to the extensibility and adaptability of SPH
it has been widely adopted to realistically simulate
a wide array of different fluid simulations and fluid
phenomena such as the experiment illustrated in Fig-
ure 1. The next section discusses some key factors
to consider when implementing SPH, including ker-
nel functions, smoothing radius, boundary conditions,
nearest neighbour searching, and time step evaluation.

2.1 SPH Fundamentals

As previously stated SPH is an interpolation method,
which uses a set of disordered points (the particles) to
express a function in terms of its values. The integral
interpolant of any function A(r) is defined by

AI(r) =
∫

Ω

A(r′)W(r− r′,h)dr′ (1)

where the integration is over the entire space Ω, r is
any point in the space, and W is a smoothing kernel
with h width.

The integral interpolant can also be approximated
by a summation interpolant, given by

AS(r) = ∑
b

mb
Ab

ρb
W(r− rb,h) (2)

where b denotes a particle, and the summation is over
all particles. Particle b has the following attributes:

mass mb, position rb, density ρb, velocity vb, and the
value of any quantity A at rb is denoted by Ab.

It is important to understand that this means a
differentiable interpolant of a function can be con-
structed from its values at the particles (interpolation
points), by using a kernel that is differentiable (Mon-
aghan, 1992). Thus any derivatives of this interpolant
can be obtained using standard differentiation, which
infers there is no need for grids or finite difference
methods.

Some “golden” rules to be considered in the SPH
method were presented in the early stages of research
(Monaghan, 1992): It is always best to assume the
kernel is Gaussian, and it is better to rewrite formulae
with the density placed inside of the operators. Al-
though the first rule should be assumed as best prac-
tice, it would appear that while Gaussian kernels have
good mathematical properties they do not have a com-
pact support and require evaluations of exponential
functions which is further discussed in Section 2.2.
The second rule is used more frequently in modern
SPH, since it allows obtaining higher accuracy on the
gradient of a quantity field (Kelager, 2006).

Calculating the pressure exerting on a particle is
an important part of the SPH process, as it may in-
fluence how the particles react to one another, and
therefore how the simulation behaves. To calculate
the pressure at a particle the density must first be cal-
culated, the pressure can then be determined using
the ideal gas state equation p = kρ, where k is a gas
stiffness constant that can be influenced by the num-
ber of particles in the fluid or the temperature. How-
ever, with the consideration of the rest density of the
pressure, a modified equation had been rewritten to
p = k(ρ− ρ0) (Müller et al., 2003). The revision to
the equation is much more suited to the simulation of
fluid as the initial equation was formalised to model
gas, where particles emit a more repulsive reaction
to neighbours. In fluid the particles would exhibit a
more cohesive reaction and also have a constant mass-
density at rest.

When the pressure at each particle is known, the



application of the SPH rule to the pressure term −∇p
at particle i is defined by

Pi =−∇p(ri) =−∑
j6=i

mj
pj

ρj
∇W(ri− rj,h) (3)

However, this does not result in a symmetrical force,
which is apparent when two particles interact. This is
due to the particles only using one another to compute
their respective forces. Changing the form to

Pi =−∑
j6=i

mj
pi +pj

2ρj
∇W(ri− rj,h) (4)

to compute the pressure is not only fast and stable, but
symmetry is guaranteed by using the arithmetic mean
of the pressure between interacting particles (Müller
et al., 2003).

The calculation of viscosity is another important
factor to consider in SPH, each type of fluid has its
own strength of viscosity, e.g. water vs oil, and this
must be modelled effectively. Viscosity is defined as
the resistance to flow, and in SPH the viscosity coeffi-
cient µ defines the strength of how viscous the liquid
is. In SPH terms the viscosity force term is defined by

Vi = µ∇
2u(ui) = µ∑

j 6=i
mj

vj

ρj
∇

2W(ri− rj,h) (5)

and much like the pressure force this is also an asym-
metric force due to the velocity field variance between
particles. A Similar form has also been introduced for
force calculation, by including velocity differences as
defined below (Müller et al., 2003).

