4 research outputs found

    An extremal problem on crossing vectors

    Full text link
    For positive integers ww and kk, two vectors AA and BB from Zw\mathbb{Z}^w are called kk-crossing if there are two coordinates ii and jj such that A[i]B[i]kA[i]-B[i]\geq k and B[j]A[j]kB[j]-A[j]\geq k. What is the maximum size of a family of pairwise 11-crossing and pairwise non-kk-crossing vectors in Zw\mathbb{Z}^w? We state a conjecture that the answer is kw1k^{w-1}. We prove the conjecture for w3w\leq 3 and provide weaker upper bounds for w4w\geq 4. Also, for all kk and ww, we construct several quite different examples of families of desired size kw1k^{w-1}. This research is motivated by a natural question concerning the width of the lattice of maximum antichains of a partially ordered set.Comment: Corrections and improvement

    Topological minors of cover graphs and dimension

    Full text link
    We show that posets of bounded height whose cover graphs exclude a fixed graph as a topological minor have bounded dimension. This result was already proven by Walczak. However, our argument is entirely combinatorial and does not rely on structural decomposition theorems. Given a poset with large dimension but bounded height, we directly find a large clique subdivision in its cover graph. Therefore, our proof is accessible to readers not familiar with topological graph theory, and it allows us to provide explicit upper bounds on the dimension. With the introduced tools we show a second result that is supporting a conjectured generalization of the previous result. We prove that (k+k)(k+k)-free posets whose cover graphs exclude a fixed graph as a topological minor contain only standard examples of size bounded in terms of kk.Comment: revised versio

    Dimension of posets with planar cover graphs excluding two long incomparable chains

    Full text link
    It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every k1k\geq 1, there is a constant dd such that if PP is a poset with a planar cover graph and PP excludes k+k\mathbf{k}+\mathbf{k}, then dim(P)d\dim(P)\leq d. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.Comment: New section on connections with graph minors, small correction
    corecore