705 research outputs found

    Nonlinear system modeling based on constrained Volterra series estimates

    Full text link
    A simple nonlinear system modeling algorithm designed to work with limited \emph{a priori }knowledge and short data records, is examined. It creates an empirical Volterra series-based model of a system using an lql_{q}-constrained least squares algorithm with q1q\geq 1. If the system m()m\left( \cdot \right) is a continuous and bounded map with a finite memory no longer than some known τ\tau, then (for a DD parameter model and for a number of measurements NN) the difference between the resulting model of the system and the best possible theoretical one is guaranteed to be of order N1lnD\sqrt{N^{-1}\ln D}, even for DND\geq N. The performance of models obtained for q=1,1.5q=1,1.5 and 22 is tested on the Wiener-Hammerstein benchmark system. The results suggest that the models obtained for q>1q>1 are better suited to characterize the nature of the system, while the sparse solutions obtained for q=1q=1 yield smaller error values in terms of input-output behavior

    A new kernel-based approach for overparameterized Hammerstein system identification

    Full text link
    In this paper we propose a new identification scheme for Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of pp basis functions. We reconstruct the pp coefficients of the nonlinearity together with the first nn samples of the impulse response of the linear system by estimating an npnp-dimensional overparameterized vector, which contains all the combinations of the unknown variables. To avoid high variance in these estimates, we adopt a regularized kernel-based approach and, in particular, we introduce a new kernel tailored for Hammerstein system identification. We show that the resulting scheme provides an estimate of the overparameterized vector that can be uniquely decomposed as the combination of an impulse response and pp coefficients of the static nonlinearity. We also show, through several numerical experiments, that the proposed method compares very favorably with two standard methods for Hammerstein system identification.Comment: 17 pages, submitted to IEEE Conference on Decision and Control 201

    Identification of Stochastic Wiener Systems using Indirect Inference

    Full text link
    We study identification of stochastic Wiener dynamic systems using so-called indirect inference. The main idea is to first fit an auxiliary model to the observed data and then in a second step, often by simulation, fit a more structured model to the estimated auxiliary model. This two-step procedure can be used when the direct maximum-likelihood estimate is difficult or intractable to compute. One such example is the identification of stochastic Wiener systems, i.e.,~linear dynamic systems with process noise where the output is measured using a non-linear sensor with additive measurement noise. It is in principle possible to evaluate the log-likelihood cost function using numerical integration, but the corresponding optimization problem can be quite intricate. This motivates studying consistent, but sub-optimal, identification methods for stochastic Wiener systems. We will consider indirect inference using the best linear approximation as an auxiliary model. We show that the key to obtain a reliable estimate is to use uncertainty weighting when fitting the stochastic Wiener model to the auxiliary model estimate. The main technical contribution of this paper is the corresponding asymptotic variance analysis. A numerical evaluation is presented based on a first-order finite impulse response system with a cubic non-linearity, for which certain illustrative analytic properties are derived.Comment: The 17th IFAC Symposium on System Identification, SYSID 2015, Beijing, China, October 19-21, 201
    corecore