Vi = µ∑
j6=i

mj
vj−vi

ρj
∇

2W(ri− rj,h) (6)

This achieves symmetry because the viscosity forces
only rely on the velocity differences, not the absolute
velocities. Viscosity is further discussed in Section
3.4.

Some of the equations necessary for implement-
ing SPH have been detailed in this section, a pseudo-
code overview of a basic SPH simulation loop step
provided by (Ihmsen et al., 2014) can be seen in Al-
gorithm 1. This algorithm uses a state equation, so
can be referred to as State-Equation SPH (SESPH).

2.2 Kernel Functions and Smoothing
Radius

There are many similarities between the use of
smoothing kernels in SPH, and difference schemes in
finite difference methods (Monaghan, 1992). The se-
lection of kernels for use within the SPH simulation is
an important one since it may have a positive or nega-
tive effect on the accuracy produced, or the time taken

Algorithm 1 SPH Simulation Loop

1: for all particles i do
2: find neighbours j
3: for all particles i do
4: ρi = ∑j mjWij
5: compute pi using ρi
6: for all particles i do
7: Fpressure

i =−mi
ρi

∇pi

8: Fviscosity
i = miν∇2vi

9: Fother
i = mig

10: Fi(t) = Fpressure
i +Fviscosity

i +Fother
i

11: for all particles i do
12: vi(t+∆t) = vi(t)+∆tFi(t)/mi
13: xi(t+∆t) = xi(t)+∆tvi(t+∆t)

to perform the calculations and render the result. One
advantage using kernels in SPH is the kernel can be
calculated in a subroutine, meaning that interchang-
ing kernels to assess their suitability to the simulation
is trivial.

Monaghan suggested that a suitable kernel should
be normalised

W (r,h) =W (-r,h) (7)

and even ∫
Ω

W (r,h)dr = 1 (8)

If both are satisfied then the interpolation is of sec-
ond order accuracy. Furthermore, it is suggested that
the kernel should have a limited or compact support
range, this ensures that the kernel does not interact
outside of the computational range of the defined ra-
dius. It is suggested that the kernel should also be
positive to ensure that it is an averaging function, and
if the kernel is even then rotational symmetry is en-
forced (Sporring et al., 2005). Another suggestion is
that the kernel should also be monotonically decreas-
ing, and that it should satisfy the Dirac delta function
condition as h → 0 (Liu et al., 2003), as defined be-
low:

lim
h→0

W(x−x′,h) = δ(x−x′) (9)

The smoothing radius h, and smoothing kernel W,
used in SPH are important considerations to ensure
a stable and robust simulation, and are subject to ad-
justment by changing the time or space. The problem
of finding a suitable smoothing radius is analogous to
deciding on the amount of particles that a SPH sim-
ulation should include. If h → ∞ then the simula-
tion can become unstable due to the kernel weighting
particle contributions less at the centre of the search
radius. Conversely, if h → 0 then not enough parti-
cles will be used in the weighting performed by the



kernel, and the results again will be imprecise. Al-
though some methods of finding a suitable value of h
exist, some experimentation may be required to find
the optimum level at which the simulation behaves ac-
cordingly, while maintaining low computation times.
Considering h as a spherical radius, calculate the op-
timum size such that x particles comfortably fill the
spherical volume, then choose a suitably small num-
ber of x such that the fluid simulation is stable and
behaves accordingly, while still maintaining the prop-
erties of the chosen fluid (Kelager, 2006).

2.3 Boundary Conditions

Fluid simulation implementing SPH should effec-
tively detect and respond to collisions between the
fluid particles, known as fluid-fluid interaction, and
with the boundary (container) and any rigid objects
or meshes placed in the scene, known as fluid-rigid
interaction. A simple method of collision response to
fluid-rigid interaction is to reflect the colliding parti-
cle and its current velocity perpendicularly to the ob-
ject surface, generally calculated via the surface nor-
mal of the object at the point of contact. The simplic-
ity of this method is also its disadvantage, when the
boundary comprises of a simple flat plane this method
can be reliable for small simulations. But when more
complex shapes are used or the simulation size is large
it can lead to discrepancies in calculations, where the
particles behave erratically or simply pass through the
object.

