9,969 research outputs found

    Chemical concrete machine

    Full text link
    The chemical concrete machine is a graph rewriting system which uses only local moves (rewrites), seen as chemical reactions involving molecules which are graphs made up by 4 trivalent nodes. It is Turing complete, therefore it might be used as a model of computation in algorithmic chemistry

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    OpenCog Hyperon: A Framework for AGI at the Human Level and Beyond

    Full text link
    An introduction to the OpenCog Hyperon framework for Artificiai General Intelligence is presented. Hyperon is a new, mostly from-the-ground-up rewrite/redesign of the OpenCog AGI framework, based on similar conceptual and cognitive principles to the previous OpenCog version, but incorporating a variety of new ideas at the mathematical, software architecture and AI-algorithm level. This review lightly summarizes: 1) some of the history behind OpenCog and Hyperon, 2) the core structures and processes underlying Hyperon as a software system, 3) the integration of this software system with the SingularityNET ecosystem's decentralized infrastructure, 4) the cognitive model(s) being experimentally pursued within Hyperon on the hopeful path to advanced AGI, 5) the prospects seen for advanced aspects like reflective self-modification and self-improvement of the codebase, 6) the tentative development roadmap and various challenges expected to be faced, 7) the thinking of the Hyperon team regarding how to guide this sort of work in a beneficial direction ... and gives links and references for readers who wish to delve further into any of these aspects
    corecore