27,298 research outputs found

    A Feature Point Based Image Registration Using Genetic Algorithms

    Get PDF
    Image registration has been widely applied in many fields such as remote sensing, medical image analysis, cartography, computer vision and pattern recognition. The key of image registration is to find the proper transformation of one image to another image so that each point of one image is spatially aligned with its corresponding point of the other. In this paper, we present a rigid feature point based image registration method integrating two techniques. The first is one in which we propose to extract the feature points by using efficiency of the multi-resolution representation data of the nonsubsampled contourlet transform. The second technique exploits the robustness of Genetic algorithms as an optimization method to find the best transformation parameters. The results show the effectiveness of this approach for registering the magnetic resonance images

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Algorithms to automatically quantify the geometric similarity of anatomical surfaces

    Full text link
    We describe new approaches for distances between pairs of 2-dimensional surfaces (embedded in 3-dimensional space) that use local structures and global information contained in inter-structure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This renders these studies inaccessible to non-morphologists, and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the references for one of the three datasets. Note that the datasets and code for this paper can be obtained from the Data Conservancy (see Download column on v1, v2
    corecore