Furthermore, Having a perfectly elastic collision
is generally not advised, since fluid does not behave
this way in nature, and as such the velocity should
be subject to division or multiplication by a restitu-
tion coefficient. There are a variety of methods avail-
able to effectively manage particle interaction with
the boundary and other rigid objects in the simula-
tion space, since computing interaction via kernels
can cause some instability and clip parts of the ob-
ject entirely. Many of these methods generate static
particles, known as ghost or mirror particles, at the
surface of the object that have a repulsion force to re-
pel any incoming fluid particles. In the next paragraph
some of the more recent contributions to the study of
boundary handling in SPH will be discussed.

One such method involves the addition of an in-
terface between the fluid and the boundary, defined
as a surface between the two adjacent materials, and
then define three boundary conditions (Müller et al.,
2004):

1. No-Penetration Condition: No fluid is allowed to

cross the boundary,

(
∂

∂t
u−v) ·n = 0 at the boundary Γ (10)

2. No-Slip Condition: Models friction between the
fluid and the solid,

(
∂

∂t
u−v)×n = 0 at the boundary Γ (11)

3. Actio = Reactio: The traction forces of the solid
must be opposite to that of the fluid on the bound-
ary Γ,

gs = σsn = σf(−n) =−gf (12)

By incorporating density estimated at the boundary
into the pressure forces acting on the fluid, while
maintaining the ability to predict and correct the par-
ticle positions. It is also possible to prevent par-
ticle stacking and smoother density distributions at
the boundaries (Ihmsen et al., 2010). By replacing
the boundary entirely with particles which interact
with the fluid with a prescribed force, simulations
can easily replicate interaction between the fluid mass
and any rigid bodies, that may also float (Monaghan,
2005). By sampling the solid boundary simulating
air particles with “ghost particles”, this can correctly
simulate cohesion between the fluid and solid ob-
jects while reducing the amount of artifacts produced
(Schechter and Bridson, 2010). A similar approach
uses “mirror-particles”, the domain is discretised us-
ing a set of triangles for ease of calculating the normal
directions, the mirror-particles are generated when a
particle is found to be within a certain threshold of the
triangle (Napoli et al., 2015).

Similarly, a coupled, dynamic solid boundary
treatment approach can be used where the boundaries
of the domain are padded with an inner layer of parti-
cles that exhibit a repulsive force, and two outer lay-
ers of ghost particles (Chen et al., 2015). Some of
these approaches can suffer with inhomogeneous par-
ticle sampling, but this can be solved by deriving new
equations which consider the boundary particles rela-
tive contribution to a physical quantity. This can also
improve the particle initialisation at complex bound-
aries and the boundary resampling of any dynamic ob-
jects in the simulation (Akinci et al., 2012).

2.4 Nearest Neighbour Searching

In order to effectively calculate forces between par-
ticles SPH necessitates using a Nearest Neighbour
search algorithm to locate any particles that may influ-
ence the root particle. Illustrated in Figure 2, Nearest
Neighbour searching is an extremely computationally
expensive operation, and as such can have a largely



Figure 2: 2D grid-based nearest neighbours: the root par-
ticle shown in red and its neighbouring particles shown in
blue within a defined search radius, the black particles out-
side would not be considered in pressure and viscosity cal-
culations.

negative impact on the time taken to process each
frame. It is advised to utilise a method of spatial de-
composition so that the entire set of particles need not
be iterated over to find a specific instance. Spatial de-
composition offers a method of dividing the working
space of the simulation into smaller sections, gener-
ally referred to as voxels or cells, that can be accessed
directly using a divisor such as position in 3D space,
or lookup key.

A popular method of Nearest Neighbour searching
uses a 3D uniform grid, a bounding cube contains the
particles, and a twice division strategy to calculate the
optimum edge length of the grid cells. The expense
of performing sorting operations on the set can be re-
duced by using only certain query points, which in
turn reduces the necessary number of distance calcu-
lations required (Zhao et al., 2014) . Another popular
method is spatial hashing, the effectiveness is bound
by the speed with which the unique hash keys used
to represent each grid cell can be generated. But care
must be taken to ensure that there are no “hash colli-
sions”, where multiple hash keys map to the same grid
cell (Kelager, 2006). By using a sliced data structure
and the GPU to construct and access the stored val-
ues, the computational space is sliced into a number
of two-dimensional planes and an index, and a dy-
namic grid is constructed to fit the particle distribution
with some margin (Harada et al., 2007).

Some methods can be executed entirely on the
GPU, using table lookup based Z-Indexing for range
queries and a virtual indexing grid for spatial subdi-
vision. The Z-Index is used to sort the particles and
any found within a power-of-two sized aligned block
are considered neighbours (Goswami et al., 2010). In
comparison with a number of techniques implement-
ing uniform grids that include index, parallel and Z-

Index sorting, and spatial and compact hashing. It
shows that Z-Indexing and compact hashing are both
equally efficient methods, where the memory con-
sumption of the preceding scales with the domain, and
that of the proceeding with the number of particles
(Ihmsen et al., 2011) .

2.5 Numerical Time Integration & Time
Step

There are many different methods of numerical in-
tegration, and for clarity the most regularly imple-
mented will be briefly discussed.

The Implicit Euler scheme is, contrary to its name,
a semi-implicit numerical integration method and is
based on the more commonly used explicit Euler
scheme. Unlike the explicit Euler, where the position
and velocity are updated in parallel, the positional up-
date utilises the result of the velocity calculation

ut+∆t = ut +∆tat (13)

to estimate the new particle position

rt+∆t = rt +∆tut (14)

The Leap-Frog scheme utilises the structure of the im-
plicit Euler method, and its name is derived from the
manner in which the velocities and positions “leap”
over one another. The initial velocity offset is calcu-
lated using a Euler step

u− 1
2 ∆t = u0−

1
2

∆ta0 (15)

with the regular velocity calculation given by

ut+ 1
2 ∆t = ut− 1

2 ∆t +∆tat (16)

and the position calculated by

rt+∆t = rt +∆tut+ 1
2 ∆t (17)

In order to estimate a given velocity at arbitrary time
t a midpoint approximation can be used

ut ≈
ut− 1

2 ∆t +ut+ 1
2 ∆t

2
(18)

Deciding on the most appropriate time step is an
important factor when considering time integrating
methods, since it can effect the stability of the inte-
gration. Due to the manner in which SPH utilises
regular differential equations, any stable method of
time stepping can be used. However, when there is
an absence of dissipation it would be beneficial to
use a symplectic integrator such as the Verlet sec-
ond order integrator (Monaghan, 2005). Compar-
ing Weakly-Compressible SPH with Incompressible



SPH, the choice of time step is separate for each but
chosen by the same expression, to satisfy the min-
imum of three conditions: the Courant-Friedrichs-
Levy condition, and the mass and viscosity force
conditions (Lee et al., 2008). However, it is also
possible to control the time-step by using the afore-
mentioned CFL condition, gravity, viscosity and drag
terms (Monaghan, 2005).

2.6 Compressibility and SPH

The original formulation of the SPH method was de-
signed to model compressible flow problems, but im-
plementing incompressibility is an important factor
when creating realistic simulations. Enforcing incom-
pressibility can be a computationally expensive step,
and can be achieved using a variety of different meth-
ods. One of the simpler methods solves an equation
of state using the density to derive the pressure. This
however has its disadvantages, one being that the time
step has to be extremely small, and another that non-
physical pressure fluctuations caused by erroneous
density calculations can lead to numerical instability
in the simulation. Fully incompressible SPH aims to
rectify these issues by treating pressure and viscosity
forces separately. The pressure is calculated by pro-
jecting the intermediate velocity field, found by inte-
grating the field forward in time without enforcing in-
compressibility, onto a divergence-free space by solv-
ing a derived pressure Poisson equation (Cummins
and Rudman, 1999). Other methods include Weakly-
Compressible SPH (WCSPH), Implicit Incompress-
ible SPH (IISPH), Predictive-Corrective Incompress-
ible SPH (PCISPH), and Local-Poisson SPH (LC-
SPH).

By experimenting with a variety of simulations
including 2D lid-driven cavity flow, flow around a
bluff, and a series of dam-breaks, Incompressible
SPH out-performed the Weakly-Compressible, yield-
ing more reliable results with smoother velocity and
pressure fields (Lee et al., 2008). Further methods
have been applied to enhance the implementation of
Incompressible SPH, such as Moving Particle Semi-
Implicit methods and error compensating source of
the pressure Poisson equation (Gotoh et al., 2014).

Recently, a method named Predictive-Corrective
Incompressible SPH combining the advantages of
Weakly-Compressible SPH and Incompressible SPH,
low computational cost per update and a larger time
step has been presented (Solenthaler and Pajarola,
2009). It uses a prediction-correction scheme for
propagating estimated density values through the fluid
until a user defined density variation limit is reached,
and updates the particle pressures such that incom-

pressibility is enforced. Compared with WCSPH,
PCISPH achieves similar results with less computa-
tion, and also allows the use of much larger time steps
without sacrificing the stability of the simulation. Re-
cent studies have shown that approaches combining
Implicit-Incompressible SPH with another popular
method of fluid simulation known as Fluid-Implicit-
Particle (FLIP), have several advantages compared
with regular SPH including low memory usage, com-
putation time and larger time steps. The combination
of the two methods counteract the disadvantages of ei-
ther individually, with low memory consumption for
large scale simulations, and low computational com-
plexity (Cornelis et al., 2014).

To avoid the computational cost of solving a Pois-
son pressure equation globally, a Local Poisson SPH
method that retains the large time step of Incompress-
ible SPH has been introduced. It effectively elimi-
nates the large density deviations arising from solid
boundary treatment (He et al., 2012)

3 Experimental Applications

Recent research on SPH is primarily concerned with
refining, or detailing new advances which improve the
algorithms used in creating the various simulations.
Although some research focuses on specific scenar-
ios where SPH is used such as viscous fluids, multi-
phase fluids, erosion modelling, and interactive fluids.
Some of the recent research and developments will be
discussed in the proceeding subsections.

3.1 Multiphase Flows

Many SPH simulations are based upon “single-phase”
flows, which is a single liquid interacting with bound-
aries or obstacles placed in the scene. Fluids with
more than one phase are called multiphase, and can
be classified as miscible, where the phases can freely
mix with one another; or immiscible where the phases
are separate, and cannot initiate a chemical reaction
between them. An example of miscible flow would
be the mixing of two liquids with different viscosities
e.g. combining oil and vinegar, and immiscible flow
e.g. lava flows, water at boiling point. The separat-
ing axis in multiphase flows is often referred to as an
interface of zero thickness that balances the separa-
tion of two phases using surface tension (Chen et al.,
2015).

After simulation of lava flows and the dusty gas
produced in volcanic eruptions, it was noted that SPH
is particularly suitable for modelling multiphase flow
due to the ease of modification to handle gas, solid or



liquid phases, achieved with the inclusion of an en-
ergy equation (Monaghan and Kocharyan, 1995). By
further modifying the particle approximation step, in-
troducing a density re-initialisation treatment to cor-
rect any mass discontinuities occurring at the inter-
faces can also improve multi-phase flow SPH. Parti-
cles residing close to the interfaces between phases
are treated as ghost particles for any particles from
neighbouring phases (Chen et al., 2015). In their
research, refinement of the mixture model also im-
proves multi-phase simulation where the reliance on
tracking interfaces between the phases is replaced by
representing the phases with their volume fractions
(Ren et al., 2014). Each phase has its own set of par-
ticles that carry the mixture mass, velocity, and any
physical qualities of the phase to discretise the multi-
phase system.

3.2 Bubbles, Foam and Splashing

In fluid simulation the representation of the fluid is
of foremost importance. The addition of features that
fluid creates in its movement such as bubbles, waves,
foam, water splashing and turbulence is also impor-
tant in creating realistic visualisations. Some may be
created when the fluid interacts with solid objects in
its environment, or when something is introduced to
the fluid e.g. a whisk or large object falling into the
fluid. The computation required to represent these
features can be quite complex depending on the sim-
ulation, but the visualisation thereof is also a complex
task and can require a variety of different techniques
to render accurately.

In general, bubbles are created when air particles
get trapped within the fluid, in the case of water which
has a low viscosity these bubbles would quickly rise
to the surface of the liquid possibly becoming foam.
In a more viscous liquid the bubbles may stay in place
creating an air pocket. This is due to a difference in
density, or rest-density, between the particles. When
two particle bodies of different density are mixed the
difference will cause the less dense fluid to rise. Bub-
bles are able to be simulated using SPH by generating
air particles where air pockets are likely to form in the
fluid, this can be extended to simulate boiling water
through phase transitions by tracking the temperature
and changing the type and density of the particles dy-
namically (Müller et al., 2005). Multi-phase SPH for-
mulations are well suited to simulating bubbles and
foam, using a saturated function for volume allows
smaller and larger bubbles to behave differently, and
the inclusion of a drag force can effectively simulate
the two-way interaction between the phases. When
air particles reach the surface of the fluid body they

are treated as foam particles that have a finite lifes-
pan before being removed. Detecting particles that
have breached the surface can be achieved using a
smoothed colour field, or comparing the number of
neighbours using a defined threshold (Akinci et al.,
2011).

Splashing or sloshing occurs when fluid particles
leave the main body of fluid, this can be the result of
fluid interaction with solid boundaries or objects, and
user interaction with the fluid. SPH is able to simulate
some instances of splashing in its original form, how-
ever this can be improved to simulate a much more
realistic representation, such as the introduction of
an error compensating source of the Poisson pressure
equation, and a higher order laplacian (Gotoh et al.,
2014). Apart from the robustness and stability that
SPH can offer for most of the simulations, to simulate
sparsely sampled thin features in free surface flows
e.g. splashing, SPH might encounter difficulty to-
wards failure. By applying the combination of a free
surface energy function based surface tension force
schemes, efficient air pressure calculation, and geom-
etry aware anisotropic kernels used to filter internal
pressure estimated at two scales, the simulation has
been enhanced and improved (He et al., 2014).

3.3 Interactive Fluids

Fluid interaction can take place between fluid parti-
cles and a wide number of different mediums includ-
ing deformable solids or bodies, free surfaces, and
particles representing different fluids or gases. SPH is
able to be combined with a Finite Element approach
to model the interactivity of fluid particles and de-
formable solids, where boundary particles are placed
at the object surface according to Gaussian quadrature
rules (Müller et al., 2004).

Particle-air interaction with SPH can be effec-
tively modelled by the calculation of the surface-
tension and adhesion forces, which removes the ne-
cessity of surface tracking and the use of ghost or vir-
tual particles (Akinci et al., 2013b). Another method
applies the generation of air particles where air pock-
ets are likely to be formed in the liquid. The inclusion
of temperature calculations to adjust particle types
and densities means phenomena such as boiling water
can also be modelled (Müller et al., 2005).

Fluid interaction with soluble objects where the
object is composed entirely of particles, can be mod-
elled with SPH via the inclusion of a dissolution
model. During dissolution the object particle con-
centration is transferred to the adjacent fluid parti-
cles until the object particle is completely dissolved,
at which point it detaches from the object (Kim and



Park, 2014).

3.4 Viscous, Elastic Fluids and Objects

Viscous, and Viscoelastic fluids in SPH include sub-
stances such as oil, honey, blood, and lava. Flu-
ids can be subject to dynamic alteration due to tem-
perature changes including melting, freezing into a
solid, and viscosity fluctuations in flow which will
change the behaviour and appearance of the fluid.
Although SPH can model viscous fluids, a problem
known as tensile instability can arise due to the cohe-
sive pressure which can cause the particles to cluster
or become sparsely distributed. The tensile instabil-
ity problem is able to be rectified with the use of a
hyperbolic-shaped kernel that possesses non-negative
second derivatives, which ensures even distribution of
particles in the fluid (Yang et al., 2014).

The simulation of bubbles and air particles in
particularly viscous liquids can be problematic, but
through the use of multi-phase SPH formulations it
is possible to compute the two-phase flow inside and
outside of the bubble which addresses the large den-
sity differences, and surface tension is able to be en-
forced using a Continuum Surface Force. Improving
the efficiency and robustness of viscous fluid simu-
lations using SPH has been achieved via the implicit
integration of viscosity, and the conversion to a sparse
linear system with a symmetric positive matrix (Taka-
hashi et al., 2015). Other improvements include the
reconstruction of the velocity field from the target ve-
locity gradient, where any density corrections from
the preceding pressure projection stage are preserved
meaning only one pressure projection step is required
(Peer et al., 2015). Both revisions improve the simu-
lation reliability, and results, with the phenomena of
buckling and coiling and multi-phase viscous liquid
mixing correctly represented.

Elastic-solid coupling using SPH fluids can be
achieved by sampling the triangulated surfaces of
solids using boundary particles, but can suffer from
problems when using deformable boundaries such as
spatial and temporal discontinuities and particle leak-
ing through boundaries. A method of countering this
is through the use of specific surface tension and ad-
hesion forces which do not rely on the introduction of
ghost particles (Akinci et al., 2013b).

Using SPH to model objects or solids in simula-
tions is also popular, finding use in deformable ob-
jects and meshes, and elastic and plastic objects. As
the object can be represented entirely by the parti-
cles, processes such as handling large deformations,
adding special conditions such as repulsion forces, or
simulating the fluid body interacting with the solid is

relatively simple. A method often used in Finite El-
ement Methods, the corotational formula, has been
adapted for use in modelling meshless deformable
solids with SPH. The rotations in the deformation
field are computed using a variant of the shape match-
ing approach adapted for use with SPH (Becker et al.,
2009). Compared with similar methods, the corota-
tional approach not only improves the realistic be-
haviour of the simulation, but also the range of elasto-
mechanical properties that can be simulated.

4 Current Trends in SPH

Since its creation, SPH has been adapted and modi-
fied to suit a variety of research areas. With exten-
sions to the original model it has proved extremely
adaptive, finding use in various areas including sound
and acoustics research, naval engineering and bio-
engineering. This section aims to look at a selected
number of areas currently popular with researchers in
fluid dynamics.

4.1 Surface Reconstruction

Surface reconstruction is an important research topic
in SPH. The body of the fluid is represented by the
particles in the simulation, but to render these as a
body of fluid the particle surfaces must be extracted.
This is a computationally expensive operation when
constructing a high resolution, detailed and artifact
free surface from large sets of particles and is often
seen as a bottleneck due to the complexity and high
memory usage.

Some of the most widely adopted methods involve
algorithms such as marching cubes or tiles, and ray-
tracing. The main problem with marching cubes is the
high memory usage and wastage, which can impact
execution times and results. The Histogram Pyramid
Marching Cubes algorithm removes any cells which
contain no triangles which improves on the mem-
ory consumption, and can also be implemented on
the GPU, greatly improving execution times (Huang
et al., 2015).

There are also methods that reconstruct the sur-
faces from grids and anisotropic kernels. With each
particle represented by anisotropic kernels, marching
cubes is used to construct a mesh that approximates
the fluid surface, with additional diffusion smoothing
steps to account for any bumpiness on the surface (Yu
and Turk, 2010).

Three-level grids have been used for surface re-
construction on the CPU (Akinci et al., 2013a) and
more recently on the GPU, where the execution time



was vastly improved due to parallelisation. Using a
grid can lead to cracks in the approximated surface
which appear in the common faces between adjacent
grid cells, so techniques must account for this with
some approaches dealing with it procedurally, de-
tecting and filling cracks at runtime (Du and Kanai,
2014). Surface reconstruction using Volume render-
ing makes further use of grids, resampling the particle
quantities onto a view volume sized 3D grid which is
stored as a 3D texture which can be stored and used
on the GPU for ray casting (Fraedrich et al., 2010).

4.2 GPU Utilisation

The computational complexity of fluid simulation is a
challenging area and one that prevents truly real-time
simulations from achieving good graphical fidelity.
To correctly model fluid the simulation should com-
prise of a relatively large number of particles and the
complexity scales with this. SPH is less dependent on
data and well suited for parallelisation, as are methods
it relies on such as Nearest Neighbour searching and
Surface Extraction/Reconstruction. Parallel process-
ing can be achieved using multi-core CPUs and mul-
tithreading, field programmable gate arrays (FPGA),
Gravity Pipes (GRAPE) and the GPU. Multicore
CPUs and powerful GPUs are now commonplace in
most personal computers available and as such are
the most accessible forms of parallel computing, with
the GPU exhibiting the best price-performance ra-
tio. The parallelisation of SPH has seen an increas-
ing amount of research as the programmability of the
GPU has become more accessible using languages
such as NVIDIA’s CUDA and OpenCL.

Approaches executing the entire simulation on the
GPU can be achieved by removing the data depen-
dencies and changing the computational model from
“gathering” to “distributing”. Adaptive sampling is
used to allow focusing of computation on specific ar-
eas in the fluid, and particle merging to reduce the
overall number of particles (Zhang et al., 2008). GPU
implementations can also benefit from optimisations
regarding how positional and neighbourhood data is
stored on the GPU (Rustico et al., 2014), and ensuring
data representation is optimised for use by the GPU.
For instance, particle data can maintain contiguity if
an Array of Structures (AoS) format is used. But as
not all particle attributes are accessed simultaneously
a Structure of Arrays (SoA) format achieves a higher
memory bandwidth on the GPU (Nie et al., 2015).

To extend the previous work executed on single
GPU systems (Hérault et al., 2010), an optimisation
method was utilised in considering updating how po-
sitional and neighbourhood data is stored to better suit

GPU memory access, and the replacement of depre-
cated functions no longer supported in CUDA (Rus-
tico et al., 2014). The proposed revision with a single
GPU implementation is more than twice as fast as the
original.

5 Conclusions

Smoothed Particle Hydrodynamics is a fully mesh-
free particle based method, where the particles carry
the material properties of the medium it is simulat-
ing (fluid, gases). This paper has presented a survey
of the current state of SPH research and techniques,
some of the history of the SPH method, its applica-
tion in various fields, and some of the more recent
improvements.

The largest issue still facing researchers of SPH
is the computational overhead. Many of the sim-
ulations presented in papers involving a very large
number of particles or complex procedures are pre-
rendered. Advances made in computer hardware are
having a positive effect on this issue, and are en-
abling researchers to devise new strategies and tech-
niques to improve the execution times, but it will
likely not completely resolve this issue. Furthermore,
refinement of the algorithms used and development of
new algorithms will likely assist in the contribution
of reducing the complexity. Simulations executed on
the GPU is an area that shows a lot of promise, as
SPH is well suited to parallel execution this offers a
large speed advantage over traditional execution on
the CPU.

As SPH is a purely particle based method, to sim-
ulate actual fluid the particles need to be rendered
as such. Surface reconstruction is a technique for
achieving visualisation of fluids and its complexity
scales with the number of particles used in the sim-
ulation. Furthermore, other time consuming calcula-
tions such as lighting and shadow effects, or surface
reflections used to create an aesthetically pleasing liq-
uid are an important consideration. Real-time sim-
ulations executed on the GPU using around 30,000
particles can maintain a steady average frame rate of
around 50 frames per second (fps), adding surface ex-
traction and rendering can reduce this by between 60-
80%. So, efficient rendering could be considered a
bottleneck in fluid simulation using SPH and would
benefit from further research.
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